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Recap
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Quasigroups ↔ loops

quasigroups ←→ loops

(Q, ∗) ←→ (Q, ·)

x · y = (x/e1) ∗ (e2\y)

x ∗ y = ϕ(x) · ψ(y)

We can recover the quasigroup with ϕ = Re1 , ψ = Le2 .

Best case: both ϕ,ψ are linear / affine over (Q, ·). Then, (Q, ∗) is
polynomially equivalent to a “non-associative module”.
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An outline of the representation theorems
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2c. The structure of distributive
quasigroups
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Recap

Distributive quasigroups are essentially the same objects as

commutative Moufang loops with a 1-nuclear automorphism

“1-nuclear commutative Moufang modules” over the ring of Laurent
polynomials Z[t, t−1]

Idea: use known properties of commutative Moufang loops to reason
about distributive quasigroups
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Decomposition theorem

Theorem (Fischer-Smith)

Let Q be a finite distributive quasigroup of order pk1
1 · . . . · pkn

n . Then

Q ' Q1 × . . .× Qn

where |Qi | = pki
i . Moreover, if Qi is not medial, then pi = 3 and ki ≥ 4.

... an analogy holds for commutative Moufang loops
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Enumeration

MI (n) = the number of medial idempotent quasigroups of order n up to
isomorphism

D(n) = the number of distributive quasigroups of order n up to
isomorphism

Fisher-Smith says: with pi 6= 3 pairwise different,

D(3k · pk1
1 · . . . · p

kn
n ) = D(3k) ·MI (pk1

1 ) · . . . ·MI (pkn
n ).

Moreover, D(3k) = MI (3k) for k < 4.
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Enumeration

Let Q(Q, ψ) denote the quasigroup (Q, ∗) with x ∗ y = (1−ψ)(x) +ψ(y).

Yesterday’s theorems:

Q(Q, ψ) is medial iff (Q, ·) is an abelian group

Q(Q, ψ) is distributive iff (Q, ·) is a commutative Moufang loop and
ψ is 1-nuclear

Lemma (Kepka-Němec)

Let (Q1, ·), (Q2, ·) be commutative Moufang loops, ψ1, ψ2 their 1-nuclear
automorphisms. TFAE:

Q(Q1, ψ1) ' Q(Q2, ψ2)

there is a loop isomorphism ρ : Q1 ' Q2 such that ψ2 = ρψ1ρ
−1
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Enumeration

Recall:

G1 = (Z3)4 and G2 = (Z3)2 × Z9

Qi = (Gi , ·) with x · y = x + y + ti (x , y , x − y)

Distributive quasigroups of order 81 (Kepka-Němec 1981):

1 Q(G1, ψ) with ψ(y) = y−1

2 Q(G1, ψ) with ϕ(x) = (x2− x1)e1− x2e2− x3e3− x4e4 and ψ = 1−ϕ
3 Q(G2, ψ) with ψ(y) =

√
y

4 Q(G2, ψ) with ψ(y) = y 2

5 Q(G2, ψ) with ψ(y) = y−1

6 Q(G2, ψ) with ϕ(x) = −x1e1 − x2e2 − (3x1 + x3)e3 and ψ = 1− ϕ
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Enumeration

Theorem (Hou 2012)

MI (p) = p − 2

MI (p2) = 2p2 − 3p − 1

MI (p3) = 3p3 − 6p2 + p

MI (p4) = 5p4 − 9p3 + p2 − 2p + 1

n 3 32 33 34 35 36

CML∗(n) 0 0 0 2 6 ≥ 8

3M∗(n) 0 0 0 35
D∗(n) 0 0 0 6

DS∗(n) 0 0 0 1 1 3

MI (n) 1 8 30 166

Here X ∗(n) = X (n)−MI (n).
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3a. Loop isotopes of left
distributive quasigroups

(Belousov-Onoi 1972)
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Linear representation?

Let (Q, ·) be a left distributive quasigroup.

Let x ∗ y = (x/e) ∗ (e\y) with a carefully chosen e.

Is (Q, ∗) a nice kind of a loop? Is (Q, ·) linear over it?

Bad news: not really in general

Good news: it is nice in some special cases (distributive, involutory)

Good news: Le is linear, Re is quadratic over (Q, ·)
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Belousov-Onoi modules

Let (Q, ·) be a loop and ψ its automorphism.

(Q, ·, ψ) is a Belousov-Onoi module if

ϕ(ab) · ψ(ac) = a · ϕ(b)ψ(c)

where ϕ(x) = x/ψ(x) is the companion mapping for ψ.

(the companion is defined in order to have x ∗ x = ϕ(x) · ψ(x) = x)

Examples:

1 loop (Q, ·) −→ BO-module (Q, ·, id)

2 group (Q, ·) with an automorphism ψ −→ BO-module (Q, ·, ψ)

3 Bruck loop (Q, ·) −→ BO-module (Q, ·,−1 )
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From Belousov-Onoi modules to self-distributive objects

Fact

Let (Q, ·, ψ) be a Belousov-Onoi module. Define

a ∗ b = ϕ(a) · ψ(b).

Then (Q, ∗) is a quandle. It is a quasigroup iff ϕ is a permutation.

Examples:

1 loop (Q, ·) −→ BO-module (Q, ·, id)
−→ quandle with a ∗ b = b.

2 group (Q, ·) with an automorphism ψ −→ BO-module (Q, ·, ψ)
−→ homogeneous quandle with a ∗ b = aψ(a−1b).

3 Bruck loop (Q, ·) −→ BO-module (Q, ·,−1 )
−→ involutory quandle with a ∗ b = a2b−1 (core).

We shall see that all involutory left distributive quasigroups result as in (3).
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From left distributive quasigroups to Belousov-Onoi loops

Belousov-Onoi loop = there is an automorphism ψ such that (Q, ·, ψ) is a
Belousov-Onoi-module and the companion ϕ is a permutation.

Fact

Let (Q, ∗) be a left distributive quasigroup, e ∈ Q and let

a · b = (a/e) ∗ (e\b).

Then (Q, ·) is a Belousov-Onoi loop with respect to ψ = Le .
Moreover, different choices of e result in isomorphic loops.

Bad news: ϕ is usually not an automorphism. It is so iff (Q, ·) is
commutative Moufang.

Good news: ϕ(x) = x/ψ(x) can be considered quadratic over (Q, ·, ψ).

Good news: (Q, ∗) is polynomially equivalent to the BO-module (Q, ·, ψ)
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Left distributive quasigroups = Belousov-Onoi loops

Theorem (Belousov-Onoi, 1972)

The following are equivalent for a quasigroup (Q, ∗):

1 it is left distributive,

2 it is right linear over a Belousov-Onoi loop.
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Left distributive quasigroups = Belousov-Onoi loops
The smallest non-associative Belousov-Onoi loops have order 15.

1. uniquely 2-divisible Bruck loop
Consider the loop (Z5 × Z3, ·) with (a, x) · (b, y) = (ϕx ,ya + b, x + y)

ϕx ,y 0 1 2

0 1 2 2
1 1 3 1
2 1 1 3

2. a non-Bol loop
Consider the loop (Z5×Z3, ·) with (a, x) · (b, y) = (ϕx ,ya + b + θx ,y , x + y)

θx ,y 0 1 2

0 0 0 0
1 0 −1 1
2 0 −2 2

This is a BO-loop with respect to the automorphism
(a, x) 7→ (−a + δx ,2,−x) where δx ,y = 1 if x = y and δx ,y = 0 otherwise.
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Left distributive quasigroups = Belousov-Onoi loops

Hence, the smallest non-medial left distributive quasigroups have order 15.

1. that uniquely 2-divisible Bruck loop
The corresponding quasigroup is (Q, ∗) with x ∗ y = x2 · y−1.
Explicitly, it is (Z5 × Z3, ∗) with (a, x) ∗ (b, y) = (µx ,ya− b,−x − y)

µx ,y 0 1 2

0 2 −1 −1
1 −1 2 −1
2 −1 −1 2

2. that non-Bol loop
The corresponding quasigroup is (Z5 × Z3, ∗) with

(a, x) ∗ (b, y) = (µx ,ya− b + τx ,y ,−x − y)
where τx ,y = δx−y ,1.
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(Part of) Kepka’s theorem as a consequence

Proposition

Let (Q, ·) be a loop, ψ its automorphism and assume its companion
mapping ϕ is a permutation. Then any two of the following properties
imply the third:

(Q, ·) is a Belousov-Onoi loop with respect to ψ;

(Q, ·) is a commutative Moufang loop;

ϕ is an automorphism.

... fairly straightforward, using Pflugfelder’s theorem

... it easily follows that distributive quasigroups are linear over
commutative Moufang loops (apply the BO theorem from both sides)
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The Kikkawa-Robinson theorem as a consequence

Proposition

Let (Q, ·) be a loop and ψ(x) = x\1. Then (Q, ·) is a Belousov-Onoi loop
with respect to ψ iff it is a uniquely 2-divisible Bruck loop (aka B-loop).

As an easy corollary, we obtain:

Theorem (Robinson 1964, Kikkawa 1973)

The following are equivalent for a quasigroup (Q, ∗):

1 it is involutory left distributive,

2 there is a B-loop (Q, ·) such that a ∗ b = a2 · b−1.

involutory, aka left symmetric: L2
a = id for all a ∈ Q
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3b. Homogeneous representation
of quandles

(Galkin 1979, Hulpke - S. - Vojtěchovský 2015)
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Connected and homogeneous quandles

quandle = idempotent binary algebra such that all La’s are automorphisms

left multiplication group: LMlt(Q) = 〈La : a ∈ Q〉 ≤ Aut(Q)

homogeneous quandle: Aut(Q) acts transitively on Q

connected quandle: LMlt(Q) acts transitively on Q

Examples:

left distributive quasigroups are connected: given a, b ∈ Q, we have
Lb/a(a) = (b/a) ∗ a = b

there are many connected quandles which are not quasigroups,
e.g. any conjugacy class in a simple group, operation conjugation

(Z4, 2x − y) is homogeneous, disconnected

there are many non-homogeneous quandles
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Constructing homogeneous quandles

Let (G , ·) be a group, H its subgroup, and ψ an automorphism of (G , ·)
such that ψ(a) = a for every a ∈ H.

Denote G/H the set of left cosets {aH : a ∈ G}.
Let Q(G ,H, ψ) = (G/H, ∗) with aH ∗ bH = aψ(a−1b)H.

Fact

Q(G ,H, ψ) is a homogeneous quandle

(in finite case) Q(G ,H, ψ) is a quasigroup iff for every a, u ∈ G
aψ(a−1) ∈ Hu ⇒ a ∈ H.

Note: If H = 1, this is the same construction as we have seen for the
group-derived Belousov-Onoi modules (G , ·, ψ).
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Homogeneous representation

Proposition

Q a quandle, e ∈ Q, G EAut(Q), denote eG the orbit of e.
Then the orbit subquandle (eG , ∗) is isomorphic to Q(G ,Ge ,−Le ).

Homogeneous representation: Every homogeneous quandle (Q, ∗) is
isomorphic to Q(G ,Ge ,−Le ) with G = Aut(Q, ∗).

Canonical representation: Every connected quandle (Q, ∗) is
isomorphic to Q(G ,Ge ,−Le ) with G = LMlt(Q, ∗).

Minimal representation: Every connected quandle (Q, ∗) is
isomorphic to Q(G ,Ge ,−Le ) with G = LMlt(Q, ∗)′.

Corollary (Joyce)

A quandle is isomorphic to some Q(G ,H, ψ) if and only if it is
homogeneous.
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Canonical representation
Fix a set Q and an element e.

Quandle envelope = (G , ζ) where G is a transitive group on Q and
ζ ∈ Z (Ge) such that 〈ζG 〉 = G .

Theorem (H. S. V.)

The following are mutually inverse mappings:

connected quandles ↔ quandle envelopes

(Q, ∗) → (LMlt(Q, ∗), Le)

Q(G ,Ge ,−ζ) ← (G , ζ)

If Q is finite, then (G , ζ) corresponds to a latin quandle iff ζ−1ζα has no
fixed point for every α ∈ G r Ge .

Two envelopes (G1, ζ1) and (G2, ζ2) yield isomorphic quandles iff there is a
permutation f of Q such that f (e) = e, ζ f1 = ζ2 and G f

1 = G2.
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3c. The structure of left
distributive quasigroups
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Enumeration

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LD∗(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
ILD∗(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
MI (n) 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3 9

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
LD∗(n) 0 0 0 0 2 0 0 0 0 0 32 2 0 0 0 0
ILD∗(n) 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0
MI (n) 15 0 17 3 5 0 21 2 34 0 30 5 27 0 29 8

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
LD∗(n) 2 0 0 1 0 0 2 0 0 0 0 0 12 0 0
ILD∗(n) 1 0 0 0 0 0 1 0 0 0 0 0 3 0 0
MI (n) 9 0 15 8 35 0 11 6 39 0 41 9 24 0 45
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Enumeration

Theorem (Stein 1957)

LD(4k + 2) = 0

Theorem (Etingof-Soloviev-Guralnick 2001, Graña 2004)

Connected quandles of prime and prime square order are medial.

Theorem (McCarron / H. S. V.)

There are no connected quandles of order 2p, p > 5.
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Structural properties

Theorem (Kano-Nagao-Nobusawa / Galkin / Kik.-Rob.-Glauberman)

Finite involutory left distributive quasigroups are solvable and have the
Lagrange and Sylow properties.

Theorem (Galkin)

Finite solvable left distributive quasigroups have the Lagrange property.
(Not Sylow, cf. example of order 15.)
Sylow property holds under the additional assumption that the order of the
quasigroup, and the order of its translations, are coprime.

And much more, see my paper in QRS.
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4. Applications in knot theory

(Joyce, Matveev 1980s; Fish-Lisitsa-S. 2015)
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Is it really knotted?
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Four pictures, one knot
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Is it really knotted?

If you think it cannot be untangled, PROVE IT!
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Knot recognition

Knot equivalence = a continuous deformation of space that transforms
one knot into the other.

Fundamental Problem

Given two knots (or knot diagrams), are they equivalent?

Is it (algorithmically) decidable?

Yes, very hard to prove. (Haken, 1962)

If so, what is the complexity?

Nobody knows. No efficient algorithm known.
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Knots are in chemistry
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Knots are in biology

... with applications towards antibiotics production (believe or not)
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Knots are everywhere

... with applications towards black magic (believe or not)
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Classical approach to knot recognition

Develop invariants, properties shared by equivalent knots.

K1 ∼ K2 implies P(K1) = P(K2)

Classical invariants use various algebraic constructions to code some of the
topological properties of a knot.

the Alexander, Jones and other polynomials

the fundamental group of the knot complement

Khovanov homology, Heegaard-Floer homology, ...

Trade-off between complexity and ability to recognize knots.
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Alexander polynomial
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Combinatorial approach: 3-coloring

To every arc, assign one of three colors in a way that

every crossing has one or three colors.

Invariant: count non-trivial (non-monochromatic) colorings.
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Combinatorial approach: Fox n-coloring

To every arc, assign one of n colors, 0, ..., n − 1, in a way that

at every crossing, 2· bridge = left + right, modulo n

Invariant: count non-trivial colorings.
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Combinatorial approach: quandle coloring

Let (Q, ∗) be a quandle.
To every arc, assign one of the colors from a set Q in a way that

c(α) ∗ c(β) = c(γ).

Invariant: count non-trivial colorings, colQ(K ). Really?

Fact (implicitly Joyce, Matveev (1982))

Quandle coloring is an invariant.
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Knot recognition algorithm

Parameter: a (potentially infinite) set of quandles Q

IN: two knots K1,K2 OUT: are they different?

run over Q, if colQ(K1) 6= colQ(K2), the knots are different

Semidecision procedure: either stops with a certificate of inequivalence, or
runs forever

IN: one knot K OUT: can it be untangled?

two algorithms running in parallel:

run over Q, if colQ(K ) > 0, the knot is non-trivial

use an automated theorem prover to prove colQ(K ) = 0 for every Q

Decision procedure: either stops with a certificate of non-triviality, or a
proof of triviality is found

Works very well for knots with < 100 crossings. [Fish, Lisitsa, S. 2015]
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Where is the algebra?

The algorithm requires a suitable set of quandles Q.

conjugation quandles (rather special case)

affine quandles (see 2b. Medial quasigroups)

small quandles (see 3b. Homogeneous representation)

simple quandles

etc.

Fact: simple quandles are sufficient for unknot recognition

Fact: conjugation quandles over PSL2(q) are sufficient for unknot
recognition [Kuperberg’s NP algorithm]

Which quandles work best in partice?
Which quandles work for general recognition?
Affine colorings = Alexander invariant, what about other quandles?
Etc. (veeery intersting topic, in my opinion)
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Thank you for your attention...

... and come to visit me in Kazakhstan!
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