Self-distributive quasigroups and quandles

David Stanovský

Charles University, Prague, Czech Republic

Kazakh-British Technical University, Almaty, Kazakhstan

stanovsk@karlin.mff.cuni.cz

June 2015

Outline

- 1. Motivation: Where self-distributivity comes from
- 2. Medial, trimedial and distributive quasigroups
 - 2a. affine representation in general
 - 2b. representation of distributive and trimedial quasigroups over commutative Moufang loops
 - 2c. the structure of distributive quasigroups
- 3. Left distributive quasigroups (and quandles)
 - 3a. (almost) linear representation
 - 3b. homogeneous representation
- 4. Applications in knot theory

1a. Historical motivation

Self-distributivity

Let (A, *) be a *binary algebraic structure*.

Left translations are mappings $L_a : A \rightarrow A, x \mapsto a * x$.

(A, *) is *left self-distributive* if all L_a 's are endomorphisms.

a * (x * y) = (a * x) * (a * y)

"I think that there is a philosophical difference between an associative world and a distributive world. The associative world is a geometric world; a world in which space and time are important and fundamental concepts. The distributive world seems different to me. I think that it is a quantum world without space and time, in which only information exists."

Dan Moskovich

Self-distributivity

Let (A, *) be a *binary algebraic structure*. Left translations are mappings $L_a : A \to A, x \mapsto a * x$.

(A, *) is *left self-distributive* if all L_a 's are endomorphisms.

$$a*(x*y) = (a*x)*(a*y)$$

Self-distributivity appears naturally in

- low dimensional topology (knot and braid invariants)
- set theory (Laver's groupoids of elementary embeddings)
- Loos's symmetric spaces
- etc.

Self-distributive quasigroups

(Q, *) is a *quasigroup* if a * x = b, y * a = b have unique solutions $\forall a, b$ l.e., all left and right translations are permutations

In combinatorics: latin squares = (finite) quasigroups

Early studies on self-distributive quasigroups:

- Burstin, Mayer: Distributive Gruppen von endlicher Ordnung (1929)
- Anton Sushkevich: Lagrange's theorem under weaker assumptions
- Toyoda, Murdoch, Bruck: medial quasigroups are affine (1940s)
- Orin Frink: abstract definition of mean value (1950s)
- Sherman Stein (1950s)
- Soviet school: V. D. Belousov, V. M. Galkin, V. I. Onoi (1960-70s)

Spaces with reflection

In a space X (euclidean or wherever it makes sense), let a * b = the reflection of b over a.

Then (X, *) is

- Ieft distributive
- idempotent
- a * x = b always has a unique solution, x = a * b
- (usually not a quasigroup, e.g. on a sphere)

Nowadays we say (X, *) is an *involutory quandle*.

- observed by Takasaki (1942)
- elaborated by Loos (1960s): symmetric spaces

Conjugation in groups

In a group G, let $a * b = aba^{-1}$.

Then (G, *) is

- left distributive
- idempotent
- a * x = b always has a unique solution, $x = a^{-1}ba$

Nowadays we say (G, *) is a *quandle*.

Observation: Left distributive quasigroups are quandles.

- Stein (1959): left distributive quasigroups embed into conjugation quandles (quandles do not, in general)
- Conway and Wraithe (1960s): wrack of a group
- Joyce and Matveev (1982): quandles as knot invariants

Knot coloring: 3-coloring

To every arc, assign one of three colors in a way that

every crossing has one or three colors.

Invariant: count non-trivial (non-monochromatic) colorings.

Knot coloring: Fox *n*-coloring

To every arc, assign one of *n* colors, 0, ..., n-1, in a way that

at every crossing, $2 \cdot \text{bridge} = \text{left} + \text{right}$, modulo *n*

Invariant: count non-trivial colorings.

Quandle coloring

Fix a set *C* of colors, and a ternary relation *T* on *C*. To every arc, assign one of the colors in a way that $(c(\alpha), c(\beta), c(\gamma)) \in T$

Invariant: count non-trivial colorings. Really?

Quandle coloring

Fix a set *C* of colors, and a ternary relation *T* on *C*. To every arc, assign one of the colors in a way that $(c(\alpha), c(\beta), c(\gamma)) \in T$

Invariant: count non-trivial colorings. Really?

Fact (implicitly Joyce, Matveev (1982))

Coloring by (C, T) is an invariant if and only if T is a graph of a quandle.

Quandle coloring

Fact (implicitly Joyce, Matveev (1982))

Coloring by (C, T) is an invariant if and only if T is a graph of a quandle.

2a. Linear and affine representation of quasigroups

If I say "quasigroup (Q, *)", I often implicitly mean $(Q, *, \backslash, /)$.

If I say "loop (Q, \cdot) ", I often implicitly mean $(Q, \cdot, \setminus, /, 1)$.

(For universal algebraic considerations, you need $\backslash, /$ as basic operations.)

Term / polynomial equivalence

term operation = any composition of basic operations

polynomial operation = term op. with some var's substituted by constants

two algebras are *term equivalent* if they have the same term operations two algebras are *poly. equivalent* if they have the same poly. operations

... "the two algebras are essentially the same algebraic object"

Examples:

- term equivalent: group (G, ·, ⁻¹, 1) and the corresponding associative loop (G, ·, /, ∖, 1)
- term equivalent: Boolean algebra and the corresponding Boolean ring
- polynomially equivalent: the quasigroup (\mathbb{Q} , arithmetic mean) and the module $\mathbb{Z}[1/2]$ -module \mathbb{Q} .

Observation:

- term equivalent algebras have identical subalgebras
- polynomially equivalent algebras have identical congruences

Loop isotopes

isotope = shuffle rows and columns, rename elements in the table

Fact Given a quasigroup (Q, *), the only loop isotopes (up to isomorphism) are (Q, \cdot) with $\mathbf{a} \cdot \mathbf{b} = (\mathbf{a}/\mathbf{e}_1) * (\mathbf{e}_2 \setminus \mathbf{b})$, with $\mathbf{e}_1, \mathbf{e}_2 \in Q$ arbitrary.

Note: The loop operation \cdot is polynomial over (Q, *).

We can recover the quasigroup operation as $a * b = R_{e_1}(a) \cdot L_{e_2}(b)$.

- this is rarely a polynomial operation over (Q, \cdot)
- the best case: * is a linear / affine form over (Q, ·)
 i.e. R_{e1}, L_{e2} are linear / affine mappings over (Q, ·)

Linear / affine quasigroups

A permutation φ of Q is *affine* over (Q, \cdot) if

$$\varphi(x) = \tilde{\varphi}(x) \cdot u \quad \text{or} \quad \varphi(x) = u \cdot \tilde{\varphi}(x)$$

where $\tilde{\varphi}$ is an automorphism of (Q, \cdot) and $u \in Q$.

Affine quasigroup over a loop (Q, \cdot) is (Q, *) with

 $a * b = \varphi(a) \cdot \psi(b)$

for some affine mappings φ, ψ over (Q, \cdot) such that $\tilde{\varphi}\tilde{\psi} = \tilde{\psi}\tilde{\varphi}$.

Linear / affine quasigroups

A permutation φ of Q is *affine* over (Q, \cdot) if

$$\varphi(x) = \tilde{\varphi}(x) \cdot u \quad \text{or} \quad \varphi(x) = u \cdot \tilde{\varphi}(x)$$

where $\tilde{\varphi}$ is an automorphism of (Q, \cdot) and $u \in Q$.

Affine quasigroup over a loop (Q, \cdot) is (Q, *) with

 $a * b = \varphi(a) \cdot \psi(b)$

for some affine mappings φ, ψ over (Q, \cdot) such that $\tilde{\varphi}\tilde{\psi} = \tilde{\psi}\tilde{\varphi}$.

Linear quasigroups over a loop (Q, \cdot) : φ, ψ are automorphisms, i.e. u = v = 1.

Example:

- \bullet the quasigroup ($\mathbb{Q},$ arithmetic mean) is linear over the group ($\mathbb{Q},+)$
- the quasigroup (𝔅, *) with x * y = ix ⋅ jy is affine over the octonion loop (𝔅, ⋅)
- quasigroups affine over abelian groups are medial (see blackboard)

Module-theoretical point of view

How to turn an affine representation into a polynomial equivalence? (remember: the loop isotope is always polynomial over the quasigroup)

Consider wlog $\varphi(x) = u \cdot \tilde{\varphi}(x), \ \psi(x) = v \cdot \tilde{\psi}(x).$

Then $x * y = \varphi(x) \cdot \psi(y) = (u \cdot \tilde{\varphi}(x)) \cdot (v \cdot \tilde{\psi}(y))$ is a polynomial operation over the algebra $(Q, \cdot, \tilde{\varphi}, \tilde{\psi})$.

Conversely, $\cdot, ilde{arphi}, ilde{\psi}$ are polynomial operations over (Q, *),

e.g.
$$\tilde{\varphi}(x) = (x * e_1)/(1 * e_1)$$

Hence, (Q,*) and $(Q,\cdot,\tilde{arphi},\tilde{\psi})$ are polynomially equivalent.

Module-theoretical point of view

(Q, *) and $(Q, \cdot, \tilde{\varphi}, \tilde{\psi})$ are polynomially equivalent. What is $(Q, \cdot, \tilde{\varphi}, \tilde{\psi})$, a loop expanded by commuting automorphisms?

The classical case: the loop is an abelian group, (Q, +).

Then $(Q, +, \tilde{\varphi}, \tilde{\psi})$ is term equivalent to a module over Laurent polynomials $\mathbb{Z}[s, s^{-1}, t, t^{-1}]$:

- the additive structure is (Q, +)
- the action of s,t is that of $\tilde{\varphi},\tilde{\psi},$ respectively

The corresponding quasigroup operation can be written as an affine form:

$$x * y = sx + ty + c.$$

Module-theoretical point of view

(Q, *) and $(Q, \cdot, \tilde{\varphi}, \tilde{\psi})$ are polynomially equivalent. What is $(Q, \cdot, \tilde{\varphi}, \tilde{\psi})$, a loop expanded by commuting automorphisms?

The classical case: the loop is an abelian group, (Q, +).

Then $(Q, +, \tilde{\varphi}, \tilde{\psi})$ is term equivalent to a module over Laurent polynomials $\mathbb{Z}[s, s^{-1}, t, t^{-1}]$:

- the additive structure is (Q, +)
- the action of s,t is that of $\tilde{\varphi},\tilde{\psi},$ respectively

The corresponding quasigroup operation can be written as an affine form:

$$x * y = sx + ty + c.$$

General case: The same idea works, forget associativity of (Q, +).

Loops expanded by automorphisms = "non-associative modules" (things work particularly nicely e.g. for diassociative loops)

An outline of the representation theorems

2b. Medial, trimedial and distributive quasigroups

(Belousov, Soublin, Kepka, 1960s-70s)

Medial quasigroups are affine over abelian groups

mediality = the identity (x * y) * (u * v) = (x * u) * (y * v)

Note: medial idempotent quasigroups are left and right distributive

Theorem (Toyoda-Murdoch-Bruck, 1940's)

The following are equivalent for a quasigroup (Q, *):

- it is medial,
- *it is affine over an abelian group.*

Moreover, for an idempotent quasigroup, TFAE:

- 1 it is medial idempotent,
- 2 it is *linear* over an abelian group and $\varphi = 1 \psi$, i.e.

$$x * y = (1 - \psi)(x) + \psi(y) = x - \psi(x) + \psi(y).$$

Medial quasigroups are affine over abelian groups

Theorem (Toyoda-Murdoch-Bruck, 1940's)

The following are equivalent for a quasigroup (Q, *):

- it is medial;
- *it is affine over an abelian group.*

 $(2) \Rightarrow (1)$ is straightforward.

(1) \Rightarrow (2): Pick arbitrary $e_1, e_2 \in Q$, define $a \cdot b = (a/e_1) * (e_2 \setminus b)$. Prove that

- (Q, \cdot) is a medial loop, hence an abelian group
- the mappings $\varphi(x) = x/e_1$ and $\psi(x) = e_2 \setminus x$ are affine over (Q, \cdot) .
- $\bullet\,$ the mappings $\tilde{\varphi},\tilde{\psi}$ commute

Medial quasigroups are affine over abelian groups

Let (Q, *) be a medial quasigroup. We prove that (Q, \cdot) with $a \cdot b = (a/e_1) * (e_2 \setminus b)$ is a medial loop.

First, prove that (Q, \circ) with $a \circ b = (a/e_1) * b$ is medial.

$$\begin{aligned} (a \circ b) \circ (c \circ d) &= (((a/e_1) * b)/e_1) * ((c/e_1) * d) \\ &= (((a/e_1) * b)/((e_1/e_1) * e_1)) * ((c/e_1) * d) \\ &= (((a/e_1)/(e_1/e_1)) * (b/e_1)) * ((c/e_1) * d) \end{aligned}$$

Now, interchange b/e_1 and c/e_1 and get equality to $(a \circ c) \circ (b \circ d)$. Proving that (Q, \cdot) is medial is a dual argument over (Q, \circ) . Trimedial quasigroups are affine over c. Moufang loops trimediality = every 3-generated subquasigroup is medial = mediality holds upon any substitution in 3 variables

Theorem (Kepka, 1976)

The following are equivalent for a quasigroup (Q, *):

- It is trimedial;
- Whenever (a * b) * (c * d) = (a * c) * (b * d), the subquasigroup $\langle a, b, c, d \rangle$ is medial,
- 3 it satisfies, for every $a, b, c \in Q$, the identities

$$(c * b) * (a * a) = (c * a) * (b * a),$$

 $(a * (a * a)) * (b * c) = (a * b) * ((a * a) * c),$

It is 1-nuclear affine over a commutative Moufang loop.

1-nuclear =
$$x\varphi(x) \in N$$
, $x\psi(x) \in N$ for every $x \in Q$

Distributive quasigroups are linear over c. Moufang loops

distributive = both left and right distributive

Corollary (Belousov-Soublin, around 1970)

The following are equivalent for an idempotent quasigroup (Q, *):

- it is trimedial,
- **2** whenever (a * b) * (c * d) = (a * c) * (b * d), the subquasigroup $\langle a, b, c, d \rangle$ is medial,
- it is distributive,
- it is 1-nuclear linear over a commutative Moufang loop.

1-nuclear =
$$x\varphi(x) \in N$$
, $x\psi(x) \in N$ for every $x \in Q$

Distributive quasigroups are linear over c. Moufang loops

Commutative Moufang loops of order 81 (Kepka-Němec 1981):

- consider the groups $G_1 = (\mathbb{Z}_3)^4$ and $G_2 = (\mathbb{Z}_3)^2 \times \mathbb{Z}_9$
- let $e_1, e_2, e_3(, e_4)$ be the canonical generators
- let t_1 be the triaditive mapping over G_1 satisfying

$$t_1(e_2, e_3, e_4) = e_1, \ t_1(e_3, e_2, e_4) = -e_1, \ t_1(e_i, e_j, e_k) = 0$$
 otherwise.

• let t_2 be the triaditive mapping over G_2 satisfying

 $t_2(e_1, e_2, e_3) = 3e_3, \ t_2(e_2, e_1, e_3) = -3e_3, \ t_2(e_i, e_j, e_k) = 0$ otherwise.

• consider the loops $Q_i = (G_i, \cdot)$ with

$$x \cdot y = x + y + t_i(x, y, x - y)$$

Sample 1-nuclear automorphisms: $x \mapsto x^{-1}$, $x \mapsto x^2$

Distributive quasigroups are linear over c. Moufang loops

Distributive quasigroups of order 81 (Kepka-Němec 1981):

Recall:

Theorem (Kepka, 1976)

The following are equivalent for a quasigroup (Q, *):

- it is trimedial,
- whenever (a * b) * (c * d) = (a * c) * (b * d), the subquasigroup (a, b, c, d) is medial,
- it satisfies the identities,

• it is 1-nuclear affine over a commutative Moufang loop.

(2)
$$\Rightarrow$$
 (1): $(b * a) * (a * c) = (b * a) * (a * c)$, hence $\langle a, b, c \rangle$ medial.
(1) \Rightarrow (3) is obvious.

 $(3) \Rightarrow (4)$. Pick an arbitrary square $e \in Q$ and define the loop operation on Q by $a \cdot b = (a/e) * (e \setminus b)$. Use a neat theorem of Pflugfelder to prove that this a commutative Moufang loop (plus the other facts).

(4) \Rightarrow (2). Find a subloop Q' of (Q, \cdot) that contains all four elements a, b, c, d and is generated by three elements u, v, w that associate. Then, by Moufang's theorem, Q' is an abelian group, hence $\langle a, b, c, d \rangle$ medial.

Pflugfelder's characterization of c. Moufang loops

Theorem (Bruck 1 \Leftrightarrow 2 \Leftrightarrow 3, Pflugfelder \Leftrightarrow 4)

The following are equivalent for a commutative loop (Q, \cdot) :

- it is diassociative and automorphic,
- it is Moufang,
- **(**) the identity $xx \cdot yz = xy \cdot xz$ holds,

• the identity $f(x)x \cdot yz = f(x)y \cdot xz$ holds for some $f : Q \to Q$.

Moreover, if (Q, \cdot) is a commutative Moufang loop, than the identity $f(x)x \cdot yz = f(x)y \cdot xz$ holds if and only if f is a (-1)-nuclear mapping.

$$(-1)$$
-nuclear $=x^{-1}arphi(x)\in {\sf N}$, $x^{-1}\psi(x)\in {\sf N}$ for every $x\in {\sf Q}$

2c. The structure of distributive quasigroups

Recap

Distributive quasigroups are essentially the same objects as

- commutative Moufang loops with a 1-nuclear automorphism
- "1-nuclear commutative Moufang modules" over the ring of Laurent polynomials $\mathbb{Z}[t, t^{-1}]$

Idea: use known properties of commutative Moufang loops to reason about distributive quasigroups

Decomposition theorem

Theorem (Fischer-Smith)

Let Q be a finite distributive quasigroup of order $p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}$. Then

 $Q \simeq Q_1 \times \ldots \times Q_k$

where $|Q_i| = p_i^{k_i}$. Moreover, if Q_i is not medial, then $p_i = 3$ and $k_i \ge 4$.

... an analogy holds for commutative Moufang loops

Enumeration

MI(n) = the number of medial idempotent quasigroups of order n up to isomorphism

D(n) = the number of distributive quasigroups of order n up to isomorphism

Fisher-Smith says: with $p_i \neq 3$ pairwise different,

 $D(3^k \cdot p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}) = D(3^k) \cdot MI(p_1^{k_1}) \cdot \ldots \cdot MI(p_n^{k_n})$

Moreover, $D(3^k) = MI(3^k)$ for k < 4.

Enumeration

Let $\mathcal{Q}(Q, \psi)$ denote the quasigroup (Q, *) with $x * y = (1 - \psi)(x) + \psi(y)$.

Observe:

- $\mathcal{Q}(\mathcal{Q},\psi)$ is medial iff (\mathcal{Q},\cdot) is an abelian group
- $\mathcal{Q}(Q,\psi)$ is distributive iff (Q,\cdot) is a commutative Moufang loop and ψ is 1-nuclear

Lemma (Kepka-Němec)

Let (Q_1, \cdot) , (Q_2, \cdot) be commutative Moufang loops, ψ_1, ψ_2 their 1-nuclear automorphisms. TFAE:

• $\mathcal{Q}(Q_1,\psi_1)\simeq \mathcal{Q}(Q_2,\psi_2)$

• there is a loop isomorphism $ho: Q_1\simeq Q_2$ such that $\psi_2=
ho\psi_1
ho^{-1}$

Enumeration

Theorem (Hou 2012)

1

Here $X^*(n) = X(n) - MI(n)$.