Every quasigroup is a factor of a subdirectly irreducible quasigroup

David Stanovský

Charles University in Prague Czech Republic

stanovsk@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/~stanovsk

Loops'07

Result

Theorem (Ralph McKenzie, DS)

Every quasigroup \mathbf{Q} is isomorphic to the factor of a subdirectly irreducible quasigroup \mathbf{R} over its monolithic congruence μ .

 $\forall \textbf{Q} \ \exists \textbf{R} \ {\rm SI} \ {\it such that} \ \textbf{Q} \simeq \textbf{R}/\mu$

- **Q** finite \Rightarrow **R** finite
- ▶ \mathbf{Q} (Bol) loop \Rightarrow \mathbf{R} (Bol) loop
- **Q** group \Rightarrow **R** group

(日) (同) (日) (日)

Construction

- $\mathbf{Q} = (Q, +)$ is the quasigroup
- $\mathbf{S} = (S, \cdot)$ is a simple non-Abelian group
- $\mathbf{R} :=$ the *wreath product* of \mathbf{S} and \mathbf{Q}

$$\mathbf{R} = \mathbf{S}^{(Q)} \rtimes \mathbf{Q}$$

$$(f,c)*(g,d)=(f\cdot(g\circ L_c),c+d)$$

Construction

- $\mathbf{Q} = (Q, +)$ is the quasigroup
- $\mathbf{S} = (S, \cdot)$ is a simple non-Abelian group
- $\mathbf{R} :=$ the *wreath product* of \mathbf{S} and \mathbf{Q}

 $\mathbf{R} = \mathbf{S}^{(Q)}
times \mathbf{Q}$

$$(f,c)*(g,d)=(f\cdot(g\circ L_c),c+d)$$

- R is a quasigroup
- ▶ \mathbf{Q} (Bol) loop \Rightarrow \mathbf{R} (Bol) loop
- **Q** group \Rightarrow **R** group

Construction

- $\mathbf{Q} = (Q, +)$ is the quasigroup
- $\mathbf{S} = (S, \cdot)$ is a simple non-Abelian group
- R := the *wreath product* of **S** and **Q**

 $\mathbf{R} = \mathbf{S}^{(Q)}
times \mathbf{Q}$

$$(f,c)*(g,d)=(f\cdot(g\circ L_c),c+d)$$

- ▶ **R** is a quasigroup
- ▶ \mathbf{Q} (Bol) loop \Rightarrow \mathbf{R} (Bol) loop
- **Q** group \Rightarrow **R** group

Fact. **R** is SI and μ is the kernel of the projection onto **Q**.

$$\mathbf{Q} \simeq (\mathbf{S}^{(Q)} \rtimes \mathbf{Q}) / \textit{ker}\pi_2$$

(日) (同) (日) (日) (日)

Motivation: which algebras appear as SI/monolith ?

I. Assume at least one at least binary operation.

Observation

[Kepka 1981] $\mathbf{A} \simeq \mathbf{B}/\mu \Rightarrow$ intersection of ideals is nonempty (IIN).

Results

- ▶ [S.; Ježek–Kepka 2000] $\forall A$ with (IIN) $\exists B SI s.t. A \simeq B/\mu$.
- ► [Bulman-Fleming-Hotzel-Wang 2004] $\forall \mathbf{A} \text{ semigroup with (IIN)} \exists \mathbf{B} \text{ SI semigroup s.t. } \mathbf{A} \simeq \mathbf{B}/\mu.$
- ▶ [Freese 2004] $\forall A$ lattice $\exists B$ SI lattice s.t. $A \simeq B/\mu$.
- ► [McKenzie–S. 2004] $\forall \mathbf{A} \text{ quasigroup etc. } \exists \mathbf{B} \text{ SI quasigroup etc. s.t. } \mathbf{A} \simeq \mathbf{B}/\mu.$

・ロト ・ 一日 ト ・ 日 ト

Motivation: which algebras appear as SI/monolith ?

II. All operations unary.

Observation

 $\mathbf{A} \simeq \mathbf{B}/\mu \Rightarrow$ intersection of \geq 2-element ideals is nonempty (2IIN).

Results

- Monounary algebras: exercise.
- ► [Ježek–Marković–S. 2004] $\forall \mathbf{A}$ finite multiunary with (211N) $\exists \mathbf{B} SI s.t. \mathbf{A} \simeq \mathbf{B}/\rho$.
- ► Infinite case ??? SI/µ ???

(日) (同) (日) (日)

References

S. Bulman-Fleming, E. Hotzel and J. Wang, Semigroups that are factors of subdirectly irreducible semigroups by their monolith. Algebra Universalis **51** (2004), 1–7.

J. Ježek and T. Kepka, *The factor of a subdirectly irreducible algebra through its monolith*. Algebra Universalis **47** (2002), 319–327.

J. Ježek, P. Marković and D. Stanovský, Homomorphic images of finite subdirectly irreducible unary algebras. Czech. Math. J. 57/2 (2007), 671–677.

T. Kepka, A note on subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. 22/1 (1981), 25–28.

D. Stanovský, Homomorphic images of subdirectly irreducible groupoids. Comment. Math. Univ. Carolinae **42/3** (2001), 443–450.

D. Stanovský, R. McKenzie, Every quasigroup is isomorphic to a subdirectly irreducible quasigroup modulo its monolith, Acta Sci. Math. (Szeged) **72** (2006), 59–64.

(日) (四) (日) (日)