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Result

Theorem (Ralph McKenzie, DS)
Every quasigroup Q is isomorphic to the factor of a subdirectly
irreducible quasigroup R over its monolithic congruence µ.

∀Q ∃R SI such that Q ' R/µ

I Q finite ⇒ R finite

I Q (Bol) loop ⇒ R (Bol) loop

I Q group ⇒ R group



Construction

I Q = (Q,+) is the quasigroup
I S = (S , ·) is a simple non-Abelian group

I R := the wreath product of S and Q

R = S(Q) o Q

(f , c) ∗ (g , d) = (f · (g ◦ Lc), c + d)

I R is a quasigroup
I Q (Bol) loop ⇒ R (Bol) loop
I Q group ⇒ R group

Fact. R is SI and µ is the kernel of the projection onto Q.

Q ' (S(Q) o Q)/kerπ2
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Motivation: which algebras appear as SI/monolith ?

I. Assume at least one at least binary operation.

Observation
[Kepka 1981] A ' B/µ ⇒ intersection of ideals is nonempty (IIN).

Results

I [S.; Ježek–Kepka 2000] ∀A with (IIN) ∃B SI s.t. A ' B/µ.

I [Bulman-Fleming–Hotzel–Wang 2004]
∀A semigroup with (IIN) ∃B SI semigroup s.t. A ' B/µ.

I [Freese 2004] ∀A lattice ∃B SI lattice s.t. A ' B/µ.

I [McKenzie–S. 2004]
∀A quasigroup etc. ∃B SI quasigroup etc. s.t. A ' B/µ.



Motivation: which algebras appear as SI/monolith ?

II. All operations unary.

Observation
A ' B/µ ⇒ intersection of ≥ 2-element ideals is nonempty (2IIN).

Results

I Monounary algebras: exercise.

I [Ježek–Marković–S. 2004]
∀A finite multiunary with (2IIN) ∃B SI s.t. A ' B/ρ.

I Infinite case ??? SI/µ ???
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