Subdirectly irreducible algebras in a class of strongly solvable modes

David Stanovský

Charles University in Prague Czech Republic

stanovsk@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/~stanovsk

June 2011, Kraków

Park's conjecture

residual bound of $\mathcal{V}=$ the smallest cardinal such that all subdirectly irreducibles in \mathcal{V} have size $<\kappa$

Problem (Park's conjecture)

Consider a variety that has

- finite signature
- finite residual bound

Does it have a finite base for its equations?

YES, if \mathcal{V} is congruence modular, or congruence SD(\land)

Residual bounds for finitely generated varieties

Theorem (R. McKenzie)

Finitely generated varieties have residual bound finite, or \aleph_0 , or \aleph_1 , or $(2^{\aleph_0})^+$, or there is no bound at all.

Residual bounds for finitely generated varieties

Theorem (R. McKenzie)

Finitely generated varieties have residual bound finite, or \aleph_0 , or \aleph_1 , or $(2^{\aleph_0})^+$, or there is no bound at all.

??? What if we require finite signature ???

... finite, \aleph_1 , $(2^{\aleph_0})^+$, no bound — YES

Problem (RS problem)

Is there one with \aleph_0 ?

... NO, if \mathcal{V} is congruence modular, or congruence SD(\land)

Modes

modes = idempotent algebras with commuting term operations

Theorem (K. Kearnes)

Let \mathcal{V} be a finitely generated variety of modes. Then

 $\mathcal{V} = (\mathcal{V}_1 \times \mathcal{V}_2) \circ \mathcal{V}_5,$

where

- \mathcal{V}_1 is strongly solvable variety
- \mathcal{V}_2 is equivalent to a variety of modules over a commutative ring
- \mathcal{V}_5 has a semilattice term

 $\ldots\,$ RS problem, Park's conjecture, abelian iff quasi-affine... for modes $\ldots\,$ what is \mathcal{V}_1 ?

Differential modes

differential mode = a ternary mode ${\bf A}$ with a congruence α such that

- \bullet all blocks of α are left projections
- ${\rm \bullet}$ the factoralgebra ${\rm A}/\alpha$ is left projection

Examples:

Fact

- Differential modes form a variety.
- Every differential mode has a strongly solvable chain $0 \le \lambda \le 1$.

... $a \lambda b$ iff there are right translations t, s such that t(a) = s(b)

Subdirectly irreducibles I

Let **A** be an *SI differential mode*. Then

- λ has exactly one non-trivial block B,
- hence $\mathbf{A} = \mathbf{B} \propto \mathbf{C} = (B \cup C, _)$ with

 $(c_{--}) = c$, $(bb_1b_2) = b$, $(bb_1c) = g_c(b)$, $(bcb_1) = h_c(b)$, $(bcd) = f_{cd}(b)$

• and (B, f_{cd}, g_c, h_c) is an *SI commutative unary algebra*

Subdirectly irreducibles I

Let **A** be an *SI differential mode*. Then

- λ has exactly one non-trivial block B,
- hence $\mathbf{A} = \mathbf{B} \propto \mathbf{C} = (B \cup C, _)$ with

 $(c_{--}) = c, (bb_1b_2) = b, (bb_1c) = g_c(b), (bcb_1) = h_c(b), (bcd) = f_{cd}(b)$

• and (B, f_{cd}, g_c, h_c) is an *SI commutative unary algebra*

Theorem (Ésik and Imreh)

Every SI commutative unary algebra is of one of the three types:

- (I) cocyclic = equivalent to a \mathbb{Z}_{p^k} -set ($k = 1, 2, ..., \infty$)
- (II) $cocyclic+1 = cocyclic \cup singleton$
- (III) *nilpotent* = *see* [*PICTURE*]

Subdirectly irreducibles II

Theorem

 ${\bf A}$ is a proper SI differential mode if and only if ${\bf A}={\bf B}\propto {\bf C}$ and

- for the unary algebra $(B, _)$, one of the two options takes place:
 - (I) it is cocyclic
 - (III) it is nilpotent, and for every $c \in C$ at least one of the following takes place: $f_{cc} \neq id$, $g_c \neq id$, $h_c \neq id$, $f_{cd} \neq g_d$ for some d, $f_{dc} \neq h_d$ for some d
- for every $c \neq d$, at least one of the following takes place: $g_c \neq g_d$, $h_c \neq h_d$, $|\{f_{cc}, f_{dd}, f_{cd}, f_{dc}\}| > 1$, $f_{ce} \neq f_{de}$ for some e, $f_{ec} \neq f_{ed}$ for some e

Residual bounds for differential modes

Szendrei mode = admits a linear representation over semimodules ... $(xyz) = ((xyx)xz) \implies \text{in } \mathbf{B} \propto \mathbf{C}, f_{cd} = g_d h_c$

Theorem

- **1** Every non-Szendrei variety of differential modes is residually large.
- **2** A Szendrei variety has a finite residual bound iff [... $l \leq 1$, $p < \infty$...].
- A locally finite Szendrei variety failing [...] is residually large.

Residual bounds for differential modes

 $\begin{array}{l} \textit{Szendrei mode} = \textit{admits a linear representation over semimodules} \\ \dots (xyz) = ((xyx)xz) \implies \textit{in } \mathbf{B} \propto \mathbf{C}, \ f_{cd} = g_d h_c \end{array}$

Theorem

- Every non-Szendrei variety of differential modes is residually large.
- **2** A Szendrei variety has a finite residual bound iff [... $l \leq 1$, $p < \infty$...].
- A locally finite Szendrei variety failing [...] is residually large.

Proof:

- Every non-Szendrei variety contains a finite SI such that
 - it is non-Szendrei cocyclic and $|C| \leq 2$; or
 - it is non-Szendrei nilpotent of length 1 and $|\mathcal{C}| \leq$ 2; or
 - it is nilpotent of length 2 with trivial blocks, linear order and $|C| \leq 2$.

Find a construction in each case.

- 2 in the Szendrei case, $|C| < |B|^{2|B|}$
- apply item three of (1)

< ≣ > ____

Park's conjecture for differential modes

Corollary

Every variety of differential modes with a finite residual bound is finitely based.

Proof:

- ... it is a Szendrei variety
- \ldots Szendrei varieties correspond to congruences of $(\mathbb{N},+) imes (\mathbb{N},+)$
- $\ldots\,$ all such congruences are finitely generated by Rédei's theorem