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Outline

1. From knots to quandles

2. Algebraically connected quandles

3. From connected to general

... with emphasis on structure and enumeration
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Knots
knot = embedding of a circle into R3

K1,K2 equivalent = there is an ambient isotopy f of R3

such that f (K1) = K2

tame knot = equivalent to a finitely polygonal knot (or a smooth knot)

All knots in this talk are tame and oriented.

Fundamental Problem

Given K1,K2, are they equivalent? Given K , is K ∼ © ?

Haken (1961): ∼ © is decidable (in EXP-time)

Haas-Lagarias-Pippinger (1999): ∼ © is in NP

Agol (2002, not published): 6∼ © is in NP assuming GRH

Kuperberg (2011): 6∼ © is in NP assuming GRH
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Reidemester moves
Knots are usually displayed by a regular projection into a plane.

Theorem (Reidemeister 1926, Alexander-Brigs 1927)

K1 ∼ K2 if and only if they are related by a finite sequence of Reidemeister
moves:

I. twist/untwist a loop;

II. move a string over/under another;

III. move a string over/under a crossing.

How many moves one needs?

K ∼ © iff related by a sequence of at most f (cross(K )) Reidemeister
moves, where:

Haas-Lagarias (2001): f exponential

Lackenby (2013): f polynomial, (231n)11

Bad news: cross(K) may increase, Good news (Lackenby): not too much
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Invariants
= mappings f assigning a value to every knot in a way that

K1 ∼ K2 implies f (K1) = f (K2).

mincross(K ) = the minimal number of crossings

col(K ) = the number of colorings of arcs by three colors such that no
crossing has two colors

the knot group G (K ) = π1(R3 r K )

Alexander-Conway polynomial (1923/1969)

f (©) = 1, f (L+)− f (L−) = xf (L0)

Jones polynomial (1984)

f (©) = 1, x−1f (L+)− xf (L−) = (x1/2 − x−1/2)f (L0)

etc.

etc.

http://www.indiana.edu/˜knotinfo
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Coloring (oriented) knots

Fix a ternary relation T on a set X (colors).

coloring of K = a mapping c : arcs → colors s.t. (c(α), c(β), c(γ)) ∈ T
for every crossing where α is the overpass, β is right, γ is left

ColT (K ) = the number of colorings of K by T

Fact (implicitly Joyce, Matveev (’82), explicitly Fenn-Rourke (’92))

ColT (K ) is an invariant if and only if for every x , y , z ∈ X

I. (x , x , x) ∈ T

II. there are unique u, v such that (x , y , u) ∈ T and (x , v , y) ∈ T
in particular, T is a graph of an operation, let x ∗ y be the u

III. x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

Algebras (X , ∗) satisfying I., II., III. are called quandles.
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Quandles
Quandle is an algebra Q = (Q, ∗) such that for every x , y , z ∈ Q

x ∗ x = x (idempotent)

there is a unique u such that x ∗ u = y (unique left division)

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) (selfdistributivity)

Examples:

group conjugation x ∗ y = y x = xyx−1

conjugation in π1(R3 − K )  the knot quandle
Kuperberg’s algorithm: color by conjugation quandles over SL2(p)

affine quandles x ∗ y = (1− r)x + ry over any module, r invertible
coloring by affine quandles = (essentially) the Alexander invariant

Motivation:

coloring knots, braids

Hopf algebras, discrete solutions to the Yang-Baxter equation

combinatorial algebra: a natural generalization of selfdistributive
quasigroups (since 1923!)
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Enumerating small groups

1..10 1 1 1 2 1 2 1 5 2 2
11..20 1 5 1 2 1 14 1 5 1 5
21..30 2 2 1 15 2 2 5 4 1 4
31..40 1 51 1 2 1 14 1 2 2 14
41..50 1 6 1 4 2 2 1 52 2 5
51..60 1 5 1 15 2 13 2 2 1 13
61..70 1 2 4 267 1 4 1 5 1 4
71..80 1 50 1 2 3 4 1 6 1 52
81..90 15 2 1 15 1 2 1 12 1 10

91..100 1 4 2 2 1 231 1 5 2 16

(Besche, Eick, O’Brien around 2000: a table up to 2047)

size p: Zp

size p2: Zp2 ,Z2
p

size 2p: Z2p,D2p

Methods: deep structure theory and efficient programming
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Enumerating small quasigroups
quasigroup = latin square
loop = quasigroup with a unit

loops quasigroups

1 1 1
2 1 1
3 1 5
4 2 35
5 6 1411
6 109 1130531
7 23746 12198455835
8 106228849 2697818331680661
9 9365022303540 15224734061438247321497

10 20890436195945769617 2750892211809150446995735533513

(McKay, Meynert, Myrvold 2007)

Methods: smart combinatorics and efficient programming
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Enumerating quandles: an elementary approach

1..9 1 1 3 7 22 73 298 1581 11079

exhaustive search over all tables: SAT-solver up to size 7

exhaustive search over all permutations: Ho, Nelson up to size 8

smarter elementary approach: McCarron up to size 9

Our idea:

think about the orbit decomposition of Q

find a representation theorem

count the configurations

Our results: two special cases

algebraically connected quandles = with a single orbit, up to size 47

medial quandles (in a sense the abelian case), up to size 13
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Translations (aka inner mappings)

In a quandle Q:

translations Lx(y) = x ∗ y are permutations

multiplication group LMlt(Q) = 〈Lx : x ∈ Q〉 is a permutation group

Quandles = idempotent binary algebras with LMlt(Q) ≤ Aut(Q).

Displacement group (aka transvection group):

Dis(Q) = 〈LxL−1
y : x , y ∈ Q〉 ≤ LMlt(Q)

LMlt(Q) and Dis(Q) tell a lot about Q

things usually work nicer for Dis(Q), than for LMlt(Q)

but I realized this too late, so our connected quandles project is based
on LMlt(Q) (it has other advantages)
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Connected quandles
= LMlt(Q) is transitive on Q

Galkin quandles: Gal(G ,H, ϕ) = (G/H, ∗), xH ∗ yH = xϕ(x−1)ϕ(y)H,

G is a group, H its subgroup

ϕ ∈ Aut(G ), ϕ|H = id

Canonical representation: Q ' Gal(LMlt(Q),LMlt(Q)e ,−Le )

quandle envelope = (G , ζ) such that

G a transitive group,

ζ ∈ Z (Ge) such that 〈ζG 〉 = G

Theorem (HSV)

There is 1-1 correspondence connected quandles ↔ quandle envelopes

quandles to envelopes: Q 7→ (LMlt(Q), Le)

envelopes to quandles: (G , ζ) 7→ Gal(G ,Ge ,−ζ)
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Enumerating connected quandles
Important trick: we have an efficient Isomorphism Theorem for envelopes:
(G , ζ) ' (K , ξ) iff there is ψ : G ' K such that ψ(Ge) = Ke and ψ(ζ) = ξ.

1..10 1 0 1 1 3 2 5 3 8 1
11..20 9 10 11 0 7 9 15 12 17 10
21..30 9 0 21 42 34 0 65 13 27 24
31..40 29 17 11 0 15 73 35 0 13 33
41..47 39 26 41 9 45 0 45

(Vedramin 2012 / HSV independently)

We count all quandle envelopes, using the full list of transitive groups of
degree n ≤ 47 (Holt 2014).

Using theory of transitive groups:

size p: only affine, p − 2 (Etingof, Soloviev, Guralnick 2001)

size p2: only affine, 2p2 − 3p − 1 (Graña 2004)

size p3: .... (Bianco)

size 2p: none for p > 5 (McCarron / HSV)
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Connected quandles, prime size

Theorem (Etingof-Soloviev-Guralnik)

Connected quandles of prime size are affine.

Proof using envelopes.

LMlt(Q) is a transitive group acting on a prime number of elements,
hence LMlt(Q) is primitive.
A theorem of Kazarin says that if G is a group, a ∈ G , |aG | is a prime

power, then 〈aG 〉 is solvable. In our case |LLMlt(Q)
e | = |Q| is prime, hence

LMlt(Q) = 〈Lζe〉 is solvable.
A theorem attributed to Galois says that primitive solvable groups are
affine, hence LMlt(Q) is affine, and so is Q.
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From connected to general

1. Describe connected (we just did it)

2. Describe orbits (similar approach works, they are homogeneous)

3. How orbits are assembled to obtain a quandle?

... we will show for medial quandles
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Medial quandles
... Dis(Q) = 〈LxL−1

y : x , y ∈ Q〉 is an abelian group

... (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v) for every x , y , u, v

Affine quandles: Aff(G , ϕ) = (G , ∗) with x ∗ y = (1− ϕ)(x) + ϕ(y),
where G is an abelian group, ϕ ∈ Aut(G )

Fact

A connected quandle is medial iff affine.

Connected quandles of prime size: Aff(Zp, k) with k = 2, . . . , p − 1.
(Classification of affine quandles up to p4 by Hou 2011.)

Fact

Orbits in medial quandles are affine quandles,

Qe = Aff(Dis(Q)/Dis(Q)e ,−Le ).
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The structure of medial quandles
affine mesh = triple ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I ) indexed by I where

Ai are abelian groups

ϕi ,j : Ai → Aj homomorphisms

ci ,j ∈ Aj constants

such that for every i , j , j ′, k ∈ I

1− ϕi ,i is an automorphism of Ai

ci ,i = 0

ϕj ,kϕi ,j = ϕj ′,kϕi ,j ′ (they commute naturally)

ϕj ,k(ci ,j) = ϕk,k(ci ,k − cj ,k)

Aj = 〈ci ,j + Im(ϕi ,j) : i ∈ I 〉

Theorem (JPSZ)

There is 1-1 correspondence medial quandles ↔ affine meshes

meshes to quandles: a ∗ b = ci ,j + ϕi ,j(a) + (1− ϕj ,j)(b)

quandles to meshes: Ae = Dis(Q)/Dis(Q)e , ϕef (x) = xf − ef , cef = ef
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Enumerating medial quandles

medial quandles quandles

1 1 1
2 1 1
3 3 3
4 6 7
5 18 22
6 58 73
7 251 298
8 1410 1581
9 10311 11079

10 98577
11 1246488
12 20837439
13 466087635
14 13943042???
15 563753074951
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The combinatorics behind
Again, we have an efficient Isomorphism Theorem for meshes:

(Ai , ϕi ,j , ci ,j) ' (A′i , ϕ
′
i ,j , c

′
i ,j) iff ∃ π ∈ SI ∃ ψi : Ai ' A′πi ∃ di ∈ A′i

1 ... (you don’t want to know) ...

2 ... (you don’t want to know) ...

Reformulation: groups Bj , each occurs nj -times

Isomorphism classes are precisely the orbits under an action of

G =
∏

(Bj o Aut(Bj)) o Snj .

Using Burnside’s orbit counting lemma, we have

# orbits =
1

|G |
∑
g∈R

|g/∼| · fix(g)

where ∼ is a subconjugacy equivalence and R a set of class representatives
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Reductive medial quandles
Surprizingly, there is an important special case:

ϕi ,j = 0 for every i , j

Call them 2-reductive. Then:

we can simplify G =
∏

Aut(Bj) o Snj

we know a formula for fix(g) (complicated)

Burnside works awesome.

1 1 2 5 15 55 246 1398 10301 98532 1246479 20837171

466087624 13943041873 563753074915 30784745506212

There are very few other medial quandles!
0 0 1 1 3 3 5 12 10 45 9 278 11 ? 36

Conjecture (:-0)

There are more 2-reductive than non-2-reductive, for every size.
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David Stanovský (Prague/Almaty) Quandles 22 / 24



Reductive medial quandles
Surprizingly, there is an important special case:

ϕi ,j = 0 for every i , j

Call them 2-reductive. Then:

we can simplify G =
∏

Aut(Bj) o Snj

we know a formula for fix(g) (complicated)

Burnside works awesome.

1 1 2 5 15 55 246 1398 10301 98532 1246479 20837171

466087624 13943041873 563753074915 30784745506212

There are very few other medial quandles!
0 0 1 1 3 3 5 12 10 45 9 278 11 ? 36

Conjecture (:-0)

There are more 2-reductive than non-2-reductive, for every size.
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Reductive medial quandles II

A medial quandle is called m-reductive if following equivalent cond’s hold:

all compositions of right translations Ru1 ...Rum are constant

the orbits are ϕm−1 = 0.

Fact: 2-reductive iff ϕi ,i = 0 ∀i iff ϕi ,j = 0 ∀i , j

Fact: all ϕi ,i permutations iff all orbits latin quandles

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
non-2-red. 0 0 1 1 3 3 5 12 10 45 9 268 11 36

red., not 2-red. 0 0 0 0 0 2 0 9 0 42 0 260 0 12
non-red. 0 0 1 1 3 1 5 3 10 3 9 8 11 5 24

latin orbits 0 0 1 1 3 1 5 3 9 3 9 3 11 5 7
latin 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3
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Conclusion

few groups, many quasigroups

few connected quandles, many quandles

few non-2-reductive medial quandles, many 2-reductive medial
quandles

WHY???
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