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Modes

n-ary mode = an idempotent entropic algebra A = (A, f )

Idempotency:
f (x , x , . . . , x) = x

Entropy:

f (f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn)) =

f (f (x11, . . . , xn1), . . . , f (x1n, . . . , xnn))

f is a homomorphism An → A

the clone of term operations is commutative
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Differential modes: semantic definition

LZ algebra = (A, f ) with f (x1, . . . , xn) = x1

(n-ary left) differential mode = a mode A possessing a congruence α such
that

all blocks of α are LZ

the factoralgebra A/α is LZ

It means, the variety Dn of differential modes is the Mal’tsev product

LZn ◦ LZn

relative to modes.
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The structure of finite modes

Theorem (Kearnes)

Let V be a finitely generated variety of modes. Then

V = (V1 × V2) ◦ V5,

where

V1 is strongly solvable variety

V2 is equivalent to a variety of modules over a commutative ring

V5 is a variety of semilattice modes

Conjecture. V1 is a Mal’tsev product of projection algebras.
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Examples

(Romanowska, Smith) on a differential group, put

x ∗ y = x − dx + dy

Linear modes: on a module over a commutative ring R, pick k ∈ R
such that k2 = 0, and put

x ∗ y = (1− k)x + ky

(e.g., R = Z4, k = 2, or R = Z[k]/k2)

the ternary algebra ({0, 1, 2}, f ) with

f (x , y , z) =

{
2− x if y = z = 1,
x otherwise.
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WHY differential modes?

Embedding modes into semimodules over commutative semirings

for a long time, it wasn’t known whether all modes are embeddable

modules obviously are, semilattice modes are (Kearnes)

all differential groupoids are

the last (ternary) example is not

in fact, many differential modes are not

Embedding algebras into modules: Do abelian algebras embed?

generally not

yes for nice varieties (CM, ...)

for modes? differential modes?

Park’s conjecture: Is every residually finite variety finitely based?

true for nice varieties (CD, CM, ...)

for ugly varieties? (modes? differential modes?)
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Differential modes: syntactic definition

Idempotency:
f (x , x , . . . , x) = x

Entropy:

f (f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn)) =

f (f (x11, . . . , xn1), . . . , f (x1n, . . . , xnn))

Left reductive law:

f (x , f (y21, y22, . . . , y2n), . . . , f (yn1, yn2, . . . , ynn)) = f (x , y21, . . . , yn1)

Left normal law:

f (f (x , y2, . . . , yn), z2, . . . , zn) = f (f (x , z2, . . . , zn), y2, . . . , yn)
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Free differential modes

Ternary case.

Useful shortcuts:
(xyz) = f (x , y , z)

(xyz)k = (((xyz)yz) . . . yz)

Let (x1, y1), . . . , (xm, ym) be a list of elements of X × X .

Fact

Every term over X is equivalent to a unique term of the form

((. . . ((xx1y1)k1x2y2)k2 . . . )xmym)km ,

where ki = 0 for the pair (x , x).

David Stanovský (Prague) Differential modes 8 / 15



Embeddings into semimodules over commutative semirings

Reduct of a semimodule = semiaffine representation = operations are
semimodule terms, i.e.,

f (x1, . . . , xn) = α1x1 + . . .+ αnxn

Subreduct = subalgebra of a reduct

Theorem (Stronkowski, S.)

A mode is a subreduct of a semimodule over a commutative semiring if
and only if it satisfies the Szendrei identities.

Szendrei identities:

f (f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn)) =

f (f (xπ(11), . . . , xπ(1n)), . . . , f (xπ(n1), . . . , xπ(nn)))

where π : ij ↔ ji for a single fixed ij .
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Free Szendrei differential modes

Ternary case.
((xx1y1)x2y2) = ((xx2y1)x1y2)

((xx1y1)x2y2) = ((xx1y2)x2y1)

Let x1, . . . , xn be the list of the elements of X .

Fact

Every term over X is equivalent to a unique term of the form

((. . . ((xxx1)k1x1x)l1xx2)k2x2x)l2 . . . )xxn)kn xnx)ln ,

where ki li = 0 for all i , and kj = lj = 0 for xj = x.
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Embeddings into modules over commutative rings

Reduct of a module = affine representation = operations are module
terms, i.e.,

f (x1, . . . , xn) = α1x1 + . . .+ αnxn

Subreduct = subalgebra of a reduct = quasi-affine algebras

Observation

Quasi-affine algebras are abelian, i.e., for every term t

t(x ,u1, . . . , uk ) = t(x , v1, . . . , vk )⇒ t(y , u1, . . . , uk ) = t(y , v1, . . . , vk )

Proved: Abelian differential groupoids are subreducts of modules.

Conjectured: Abelian differential modes are subreducts of modules.

Question: Are abelian modes subreducts of modules?
(True for nice varieties, false generally, unknown for modes.)
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The lattice of subvarieties

Easy fact: Every subvariety of differential modes

either, has a relative base consisting of 1 additional equation,

or, has no finite base.

Not so easy fact: There exist subvarieties with no finite basis, e.g.,

(((xyz)yz)yz) = ((xyz)yz)

(((((xxx1)x1x2)x2y) = (((((xxx1)x1x2)yx2)

(((((xxx1)x1x2)x2x3)x3y) = (((((xxx1)x1x2)x2x3)yx3)

...

(((((xxx1)x1x2) . . .)xn−1xn)xny) = (((((xxx1)x1x2) . . .)xn−1xn)yxn)

...
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The lattice of subvarieties, the Szendrei case

In contrast, subvarieties of Szendrei differential modes are tame:

every one can be relatively based in two variables,

the subvarieties correspond 1-1 to congruences of (N,+)n−1, or

L ' Con(N,+)n−1

consequently, by Rédei’s theorem, all are finitely based.
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Open problems

1. Finitely generated strongly solvable varieties of modes.

2. Abelian implies quasi-affine for (differential) modes.

3. Park’s conjecture for (differential) modes.
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A. Pilitowska, A. Romanowska, D. Stanovský, Varieties of differential modes embeddable into

semimodules, to appear in Internat. J. Algebra Comput.

Embeddings into semimodules and modules
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