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Automated theorem proving

INPUT: A finite set of first order formulas
OUTPUT: Satisfiable / Unsatisfiable / I don’t know (Timeout)

What is it good for:

proving theorems in mathematics

What is it really good for:

formalized mathematics, proof verification

proof assistants: Isabelle, HOL, Coq, ...
libraries in a formal language: Mizar, ...

reasoning over large knowledge bases (SUMO, Cyc, ...)

software verification (Spec#, ESC/Java,...)

hardware verification (ACL2, PVS, ...)

etc.
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Automated theorem proving

INPUT: A finite set of first order formulas
OUTPUT: Satisfiable / Unsatisfiable / I don’t know (Timeout)

Algorithms and implementations:

Resolution calculus: Otter/Prover9, E, Spass, Vampire, ...

Equational reasoning based on Knuth-Bendix: Waldmeister

Instantiation based reasoning: iProver, Darwin

several experimental techniques

Model building:

Translation to SAT: Paradox, Mace4

Benchmarks: http://www.tptp.org

TPTP library

CASC competition
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Automated theorem proving in mathematics

... not so useful, indeed:

first order problems within a given theory

usually doesn’t prove anything nontrivial (particularly in set theory)

... sometimes may by useful:

direct proofs of open problems (very rarely successful)

proving tedious technical steps in classical proofs

quick experimentation, checking out (often false) conjectures

exhaustive search

When ATP may outperform a mathematician:

nonclassical strucures, complicated equations

finding complicated syntactic proofs

quick checking for (small) models

... has been applied in: quasigroups and loops, algebraic logic, ...
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Automated theorem proving in mathematics

Attempting a problem with ATP:

1 formalization in first order logic

almost nothing formalizable directly
sometimes a highly non-trivial task
which formalization is optimal

2 finding a proof

choice of prover
parameter setting
using advanced strategies (hints, semantic guidance, ...)

3 reading and understanding the proof

decode, simplify, structure, ...
automatizable?
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Existence of a unit element:

∃z ∀x (x · z = x & z · x = x).

In quasigroups:

x · (y/y) = x & (y/y) · x = x ,

x · (y\y) = x & (y\y) · x = x .

Which choice is the right one?
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Distributive groupoids are symmetric-by-medial.

On every idempotent distributive groupoid, there is a congruence α such
that G/α is medial and all blocks are symmetric.

In other words, in groupoids,

x ∗ yz = xy ∗ xz , xy ∗ z = xz ∗ yz

implies
(xy ∗ zu) ∗ ((xy ∗ zu) ∗ (xz ∗ yu)) = xz ∗ yu

(xy ∗ zu) ∗ (xz ∗ yu) = (xz ∗ yu) ∗ (xy ∗ zu)
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Bruck loops with abelian inner mapping group are 2-nilpotent.
cnf(1,axiom,mult(unit,A) = A).
cnf(2,axiom,mult(A,unit) = A).
cnf(3,axiom,mult(A,i(A)) = unit).
cnf(4,axiom,mult(i(A),A) = unit).
cnf(5,axiom,i(mult(A,B)) = mult(i(A),i(B))).
cnf(6,axiom,mult(i(A),mult(A,B)) = B).
cnf(7,axiom,rd(mult(A,B),B) = A).
cnf(8,axiom,mult(rd(A,B),B) = A).
cnf(9,axiom,mult(mult(A,mult(B,A)),C) =
mult(A,mult(B,mult(A,C)))).
cnf(10,axiom,mult(mult(A,B),C) =
mult(mult(A,mult(B,C)),asoc(A,B,C))).
cnf(11,axiom,op l(A,B,C) = mult(i(mult(C,B)),mult(C,mult(B,A)))).
cnf(12,axiom,op r(A,B,C) = rd(mult(mult(A,B),C),mult(B,C))).
cnf(13,axiom,op t(A,B) = mult(i(B),mult(A,B))).
cnf(14,axiom,op r(op r(A,B,C),D,E) = op r(op r(A,D,E),B,C)).
cnf(15,axiom,op l(op r(A,B,C),D,E) = op r(op l(A,D,E),B,C)).
cnf(16,axiom,op l(op l(A,B,C),D,E) = op l(op l(A,D,E),B,C)).
cnf(17,axiom,op t(op r(A,B,C),D) = op r(op t(A,D),B,C)).
cnf(18,axiom,op t(op l(A,B,C),D) = op l(op t(A,D),B,C)).
cnf(19,axiom,op t(op t(A,B),C) = op t(op t(A,C),B)).

cnf(20,negated conjecture,asoc(asoc(a,b,c),d,e) != unit).
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Automated theorem proving in algebra

Milestones:

since early 1990’s: short axioms for various theories

1996, W. McCune: Robbins algebras are Boolean algebras

1996, K. Kunen: Moufang quasigroups are loops

since early 2000’s: standard technique in loop theory (M. Kinyon, JD
Phillips, P. Vojtěchovský)

recently: algebraic logic

David Stanovský (Prague) ATP in algebra 9 / 18



Robbins’ problem

(Huntington, 1933) Short axioms for Boolean algebras:

x + y = y + x , (x + y) + z = x + (y + z),

(x ′ + y)′ + (x ′ + y ′)′ = x .

(Robbins, 1934) Shorter axioms, conjectured to axiomatize BA’s:

x + y = y + x , (x + y) + z = x + (y + z),

((x + y)′ + (x + y ′)′)′ = x .

(Winker, 1979) Sufficient to prove that

Robbins ` (∃A)(∃B) (A + B)′ = A′

Confirmed by EQP prover by McCune in 1996, reported in NY Times (!)
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Single axioms

(McCune, 1993) The shortest axiom for abelian groups:

((x ∗ y) ∗ z) ∗ (x ∗ z)′ = y

(Kunen, 1992; McCune, 1993) Short single axioms for groups:

3 variables: ((z ∗ (x ∗ y)′)′ ∗ (z ∗ y ′)) ∗ (y ′ ∗ y)′ = x

4 variables: y ∗ (z ∗ (((w ∗ w ′) ∗ (x ∗ z)′) ∗ y))′ = x

(McCune, Padmanabhan, Veroff, 2002) A short axiom for lattices:

(((y ∨x)∧x)∨ (((z ∧ (x ∨x))∨ (u∧x))∧v))∧ (((w ∨x)∧ (r ∨x))∨ s) = x

(McCune, Veroff, Fitelson, Harris, Feist, Wos, 2002)
A shortest axiom for Boolean algebras in terms of Sheffer stroke:

((x |y)|z)|(x |((x |z)|x)) = z
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Moufang quasigroups

Quasigroup = latin square = (G , ·), all translations are permutations
Loop = quasigroup with a unit = non-associative group

x\(x · y) = y , x · (x\y) = y , (y/x) · x = y , (y · x)/x = y

x · 1 = 1 · x = x

Moufang identity (weak associativity):

((x · y) · x) · z = x · (y · (x · z))

Is every Moufang quasigroup a loop?

Proved with McCune’s Otter by Kenneth Kunen in 1996.
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Results in quasigroup and loop theory

To date: 28 papers assisted by ATP

(Kinyon, Kunen, Phillips) Diassociative A-loops are Moufang

diassociative = 2-generated subloops are groups

A-loop = inner mappings are automorphisms

by hand: in A-loops, diassociativity ⇔ IP property

(Kepka, Kinyon, Phillips) Every F-quasigroup is isotopic to a Moufang
loop

F-quasigroup = several identities

isotopy to a Moufang loop = easily formalizable

open problem #1 in Belousov’s book

original proof mostly by hand (only several lemmas by Prover9)

Waldmeister can prove it in 40 minutes from scratch

And much more...
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QPTP = Quasigroup Problems for Theorem Provers

(recently with JD Phillips)

= a collection of results in loop theory obtained with assistance of ATP

all 28 papers covered, about 100 problems selected (about 80%
equational)

both formal (TPTP) and informal (paper) description

downloadable at www.karlin.mff.cuni.cz/~stanovsk/qptp

a benchmark (selected provers from CASC):
Waldmeister � E, Gandalf, Prover9, Vampire � Spass

Read our paper! :-)
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My results

Linear theories of groupoids

automated construction of free groupoids in 2-, 3- and 4-linear theories
— sizes 4, 21, 184
exhaustive search for about 2 months, followed by a classification
theorem for *-linear theories done by hand

Non-trivial equations for group conjugation

Distributive groupoids are symmetric-by-medial:

x ∗ yz = xy ∗ xz , xy ∗ z = xz ∗ yz
⇒ (xy ∗ zu) ∗ ((xy ∗ zu) ∗ (xz ∗ yu)) = xz ∗ yu
⇒ (xy ∗ zu) ∗ (xz ∗ yu) = (xz ∗ yu) ∗ (xy ∗ zu)

Simplifying axioms of biquandles

(with Phillips) loops with abelian inner mapping loops
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Combining systems = future of ATP?

(A random choice of recent projects I found interesting.)

Search for isomorphism/isotopy invariants for loops

Paradox: generates models
HR: searchs for interesting formulas valid in a given model
ATP’s: prove that invariants cover all models of given size

MPTP: automated reasoning in ZFC

Problems for ATP’s based on the Mizar library of formalized
mathematics
MPTP $100 challenge: automated proof of Bolzano-Weierstraß
theorem (with hints)

Malarea: machine learning in service of automated reasoning

Reasoning in large theories (like ZFC with some math background)
Problem: Which axioms are useful for given problem?
Machine learning based on syntactical analysis of given conjectures.
Relatively succesful on the MPTP challenge
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Summary

Automated theorem provers have helped some mathematicians.

Maybe they can help you, too.
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