Homomorphic images of subdirectly irreducible algebras

David Stanovský

Charles University in Prague, Czech Republic
An algebra is called *subdirectly irreducible* (SI), if the intersection of non-trivial congruences, called the *monolith* \(\mu \), is non-trivial.

Every algebra can be embedded into the product of SI algebras (from the variety it generates).

Which algebras are homomorphic images of SI algebras?

Example: \(\mathbb{Z}(+) \) is not. Every groupoid with 0 is (by Kepka, 1981).
Necessary condition.

An *ideal* in A is a subset $\emptyset \neq I \subseteq A$ such that $f(a_1,\ldots,a_n) \in I$, whenever at least one $a_i \in I$, for every operation f on A.

It is easy to see that a non-unary SI algebra has a non-empty intersection of its ideals, and an inverse image of an ideal is an ideal.

So, *any homomorphic image of a non-unary SI algebra has a non-empty intersection of its ideals.*

Example: $\mathbb{Z}(\oplus)$ has empty intersection of its ideals.
Rich signatures.

Theorem 1. (S. 2001; Kepka, Ježek 2002) Assume an algebra A has at least one at least binary operation. TFAE:

1. A is a homomorphic image of an SI algebra B;

2. A is isomorphic to B/μ for an SI algebra B;

3. A has a non-empty intersection of its ideals.

Moreover, if A is finite, then B can be taken finite.
Monounary algebras.

Note that in unary algebras ideal = subalgebra.

Theorem 2. Let A be a monounary algebra, $|A| \geq 2$. TFAE:

1. A is a homomorphic image of an SI algebra;

2. A is isomorphic to B/μ for an SI algebra B;

3. A is SI;

4. A is either a path, or a circle of prime power length, possibly with an extra point, or $|A| = 2$.
Unary algebras.

Theorem 3. (Ježek, Marković, S.) Let A be a finite unary algebra with at least two operations. TFAE:

1. A is a homomorphic image of an SI algebra;

2. A has a non-empty intersection of its at least 2-element subalgebras;

3. A has a smallest subalgebra or A has two disjoint subalgebras $U, \{a\}$ and U is the smallest subalgebra of $A - \{a\}$.

Moreover the SI algebra can be taken finite.
Problem 1. What are homomorphic images of infinite SI unary algebras?

Problem 2. Is there a nice characterization of (finite) SI unary algebras, which are isomorphic to B/μ for an SI B?
The same problem in a particular variety

Assume A is an algebra with a non-empty intersection of ideals from a variety \mathcal{V}.

Is it a homomorphic image (over the monolith) of an SI algebra from the variety \mathcal{V}?

Certainly not always — e.g. consider the variety of distributive lattices.

The construction for algebras with a rich signature keeps idempotency. In fact, if A satisfies $t(x) \approx x$, then the SI B satisfies $t(x) \approx x$. And if A has no proper ideals, the construction keeps any identity in one variable. (And probably nothing else.)
For some well-known particular varieties? Like groups, lattices, semigroups, rings?
Semigroups.

Theorem 4. (Bulman-Fleming, Hotzel, Wang 2004) Let A be a semigroup. TFAE:

1. A is a homomorphic image of an SI semigroup;

2. A is isomorphic to B/μ for an SI semigroup B;

3. A has a non-empty intersection of its ideals.

However, if A is finite, B is *not always finite!!!* (E.g., for right zero semigroups there is no such finite B.)
Lattices and Quasigroups.

Note that every quasigroup and every lattice has no proper ideal.

Theorem 5. (Freese) Every lattice is isomorphic to the factor of an SI lattice over its monolith. For a finite one, the SI can be chosen finite.

Theorem 6. (McKenzie, S.) Every group, loop, quasigroup is isomorphic to the factor of an SI group, loop, quasigroup over its monolith. For a finite one, the SI can be chosen finite.

Proof. Use the wreath product with a simple non-abelian group.
The commutative case.

For *abelian groups*, the task is easy: the only SIs are \mathbb{Z}_{p^k}, $k = 1, \ldots, \infty$.

Problem 3. Is every *commutative* loop, quasigroup a homomorphic image of an SI commutative loop, quasigroup?

Problem 4. What about *commutative groupoids*?
References.

