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Abstract. A short proof of the characterization of idempotent subreducts of
semimodules over commutative semirings is presented. It says that an idem-

potent algebra embeds into a semimodule over a commutative semiring, if and
only if it belongs to the variety of Szendrei modes.

1. Introduction

Embedding one class of structures into a better understood one usually brings
some new knowledge about the former class. We will focus on embeddings of
algebras into reducts of semimodules over commutative semirings; hence we obtain
linear representations for operations of the algebras.

Modes are idempotent algebras where every pair of operations commute with
one another [10]. Indeed, idempotent subreducts of semimodules over commutative
semirings are modes and it had been an open problem [10] whether the converse
statement is true. Quite recently, N. Dojer observed that such modes satisfy the
so-called Szendrei identities (they appeared in the paper [16] by Ágnes Szendrei)
and MichaÃl Stronkowski found a syntactical proof that these identities do not follow
from the axioms of modes [14]. Thus there exist modes that are not idempotent
subreducts of semimodules over commutative semirings; in fact, we present a simple
example of such a mode in Example 2.

Shortly after that, Stronkowski also proved that Szendrei modes are embeddable
[15] and thus obtained the following characterization:

Theorem 1 (M. Stronkowski [15]). An idempotent algebra is a subreduct of a
semimodule over a commutative semiring if and only if it is a Szendrei mode.

The aim of the present paper is to provide a short proof of Theorem 1.
Actually, M. Stronkowski considered a more general situation: He proved the

embedding theorem for (not necessarily idempotent) entropic algebras with onto
operations. (Theorem 1 is an obvious corollary of this result.) The payoff for
greater generality is much greater complexity of his proof; it does not simplify
straightforwardly if idempotency is assumed. However, in the idempotent case,
one can use several technical tricks developed by Á. Szendrei in [16], which make
our proof rather short and transparent. Since modes have interested a number of
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mathematicians recently (see the monograph [10]), I think presenting a short proof
is worthwhile.

The core of the proof of Theorem 1 is contained in Section 3. In Section 2,
we present auxiliary results on free Szendrei modes, based mostly on the original
Szendrei’s paper [16]. Some partial results related to Theorem 1 can be found in
[4][5][6][11][12][18]; a significant part of the survey [9] was devoted to the problem.
Motivated by Example 2, the paper [7] is concerned with a broad class of modes
that do not embed into semimodules. Related problems are discussed in the last
section.

We quickly recall basic definitions. By a commutative semiring we mean an al-
gebra R = (R,+, ·) such that both operations +, · are commutative and associative
and distributive laws hold. A semimodule over a semiring R (or an R-semimodule)
is a “module without subtraction”, it means an algebra M = (M,+, r· : r ∈ R)
such that (M,+) is a commutative semigroup and r· are unary operations of mul-
tiplication by elements of R satisfying associative and distributive laws. Moreover,
the semiring in our construction will be unitary, that is, it contains a unit element
1 which acts on semimodules as identity. Note that in R-semimodules, a term t
over variables x1, . . . , xn can always be written (uniquely) as

t = r1 · x1 + . . . + rn · xn, for some r1, . . . , rn ∈ R.

An algebra A is called a reduct of an algebra B, if all operations of A are term
operations of B. It is called a subreduct, if it is a subalgebra of a reduct of B.
(Sometimes we also say that A embeds into B.)

In this paper, we consider algebras over an arbitrary signature Σ without con-
stant symbols. An algebra is called idempotent, if each element forms a one-element
subalgebra. Equivalently, if the identity

f(x, x, . . . , x) ≈ x

holds for every operation f . An algebra is called entropic, if every pair of operations
commute with one another. Equivalently, if the identity

f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) ≈ g(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn))

holds for all operations f, g. Idempotent entropic algebras are called modes. The
article [9] and the monograph [10] are good surveys of what is known in the theory
of modes.

We say that an n-ary operation f satisfies Szendrei identities [14][16], if

f(f(x11, . . . , x1n), . . . ,f(xn1, . . . , xnn))

≈ f(f(xπ(11), . . . , xπ(1n)), . . . , f(xπ(n1), . . . , xπ(nn)))

holds for every π, which is the permutation of the n2 indices which fixes all indices
except ij and ji, and switches these two, for some 1 ≤ i, j ≤ n. (So we obtain

(

n
2

)

identities.) Modes satisfying all Szendrei identities for every operation are called
Szendrei modes. Note that Szendrei identities for an operation f imply that f
commutes with itself, hence Szendrei algebras with a single operation are entropic.
For a binary operation, there is just one Szendrei identity, and it is equivalent to
the entropic identity; many authors call this identity mediality [4].
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Example 2. We define a ternary operation f on the set {0, 1, 2} by

f(x, y, z) =

{

2 − z if x = y = 1,
z otherwise.

So f(f(x1, x2, x3), f(y1, y2, y3), f(z1, z2, z3)) is equal either 2 − z3, if x3 = y3 = 1
and (z1, z2) 6= (1, 1), or z1 = z2 = 1 and (x3, y3) 6= (1, 1); or it is equal z3 otherwise.
Consequently, the algebra A = ({0, 1, 2}, f) is a mode. However,

f(f(0, 0, 1), f(0, 0, 0), f(0, 1, z)) = z 6= 2 − z = f(f(0, 0, 0), f(0, 0, 0), f(1, 1, z))

for z 6= 1, so A is not a Szendrei mode.

The notation and terminology of universal algebra we use is rather standard and
follows the book [8]. We assume the standard representation of free algebras in a
variety V by terms modulo the identities of V. Terms are considered as labeled
rooted trees. Inner nodes are labeled by operation symbols, leaves by variables.
Depth of a symbol/variable is defined as the distance from the root.

2. Free Szendrei modes

Throughout the paper, we fix a signature Σ without constants (arity of a symbol
σ will be denoted arσ) and let Ω denote the set of abstract symbols ασ,i for every
σ ∈ Σ and i = 1, . . . , ar σ, i.e.

Ω = {ασ,i : σ ∈ Σ, i = 1, . . . , ar σ}.

Let RΣ denote the semiring N[Ω]/θ of polynomials with (commutative) variables
from Ω and coefficients from the set of natural numbers N, modulo the congruence
θ generated by all pairs

(ασ,1 + · · · + ασ,n, 1)

for every n-ary σ ∈ Σ. On every RΣ-semimodule M, consider the operations gσ

defined by
gσ(a1, . . . , an) = ασ,1 · a1 + · · · + ασ,n · an

for every n-ary σ ∈ Σ. Since RΣ is a commutative semiring, the algebra (M, gσ :
σ ∈ Σ) is a Szendrei mode.

For a set A, we will denote

• F(A) = (F (A),+, r· : r ∈ RΣ) the free RΣ-semimodule over A;
• G(A) = (G(A), gσ : σ ∈ Σ) the subalgebra of (F (A), gσ : σ ∈ Σ) generated

by the set A.

Clearly, for u ∈ F (A), we have u ∈ G(A), iff there is a Σ-term t such that u =
t(a1, . . . , an) for some a1, . . . , an ∈ A.

Theorem 3. The algebra G(A) is a free Szendrei mode over the set A.

The theorem is an easy consequence of results of Á. Szendrei [16]. We outline
its proof in the rest of the section.

A term is called completely expanded, if all variables have equal depth. A com-
pletely expanded term is called isosceles, if at each particular depth level, all the
nodes at that depth are labeled with the same operation symbol, except possibly
the variables at the deepest level. E.g., the term f(g(x, y), g(y, z)) is isosceles, while
f(g(x, x), h(x, x)) is not.

The address of an occurence of a symbol/variable σ of depth k in a term t is the
sequence (b0, . . . , bk−1) of natural numbers such that the (shortest) path from the
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root to σ uses bi-th branch of the tree on i-th depth level. The trace of an occurence
of a symbol/variable σ of depth k in a term t is the sequence (σ0, . . . , σk−1) of
operation symbols such that the i-th node on the path from the root to σ is labeled
by σi.

Thus, isosceles terms are precisely those terms, where all variables have the same
trace; it is called the trace of an isosceles term. An identity t ≈ s is called isosceles,
if both t, s are isosceles terms with the same trace.

Lemma 4 ([16], Lemma 2.2). In idempotent algebras, for every pair of terms t1, t2,
there are isosceles terms s1, s2 with the same trace such that t1 ≈ s1 and t2 ≈ s2.
Consequently, every identity is equivalent to an isosceles identity (called an isosceles
expansion).

Let Ω∗ denote the set of all monomials
∏

σ∈Σ

α
kσ,1

σ,1 · · ·αkσ,ar σ

σ,ar σ

(it means that all but finitely many kσ,i’s are zeros). For a given trace τ , let Ωτ

denote the set of all ω ∈ Ω∗ such that for each σ ∈ Σ, the sum kσ,1 + . . . + kσ,ar σ

is equal to the number of occurences of σ in the trace τ . Thus Ωτ consists of
monomials that may appear in an interpretation of an isosceles term of trace τ in
G(A).

Lemma 5. Let τ be a trace and p =
∑

ω∈Ωτ

cωω, q =
∑

ω∈Ωτ

dωω two polynomials

from N[Ω]. If they are θ-equivalent, then they are equal.

Proof. We pass the situation into the polynomial ring Z[Ω]: If p, q are θ-equivalent
in N[Ω], then they are equivalent also in the congruence generated by all pairs
(ασ,1 + · · ·+ασ,ar σ, 1), σ ∈ Σ, in Z[Ω], and thus p− q belongs to the ideal I of Z[Ω]
generated by all polynomials gσ = ασ,1 + · · · + ασ,ar σ − 1, σ ∈ Σ. We prove that
this implies p = q by showing that

(z) I does not contain a non-zero homogeneous polynomial.

Note that the following conditions are equivalent:

(1) f ∈ I;
(2) there exist polynomials fσ ∈ Z[Ω] such that f =

∑

σ∈Σ fσgσ;
(3) in f , substituting 1−ασ,2−. . .−ασ,ar σ for every ασ,1, yields zero polynomial.

Obviously, (z) holds if |Ω| = 1 or deg f = 1, so let’s consider a minimal coun-
terexample in the following sense. Let Σ be the smallest signature (in the sense
that |Ω| is the smallest, i.e., each symbol σ is counted (ar σ)-times), for which (z)
fails, and let f 6= 0 be a homogeneous polynomial in I with the smallest degree.
Choose an arbitrary variable ασ,n ∈ Ω. It does not divide f : if it did, we could
cancel it and obtain a homogeneous polynomial of smaller degree, which, according
to (3), belonged to I. Hence, substituting 0 for ασ,n in f yields a non-zero homoge-
neous polynomial (of the same degree), which, as follows from (2), belongs to the
respective ideal I in Z[Ω r {ασ,n}], thus contradicting minimality of Σ. ¤

Let t be an isosceles term with trace τ . We say that an occurence of a variable
in t has the property δ(ω) for an ω ∈ Ωτ , if it can be reached by kσ,i choices of i-th
branch in the nodes labeled by σ. Finally, for every ω ∈ Ωτ , let ∆(ω, x, t) denote
the number of occurences of the variable x in t with the property δ(ω). E.g., if t =
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f(g(x, y), g(y, z)), then ∆(αf,1αg,1, x, t) = ∆(αf,1αg,2, y, t) = ∆(αf,2αg,1, y, t) =
∆(αf,2αg,2, z, t) = 1. If t = f(f(x, y), f(y, z)), then ∆(αf,1αf,2, y, t) = 2.

Lemma 6 ([16], Theorem 2.8). The following statements are equivalent for an
isosceles identity t ≈ s.

(1) t ≈ s is provable from entropy and Szendrei identities.
(2) ∆(ω, x, t) = ∆(ω, x, s) for every variable x that occurs in t or s and every

ω ∈ Ωτ .

Proposition 7. The following statements are equivalent for terms t, s over vari-
ables x1, . . . , xm.

(1) t ≈ s holds in all Szendrei modes.
(2) There is an isosceles expansion t∗ ≈ s∗ of the identity t ≈ s that is provable

from entropy and Szendrei identities.
(3) Any isosceles expansion t∗ ≈ s∗ of the identity t ≈ s is provable from

entropy and Szendrei identities.
(4) t(a1, . . . , am) = s(a1, . . . , am) holds in the algebra G(a1, . . . , am).

Proof. (3) ⇒ (2) ⇒ (1) ⇒ (4) are trivial. We prove (4) ⇒ (3).
Assume the equality t(a1, . . . , am) = s(a1, . . . , am) in G(a1, . . . , am). Then also

t∗(a1, . . . , am) = s∗(a1, . . . , am) for any isosceles expansion t∗ ≈ s∗ of the identity
t ≈ s. Let τ be its trace. Then

t∗(a1, . . . , am) =

m
∑

i=1

(

∑

ω∈Ωτ

ci,ωω

)

·ai and s∗(a1, . . . , am) =

m
∑

i=1

(

∑

ω∈Ωτ

di,ωω

)

·ai,

where ciω = ∆(ω, xi, t
∗) and diω = ∆(ω, xi, s

∗). Hence

m
∑

i=1

(

∑

ω∈Ωτ

ci,ωω

)

· ai =

m
∑

i=1

(

∑

ω∈Ωτ

di,ωω

)

· ai

holds in the free RΣ-semimodule over a1, . . . , am and, consequently, the polynomials
∑

ω∈Ωτ

ci,ωω and
∑

ω∈Ωτ

di,ωω are θ-equivalent for every i, and so, by Lemma 5,

are equal. Particularly, ∆(ω, xi, t
∗) = ci,ω = di,ω = ∆(ω, xi, s

∗) for every ω and i
and we can use Lemma 6. ¤

Theorem 3 follows immediately from Proposition 7.

3. Proof of Theorem 1

Since subreducts of semimodules over commutative semirings satisfy both en-
tropy and Szendrei identities, one implication of Theorem 1 is clear. In the rest of
the section, we prove the converse.

Let A = (A, fσ : σ ∈ Σ) be an arbitrary Szendrei mode and let’s denote π the
projection of the free Szendrei mode G(A) = (G(A), gσ : σ ∈ Σ) onto the algebra
A, extending the identity mapping on generators. We define a relation ρ on F (A)
consisting of all pairs

(w + ω · b, w + ωασ,1 · a1 + . . . + ωασ,n · an),

where σ ∈ Σ is an n-ary symbol, w ∈ F (A), ω ∈ Ω∗ and a1, . . . , an, b ∈ A such that
b = fσ(a1, . . . , an).
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Lemma 8. Let (u, v) ∈ ρ. Then u ∈ G(A) iff v ∈ G(A). Moreover, if u, v ∈ G(A),
then π(u) = π(v).

Proof. Let u ∈ G(A). Then u = t(a1, . . . , ak) for some k-ary Σ-term t and some
a1, . . . , ak ∈ A. Since (u, v) ∈ ρ, we have

u = w + ω · ai

for certain 1 ≤ i ≤ k and

v = w + ωασ,1 · b1 + . . . + ωασ,n · bn

for some n-ary σ ∈ Σ, w ∈ F (A), ω ∈ Ω∗ and b1, . . . , bn ∈ A such that ai =
fσ(b1, . . . , bn) in A. Let s be the term resulting from t by replacing the occurence
of ai with δ(ω) property with the term σ(x1, . . . , xn), where x1, . . . , xn are new
variables. Then v = s(a1, . . . , ak, b1, . . . , bn) and thus v ∈ G(A).

[Example: Let A = (A, ∗) (thus Ω = {α∗,1, α∗,2}), t = x ∗ y, u = t(a, b) =
α∗,1a+α∗,2b, and b = c∗d. Then s(x, y, u, v) = x∗ (u∗ v), and so v = s(a, b, c, d) =
α∗,1a + α∗,2α∗,1c + α∗,2α∗,2d.]

Now, let v ∈ G(A). Then v = s(a1, . . . , ak) for some k-ary Σ-term s and some
a1, . . . , ak ∈ A. Since (u, v) ∈ ρ, we have

u = w + ω · b

and
v = w + ωασ,1 · aj1 + . . . + ωασ,n · ajn

for some n-ary σ ∈ Σ, w ∈ F (A), ω ∈ Ω∗, certain 1 ≤ j1, . . . , jn ≤ k and b ∈ A such
that b = fσ(aj1 , . . . , ajn

). According to Lemma 4, v = s′(a1, . . . , ak) for an isosceles
term s′, and thus, according to Lemma 6, v = s′′(a1, . . . , ak) for an isosceles term
s′′, in which the involved occurences of aj1 , . . . , ajn

are next each other, it means,
they form a subterm σ(aj1 , . . . , ajn

). (Recall that Lemma 6 allows to switch any
two occurences with the same δ(ω) property.) Now, let t be the term that results
from s′′ by replacing the subterm σ(aj1 , . . . , ajn

) by a single new variable. Then
u = t(a1, . . . , ak, b) and thus u ∈ G(A).

[Example: Let A = (A, ∗), s = (x ∗ y) ∗ (u ∗ v), v = s(a, b, c, d) = α∗,1α∗,1a +
α∗,1α∗,2b+α∗,2α∗,1c+α∗,2α∗,2d, and e = b∗d — this is perfectly fine constellation,
since α∗,1α∗,2 = α∗,2α∗,1. Then s′ = s and s′′ = (x ∗ u) ∗ (y ∗ v), so that v =
s′′(a, b, c, d), and we may define t(x, y, z, u, w) = (x∗u)∗w. Then u = t(a, b, c, d, e) =
α∗,1α∗,1a + α∗,1α∗,2c + α∗,2e.]

So, as we have seen, if u, v ∈ G(A) and (u, v) ∈ ρ, then we can write u =
t(a1, . . . , ak) and v = s(a1, . . . , ak) for terms t, s such that s results from t by
replacing an occurence of a variable b by the subterm σ(b1, . . . , bn), for some
b, b1, . . . , bn ∈ {a1, . . . , ak} with b = fσ(b1, . . . , bn) in A. Hence, because π is a
homomorphism identical on A, we have π(u) = π(v). ¤

Let ρ̄ be the symmetric transitive closure of ρ. Then ρ̄ is a congruence of the
RΣ-semimodule F(A), so F(A)/ρ̄ is again an RΣ-semimodule.

Lemma 9. The Szendrei mode A embeds into the reduct (F (A)/ρ̄, gσ : σ ∈ Σ) of
the RΣ-semimodule F(A)/ρ̄.

Proof. The embedding is a 7→ [a]ρ̄. This is a homomorphism, because

gσ([a1]ρ̄, . . . , [an]ρ̄) = ασ,1 · [a1]ρ̄ + · · · + ασ,n · [an]ρ̄

= [ασ,1 · a1 + · · · + ασ,n · an]ρ̄ = [fσ(a1, . . . , an)]ρ̄.
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(The first equality is the definition of gσ, the last follows from the definition of ρ.)
So it remains to prove that the mapping is injective. Assume [a]ρ̄ = [b]ρ̄ for some
a, b ∈ A, it means (a, b) ∈ ρ̄. Hence there is a chain a = u0, u1, . . . , un−1, un = b
such that (ui, ui+1) ∈ ρ∪ρ−1. It follows from Lemma 8 that u0, . . . , un ∈ G(A) and
thus that π(u0) = π(u1) = · · · = π(un). However, π(a) = π(b) iff a = b, because π
is the identity on A. ¤

This ultimately proves Theorem 1.

4. Concluding remarks

Two similar types of representation appear in the literature:

• Quasi-(semi)linear algebras are subreducts of (semi)modules; their opera-
tions can be expressed as (semi)module terms, i.e. r1 · x1 + . . . + rn · xn.

• Quasi-(semi)affine algebras are subreducts of (semi)modules with addi-
tional constants pointing to every element; their operations can be ex-
pressed as (semi)module polynomials, i.e. c + r1 · x1 + . . . + rn · xn with a
constant c.

In this terminology, what we did, is a characterization of idempotent quasi-semilinear
algebras over commutative semirings.

We wish to discuss a couple of related questions. First, why do we consider
idempotent subreducts only? One reason is that my original intention was to answer
the open problem posed in [10], to characterize modes embeddable into semimodules
over commutative semirings. Even when Stronkowski’s result appeared, it was
still desirable to find a short and transparent proof for the idempotent case. A
characterization of not necessarily idempotent subreducts is an open problem.

Regarding semilinear representations over general semirings, the problem is ulti-
mately solved. J. Ježek [3] proved that actually every algebra (without constants)
is a subreduct of a semimodule over a semiring.

And what about semiaffine representations? Since idempotent quasi-semiaffine
algebras over commutative semirings are also Szendrei modes, we obtain “quasi-
semiaffine over c.s. ⇔ quasi-semilinear over c.s.” for idempotent algebras. However,
according to Ježek and Kepka [4], there is a (non-idempotent) algebra which is
quasi-semiaffine over c.s. but not quasi-semilinear over c.s.

What about subreducts of modules? We don’t know any general results about
quasi-linear algebras, but there are several papers on quasi-affine algebras. Indeed,
they are abelian, in the sense of commutator theory [1]. Not all abelian algebras are
quasi-affine, though this is true under various additional assumptions, such as con-
gruence modularity [2]. R. Quackenbush [13] proved that quasi-affine algebras form
a quasivariety, axiomatized by a scheme of quasiidentities that could be considered
as a “more restrictive abelianess”. For more information, see the survey paper [17].
We don’t know whether quasi-affine algebras without constants are quasi-linear.

Finally, let’s look at representations over commutative rings. Particularly, which
modes are embeddable into modules over commutative rings? Chapter 7 of the book
[10] is devoted to this problem. For instance, cancellative modes are quasi-linear,
and [15] contains a non-idempotent generalization of this statement. However, no
characterization is known. Quasi-linear and quasi-affine algebras are abelian. It is
not difficult to prove that abelian modes satisfy Szendrei identities. Is it true that
all abelian modes are quasi-linear (or quasi-affine) over commutative rings?
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