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Abstract

We survey all known results in the area of quasigroup and loop theory to have been obtained
with the assistance of automated theorem provers. We provide both informal and formal descriptions
of selected problems, and compare the performance of selected state-of-the art first order theorem
provers on them. Our analysis yields some surprising results, e.g., the theorem prover most often
used by loop theorists does not necessarily yield the best performance.

1 Introduction

In recent years, a growing number of mathematicians have begun to learn about automated reasoning. It
is becoming increasingly useful in their research due to both the development of software tools and the
increasing power of computers. A great deal of attention is paid to formal verification (although mostly
by computer scientists, rather than pure mathematicians), but first order automated theorem proving itself
has become successful, too. In this paper, we survey some novel results (including solutions to several
longstanding open problems) in pure algebra obtained over the last decade with the assistance of (first
order) automated theorem provers; our focus is on quasigroups and loops.

Automated reasoning have had great impact on loop theory over the past decade, both in finding
proofs and in constructing examples. It is widely believed that these achievements have transformed loop
theory, both as a collection of deep results, as well as the mode of inquiry itself. Automated reasoning
tools are now standard in loop theory.

While [Phi03] is an introduction to automated reasoning for loop theorists, the present paper is in-
tended as its complement: for computer scientists as an introduction to one of the areas in algebra,
namely quasigroup and loop theory, in which automated reasoning tools have had perhaps the greatest
impact. The paper is self-contained in that we do not assume the reader is familiar with quasigroup or
loop theory.

Our goals are twofold. Firstly, we catalogue the quasigroup and loop theory results to date that have
been obtained with the assistance of automated theorem provers. Secondly, we lay the groundwork for
developing benchmarks for automated theorem provers on genuine research problems from mathematics.
Toward that end, we have created a library called QPTP (Quasigroup Problems for Theorem Provers)
and tested the problems on selected automated theorem provers. Note that we do not intend to mirror
the TPTP library [SS98] or the CASC competition [SS06]. Rather, we select a representative subset
of problems that mathematicians approached by automated reasoning in their research. In fact, QPTP
problems were recently submitted for the TPTP library.

We now give an outline of the paper.
Section 2 contains a brief introduction to quasigroups and loops, with an emphasis on formal defini-

tions (as opposed to motivation, history, applications, etc.). We think this self-contained introduction is
the right approach for our intended audience: computer scientists interested in applications of automated
reasoning in mathematics. For a short history, examples and motivation, see e.g. [Pfl00]. For a more
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comprehensive introduction to the theory of quasigroups and loops, see [Bel67], [Bru71], or [Pfl90]. The
reader may skip this section and use it for later reference. Most of the notions are used throughout the
paper.

In Section 3, we briefly survey techniques algebraists use to support their research by using automated
theorem provers. This includes formalization of a given conjecture in first order logic, proving the
resulting theorem and understanding its proof.

Section 4 contains a catalogue of all the theorems from quasigroup and loop theory that we used in
our analysis. Taken together, the papers that contain these theorems—and we give full citations for all
of them—constitute a complete list of those results on quasigroups and loops that have been achieved to
date with the assistance of automated theorem provers.

Section 5 is devoted to the technical details of the QPTP database and a benchmark of selected
theorem provers on QPTP problems.

In Section 6, we discuss using automated theorem provers in other fields of general algebra. Section
7 contains final thoughts as well as suggested directions for future work.

Additional information on our library, the problem files and the output files may be found on the
website

http://www.karlin.mff.cuni.cz/~stanovsk/qptp

The present paper is a significant extension of [PS08], presented at the ESARM workshop in Birm-
ingham, summer 2008.

2 Basic Loop Theory

We call a set with a single binary operation and with a 2-sided identity element 1 amagma. There are
two natural paths from magmas to groups, as illustrated in Figure 1.
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Figure 1: Two paths from magmas to groups.

One path leads through themonoids—these are the associative magmas, familiar to every computer
scientist. The other path leads through theloops—these are magmas in which every equation

x ·y = z

has a unique solution whenever two of the elementsx, y, z are specified. Since groups are precisely
loops that are also monoids, loops are known colloquially as “nonassociative groups”, and via this di-
agram, they may be thought of as dual to monoids. Many results in loop theory may by regarded as
generalizations of results about groups.

As with the class of monoids, the class of loops is too large and general to yield many of its secrets to
algebraic inquiry that doesn’t focus on narrower subclasses. Here, we simply catalog a few of the most
important of these subclasses (the abundant evidence arguing for their importance may be found in many
loop theory sources).
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First, a comment about notation: we use a multiplication symbol for the binary operation. We usually
write xy instead ofx · y, and reserve· to have lower priority than juxtaposition among factors to be
multiplied; for instance,y(x ·yz) stands fory · (x · (y ·z)). We use binary operations\,/ of left andright
division to denote the unique solutions of the equationx ·y = z, ie.,y = x\z andx = z/y. Loops can thus
be axiomatized by the following six identities:

x ·1 = x, 1·x = x,

x\(xy) = y, x(x\y) = y, (yx)/x = y, (y/x)x = y.

Loops without the unit element 1 are refered to asquasigroups; in the finite case, they correspond to
Latin squares, via their multiplication table. In the introduction, we emphasise loops over quasigroups,
since most automated reasoning results are focused on this class, perhaps due to the more combinatorial,
rather than algebraic, nature of quasigroup theory.

2.1 Weakening associativity

A left Bol loopis a loop satisfying the identity

x(y·xz) = (x ·yx)z; (lBol)

right Bol loopssatisfy the mirror identity, namely

z(xy·x) = (zx·y)x. (rBol)

In the sequel, if we don’t specify right or left, and simply write “Bol loop”, we mean a left Bol loop.
A left Bol loop that is also a right Bol loop is calledMoufang loop. Moufang loops are often axiom-

atized as loops that satisfy any one of the following four equivalent (in loops) identities:

x(y·xz) = (xy·x)z, z(x ·yx) = (zx·y)x, xy·zx= x(yz·x), xy·zx= (x ·yz)x.

Generalizing from the features common to both the Bol and the Moufang identities, an identityα = β

is said to be ofBol-Moufang typeif: (i) the only operation appearing inα = β is multiplication, (ii) the
number of distinct variables appearing inα, β is 3, (iii) the number of variables appearing inα, β is
4, (iv) the order in which the variables appear inα coincides with the order in which they appear inβ .
Such identities can be regarded as “weak associativity”. For instance, in addition to the Bol and Moufang
identities, examples of identities of Bol-Moufang type include theextra law

x(y·zx) = (xy·z)x, (extra)

and theC-law

x(y·yz) = (xy·y)z. (C)

There are many others, as we shall see. Some varieties of Bol-Moufang type are presented in Figure 2
(for a complete picture, see [PV05a]).

For loops in which each element has a 2-sided inverse, we usex−1 to denote this 2-sided inverse of
x. In other words,

x−1x = xx−1 = 1.

In Bol loops (hence, also in Moufang loops), all elements have 2-sided inverses. In Moufang loops,
inverses are especially well behaved; they satisfy theanti-automorphic inverse property

(xy)−1 = y−1x−1, (AAIP)
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u u
u uu u

u u
u
u

@
@

@

�
�

�
�

�
�

A
A

A

�
�
�

@
@

@

@
@

@

�
�

�
��

Q
Q

Q
QQ

�
�

�

RIP + RAPLIP + LAP

rBollBol RCLC

CMoufang

extra

groups

Figure 2: Some varieties of weakly associative loops.

a familiar law from the theory of groups. Bol loops don’t necessarily satisfy the AAIP; in fact, the ones
that do (left or right), are Moufang. Dual to the AAIP is theautomorphic inverse property

(xy)−1 = x−1y−1. (AIP)

Not every Bol loop satisfies the AIP; those that do are calledBruck loops. Bruck loops are thus dual to
Moufang loops, with respect to these two inverse properties, in the class of Bol loops.
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Figure 3: The role of AIP.

A loop is power associativeif each singleton generates an associative subloop. Bol loops are power
associative. A loop isdiassociativeif each pair of elements generates an associative subloop. Moufang
loops are diassociative. Thus, Moufang loops satisfy theflexiblelaw

x ·yx= xy·x. (flex)

Flexible Bol loops, either left or right, are Moufang. Left Bol loops satisfy both theleft inverse property

x−1 ·xy= y (LIP)

and theleft alternative property

x ·xy= xx·y. (LAP)

The right inverse property(RIP) and theright alternative property(RAP) are defined in the obvious
ways. Theinverse property(IP) thus means both the RIP and the LIP, and a loop is calledalternativeif
it is both RAP and LAP. Moufang loops and C-loops are alternative and have the inverse property. The
weak inverse propertyis given by

(yx)\1 = x\(y\1). (WIP)
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2.2 Translations

In a loopQ, the left and right translations byx∈ Q are defined by

L(x) : y 7→ xy, R(y) : x 7→ xy.

Themultiplication group, Mlt(Q), of a loopQ is the subgroup of the group of all bijections onQ gener-
ated by right and left translations:

Mlt(Q) = 〈R(x),L(x) : x∈ Q〉.

The inner mapping groupis the subgroup Mlt1(Q) fixing the unit element 1. Mlt1(Q) is generated by
the following three families of mappings, thus rendering the definition equational, and fit for automated
theorem provers:

T(x) = L(x)−1R(x),

R(x,y) = R(xy)−1R(y)R(x),

L(x,y) = L(yx)−1L(y)L(x).

If Q is a group, then Mlt1(Q) is the group of inner automorphisms ofQ. In general, though, Mlt1(Q)
need not consist of automorphisms. But in those cases in which it does, the loop is called anA-loop.
Groups and commutative Moufang loops are examples of A-loops.

A subloop invariant under the action of Mlt1(Q) (or, equivalently, closed underT(x), R(x,y), L(x,y))
is callednormal. Normal subloops are kernels of homomorphisms, and are thus analogous to normal
subgroups in group theory. (In loops, there is no counterpart of the coset definition of a normal subgroup.)

A loop is calledleft conjugacy closedif the conjugate of each left translation by a left translation is
again a left translation. This can be expressed equationally as

z·yx= ((zy)/z) ·zx. (LCC)

The definition ofright conjugacy closedis now obvious, and is given equationally as

xy·z= xz· (z\(yz)). (RCC)

A conjugacy closed loop(CC-loop) is a loop that is both LCC and RCC.
We end this section by defining two classes of loops that are closely related to both Moufang loops

and A-loops.RIF loopsare inverse property loops that satisfy

xy· (z·xy) = (x ·yz)x ·y. (RIF)

ARIF loopsare flexible loops that satisfy

zx· (yx·y) = z(xy·x) ·y. (ARIF)

2.3 Important subsets and subloops

Thecommutant, C(Q), of a loopQ is the set of those elements which commute with each element in the
loop. That is,

C(Q) = {c : ∀x∈ Q,cx= xc}.

The commutant of a loop need not be a subloop. Even in those cases when the commutant is a subloop
(for instance, in Moufang loops), it need not be normal (of course, the commutant in a group is normal,
and in group theory it is called the center, as we shall see).
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The left nucleusof a loopQ is the subloop given by

Nλ (Q) = {a : a·xy= ax·y,∀x,y∈ Q}.

The middle nucleus and the right nucleus,Nµ(Q) andNρ(Q) respectively, are defined analogously; both
are subloops. Thenucleus, then, is the subloop given by

N(Q) = Nλ (Q)∩Nµ(Q)∩Nρ(Q).

Thecenteris the normal subloop given by

Z(Q) = N(Q)∩C(Q),

thus coinciding with the language from groups.C(Q) need not have any relationship withN(Q); that is,
C(Q)∩N(Q) = Z(Q) can be trivial. The situation in Bol loops is strikingly different. In a (left) Bol loop
Q, Nλ (Q) = Nµ(Q), and this subloop need not have any relationship withNρ(Q), i.e., the intersection
can be trivial. In a Moufang loop, all nuclei coincide, andN(Q) is a normal subloop. Moreover, ifQ is
Bruck, thenNλ (Q)≤C(Q).

A loop Q is calledcentrally nilpotentof classn, if it possesses a sequence of subloops{1} = Q0 ≤
Q1 ≤ . . .≤ Qn = Q such that the successive quotients are central, in the sense thatQi+1/Qi ≤ Z(Q/Qi).

Thecommutator, [x,y] of x andy, in a loopQ is given by

xy= yx· [x,y].

Theassociator, [x,y,z] of x, y, andz, is given by

xy·z= (x ·yz) · [x,y,z].

The point is that the lack of associativity in loops provides a structural richness, part of which can
be captured equationally, thus rendering loops excellent algebraic objects to investigate with automated
theorem provers.

2.4 Quasigroups

Quasigroups are loops without an identity element. Thus, quasigroups are to loops as semigroups are to
monoids. Formally, aquasigroupis a set with a single binary operation such thatx · y = z has a unique
solution whenever two of the elementsx,y,z are specified. Or in the language of universal algebra, the
variety of quasigroups is axiomatized by the following four equations:

x\(xy) = y, x(x\y) = y, (yx)/x = y, (y/x)x = y.

The lack of an identity element makes the theory much more subtle than is the theory of loops. Auto-
mated theorem provers have been used successfully in the theory of quasigroups, but to a lesser extent
than they have in loop theory.

The algebraic part of the theory usually investigates particular subvarieties of quasigroups. A very
important subclass, for many reasons, is that ofmedialquasigroups, defined by the identity

xy·uv= xu·yv,

and its many generalizations. A quasigroup is said to betrimedial if each subquasigroup generated by
three (or fewer) elements is medial. Here, for example, are several consequences of the medial law in
three variables: (1)left semimediality: xx· yz= xy· xz; (2) right semimediality: zy· xx= zx· yx; (3) left
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F-law: x·yz= xy· (x\x)z; (4) theright F-law: zy·x = z(x/x) ·yx. Quasigroups satisfying both F-laws are
calledF-quasigroups. Two other interesting identities areleft andright distributivity:

x ·yz= xy·xz and zy·x = zx·yx,

providing an equational description for “left and right translations are automorphisms”.
A triple of bijections( f ,g,h) from a quasigroupQ1 to a quasigroupQ2 is called anisotopismif

f (x) ·g(y) = h(x ·y)

for everyx,y in Q1. Combinatorially, isotopism describes shuffling the rows, the columns and renaming
the entries of the multiplication table. Indeed,f is an isomorphismiff ( f , f , f ) is an isotopism. We
can thus talk about isomorphic or isotopic quasigroups. In group theory, isotopic groups are isomor-
phic. But in the theory of quasigroups, isotopism is more general than isomorphism; that is, isomorphic
quasigroups are isotopic, but isotopic quasigroups need not be isomorphic.

Isotopy is a particularly interesting concept whenQ2 is a loop. It is easy to see that every quasigroup
is isotopic to a loop: takex◦y= x/a·b\y for the loop operation (then,ba is the unit). The classic Toyoda-
Bruck theorem (1941), for instance, asserts that every medial quasigroup is isotopic to an abelian group.
Kepka (1979) proved that every trimedial quasigroup is isotopic to a commutative Moufang loops. And
one of the papers in Section 4 asserts that F-quasigroups are isotopic to (general) Moufang loops.

Quasigroups can also be viewed as combinatorial objects: the multiplication table of a finite quasi-
group is a Latin square; the converse is true as well (even in the infinite case). This perspective proves
useful in many settings, for instance, Steiner triple systems (classic combinatorial objects) can be viewed
as quasigroups satisfying thesymmetriclawsx ·xy= y = yx·x.

3 Techniques

We briefly describe how algebraists usually use automated reasoning tools (both theorem provers and
finite model builders). In general, one can recognize, for example, the following types of computation:

• direct proofs of difficult open problems (very rarely successful),

• proving tedious technical steps in classical proofs,

• quick experimentation, checking out (often false) conjectures,

• exhaustive search.

Most hard problems are not attacked directly. In most cases, the proof of the main result is assisted by
theorem provers only in part. Very often a prover handles only several technical steps (which can be still
quite difficult) in a long classical proof. Sometimes, only a particular case of a theorem can be proven
automatically, and a general result is sussed out from partial proofs. For concrete examples, see Section
4, e.g. the description of [AKP06].

Interesting and important problems are almost never stated in a form that can be directly “fed” into a
first order theorem prover. One can, in general, recognize the following phases:

1. formalization in first order logic,

2. finding a proof,

3. reading and understanding the proof.

7
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3.1 Formalization

So, one particular skill involved isfirst order formalization, and often simplification, of the original goal.
Indeed, most problems cannot be formalized in a way accessible to a theorem prover. Sometimes, the
formalization is straightforward, but in some cases a good formalization may require as many as several
pages of correctness proof. For instance, statements about inner mapping groups can be formalized using
the description of their generators (not an entirely easy result). Statements about central nilpotence can
be formalized using the associator-commutator calculus (instead of central series). Let’s take an example
from [PSxx]. The neat English statement

Bruck loops with abelian inner mapping group are centrally nilpotent of class 2.

can be formalized in TPTP language in the following way (see the filePSxx 2):

cnf(sos,axiom,mult(unit,A) = A).

cnf(sos,axiom,mult(A,unit) = A).

cnf(sos,axiom,mult(A,i(A)) = unit).

cnf(sos,axiom,mult(i(A),A) = unit).

cnf(sos,axiom,i(mult(A,B)) = mult(i(A),i(B))).

cnf(sos,axiom,mult(i(A),mult(A,B)) = B).

cnf(sos,axiom,rd(mult(A,B),B) = A).

cnf(sos,axiom,mult(rd(A,B),B) = A).

cnf(sos,axiom,mult(mult(A,mult(B,A)),C) = mult(A,mult(B,mult(A,C)))).

cnf(sos,axiom,mult(mult(A,B),C) = mult(mult(A,mult(B,C)),asoc(A,B,C))).

cnf(sos,axiom,op l(A,B,C) = mult(i(mult(C,B)),mult(C,mult(B,A)))).

cnf(sos,axiom,op r(A,B,C) = rd(mult(mult(A,B),C),mult(B,C))).

cnf(sos,axiom,op t(A,B) = mult(i(B),mult(A,B))).

cnf(sos,axiom,op r(op r(A,B,C),D,E) = op r(op r(A,D,E),B,C)).

cnf(sos,axiom,op l(op r(A,B,C),D,E) = op r(op l(A,D,E),B,C)).

cnf(sos,axiom,op l(op l(A,B,C),D,E) = op l(op l(A,D,E),B,C)).

cnf(sos,axiom,op t(op r(A,B,C),D) = op r(op t(A,D),B,C)).

cnf(sos,axiom,op t(op l(A,B,C),D) = op l(op t(A,D),B,C)).

cnf(sos,axiom,op t(op t(A,B),C) = op t(op t(A,C),B)).

cnf(goals,negated conjecture,asoc(asoc(a,b,c),d,e) != unit).

The first 9 lines define a Bruck loop, the next 4 lines define the associator and the generators of the inner
mapping group, the remaining 6 lines say that the generating mappings commute. The goal is one of
the six identities describing nilpotence of class 2; in this particular setting (Bruck loops), the other five
identities are implied by the present one.

Another interesting examples of first order formalization can be found, e.g., in [Kun98], or [Sta08],
see the descriptions in Sections 4 and 6.

Here is a related question: which formalization is optimal — a short one or a one with redundant but
nontrivial information added? One with less symbols but longer formulas? Or one with many additional
concepts and compact statements? etc. The answer is ambiguous and a particular solution very much
depends on both experience and the problem at hand, and indeed the automated theorem prover itself.

As an easy-to-understand example consider proving the existence of a unit element. The naive de-
scription is

∃z∀x (x ·z= x & z·x = x).
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However, in quasigroups, this formula is equivalent to each of the following two pairs of identities:

x · (y/y) = x & (y/y) ·x = x,

x · (y\y) = x & (y\y) ·x = x.

The equations indeed advice the prover what thez shall be. The advice may help, but it also may be
misleading — see the results in Figure 5, problemsKun96a 1, Kun96a 2 andKun96b 3 (the standard
formalization is the naive one, the other two are namedalt1 andalt2).

Another example of ambiguity in QPTP is proving that a loop is Moufang. There are four equivalent
identities defining the property, one can thus ask to prove either a disjunction of them (standard formal-
ization), or a particularly chosen one (alt1 to alt4) — see the results in Figure 5, problemsCGKxx 4,
KKP02a 1 andKKP02b 1.

3.2 Proving

Now, assume a formalization is given. Few interesting problems can be proven directly by any prover
in a few minutes, and often not even in a few days. It is always worth trying various combinations of
parametersfor proof search (the most important one is usually the ordering); again, there is no general
rule. Many open problems were solved only by using thehints strategy, or sketches [Ver01], implemented
in Prover9.

To date, all but two computer solutions in loop theory have been obtained by Prover9 [McC05] or its
predecessor Otter [McC03]; the sole exception are two theorems from [PSxx], proved by Waldmeister in
2008 (see Section 4). One of the main goals of the present paper is to give guidelines regarding which
prover should be selected for which problem (see the discussion in Section 5).

For model finding, algebraists use Mace4 [McC05] most frequently, probably due to the fact that it
comes bundled with Prover9. Our informal experiments show that Paradox [CS03], considered the top
model finder, does not behave significantly better on quasigroup problems. Recently, several important
examples of loops were found with the assistance of the Loops package for GAP [NV07], including
the first example of a non-Moufang, finite simple Bol loop by G. Nagy [Nag08], thus solving the most
prominent open problem in loop theory at the time. Our study focuses on theorem proving rather than
model building, since there is no remarkable open problem solved by a model builder without major
human involvement. This is probably due to the fact that most interesting problems about finding finite
quasigroups either include properties that cannot be easily formalized in first order theory (such as being
simple), or are known to have a very large lower bound on the number of elements.

3.3 Understanding the proof

We wish to stress that mathematicians (usually) want tounderstand the proof. Almost all the papers
in our survey contain a human oriented proof. It is usually obtained either by a simple translation of
the computer generated proof (which is feasible for little lemmas), or, probably more often, by redoing
the proof along the lines suggested by the computer. Original computer generated proofs are often
significantly shortened using various techniques (even tricks).

There is no universal methodology dictating how to simplify and understand a computer generated
proof. There have been several attempts (such as [Pud07]), but none of them yields satisfactory results
for algebraic purposes. The area deserves future research.

9
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4 The Theorems

The present section catalogues all papers in quasigroup and loop theory to date whose results were
obtained with the assistance of an automated theorem prover. As noted above, all but one of these papers
were assisted by Prover9 or Otter. Published proofs were almost always translated to human language
and usually simplified (the exceptions are [PV05b] and [PSxx], for reasons explained below), hence none
of the results relies on the soundness of Otter/Prover9. As far as we know, no automatically generated
proof was found to be incorrect during translation (or verification, using tools such as Ivy).

To summarize the achievments: the story started in 1996, when Kenneth Kunen used Otter to show
that a quasigroup which satisfies any one of the four Moufang identities possesses a unit element, and is
hence, a loop. Since then, 28 papers containing results obtained with assistance of ATP have appeared,
and this number is growing rapidly. They include solutions to several longstanding open problems and
significant new results in various projects in loop theory. Theorem provers often help to lay the ground-
work in a particular class of loops, on which mathematicians can then build an elegant theory (such as
decomposition theorems etc.).

We list the papers in chronological order. From each paper, we choose up to five theorems for the
QPTP library.

[Kun96a]. This is an important paper, because it was the first to use automated theorem provers in loop
theory and, in fact, one of the first nontrivial results in mathematics obtained by computer. The theorem
says that a quasigroup satisfying any one of the four Moufang laws is, in fact, a loop, i.e., has a unit
element. We analyze this result for each of the four Moufang identites. Note that the proofs for the third
and the fourth Moufang identity can by done relatively easily by hand, while the proofs for the first and
the second one were only discovered by Otter.

[Kun96b]. This is a sequel to the previous paper. The main result is the determination of which of the
Bol-Moufang identities implies, in a quasigroup, the existence of a unit element. We analyze three of
these identities.

[Kun98]. If R is an associative commutative ring andQ a loop, one can define a loop ringRQ in a
similar way as how group rings are constructed. The main result of [Kun98] is the following: ifR has
characteristic6= 2 andRQ is right alternative, then it is also left alternative. First, rings were eliminated
from the problem: one can prove that, in characteristic6= 2, (1)RQis right alternative iff for allx,y,z∈Q,
both conditions (x · yz= xy· z or x · yz= xz· y) and (x · yz= xy· z or x · zy= xy· z) are satisfied inQ; (2)
if RQ is right alternative, then it is also left alternative, provided the inverse mappingi(x) = x\1 defined
on Q satisfiesi(xy) = i(y)i(x) for all x,y∈ Q. Hence, we are left with two first order conditions in loop
theory. The proof was found with the help of Otter, and we include the problem in our library as it stands.

[Kun00]. This is a groundwork study of conjugacy closed loops. Many useful properties of CC-loops
were obtained by Otter and later used to prove deep structure theorems. We analyze the following two:
(1) If Q is conjugacy closed,a,b∈ Q andab= 1, thenba is in the nucleus ofQ; (2) If Q is conjugacy
closed, the commutant ofQ is contained in the nucleus.

[KKP02a]. The main result is that diassociative A-loops are Moufang. Diassociativity, in general, is
not finitely axiomatizable property. However, in A-loops, it is known to be equivalent to the inverse
property. Hence, we include the problem stating that IP A-loops are Moufang. This was one of the major
longstanding open problems in loop theory, and perhaps the most important automated theorem proving
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success in loop theory. And it marks the point at which the number of loop theorists using automated
theorem provers in their work jumped from one to three.

[KKP02b]. There are many results in this paper proved by automated theorem provers; we include the
following four: (1) 2-divisible ARIF loops are Moufang, (2) flexible C-loops are ARIF, (3) Moufang
loops are RIF, (4) RIF loops are ARIF.

[KP02]. T. Kepka showed in 1978 that a quasigroup is trimedial if and only if it is left semimedial,
right semimedial, and satisfies the identity(x · xx) · uv = xu· (xx· v). The present paper sharpens this
result by showing that, in fact, only one of the two semimedial laws is sufficient in the basis (either of
them). We analyze this result, here.

[KK04]. This is a groundwork study on extra loops. Many useful properties were obtained by Otter,
e.g., finite nonassociative extra loops have nontrivial centers. We analyze the following result: in an extra
loop,zcommutes with[x,y, t] if and only if t commutes with[x,y,z] if and only if [x,y,z][x,y, t] = [x,y,zt].

[KKP04]. There are many results in this paper proved by automated theorem provers. We include the
following one: in CC-loops, associators are in the center of the nucleus.

[KP04a]. The main result in this paper is that commutants of Bol loops of odd order are, in fact,
subloops. Obviously, this is not a first order statement, however its proof relies on several lemmas
proved by a theorem prover. We analyze the following one: ifQ is a Bol loop, and ifa,b∈C(Q), then
so too area2, b−1 anda2b.

[KP04b]. Yet another equational basis for trimedial quasigroups is found:x·yz= (x/x)y·xzandzy·y=
zx·y(x\x). We include the equivalence of the new basis with the basis from [KP02].

[KP05]. The main purpose of this paper is to give a basis for the variety of rectangular loops which
consists of 7 identities, thus improving Krapež’s pre-existing basis of 12 axioms [Kra00]. Arectangular
loop is a direct product of a loop and a rectangular band. Arectangular bandis a semigroup which is
a direct product of a left zero semigroup and right zero semigroup. Aleft (right, resp.)zero semigroup
is a semigroup satisfyingx · y = x (x · y = y, resp.). We analyze part of this result by showing that the
identities

x\(xx) = x, (xx)/x = x, x · (x\y) = x\(xy), (x/y) ·y = (xy)/y, x\(x(y\y)) = ((x/x)y)/y,

(x\y)\((x\y) · (zu)) = (x\(xz)) ·u, ((xy) · (z/u))/(z/u) = x · ((yu)/u)

imply each of the following identities (in algebras with three binary operations·,\, and/):

(x\y)\((x\y)z) = x\(xz), (x/y)\((x/y)z) = x\(xz), x(y\(yz)) = xz, ((xy)/y)z= xz,

(x ·yz)/(yz) = (xz)/z, (x(y\z))/(y\z) = (xz)/z, (x(y/z))/(y/z) = (xz)/z.

[PV05a]. The main result of this paper is the systematic classification of all varieties of loops axiom-
atized by a single identity of Bol-Moufang type, achieved to a large extent automatically. We include a
typical result: in loops, the following two identities are equivalent (and thus both axiomatize the so-called
variety of LC-loops):x(y·yz) = (x ·yy)z andxx·yz= (x ·xy)z.

11
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[PV05b]. The purpose of this paper is to do for quasigroups what [PV05a] did for loops: i.e., to offer a
systematic classification of all varieties of quasigroups axiomatized by a single identity of Bol-Moufang
type. The results were achieved automatically (and due to the far greater number of cases, the proofs were
presented as raw Otter outputs). We include a typical result: in quasigroups, the identityx(yy·z) = xy·yz
implies associativity.

[AKP06]. One of the main results in this paper is that in a Bruck loop, elements of order a power
of two commute with elements of odd order. Obviously, automated theorem provers cannot prove this
result directly, as it is a result about infinitely many positive integers. On the other hand, one may use
automated theorem provers to generate proofs aboutspecificintegers, and then use these proofs to help
construct the proof of the general result. The three specific cases we analyze here: in a (left) Bruck loop,
elements of order 22 commute with elements of order 3, elements of order 22 commute with elements
of order 32, and elements of order 24 commute with elements of order 32. The three different cases give
rise to clear performance differences between the automated theorem provers; see Figure 5. We note that
this property was used in [AKP06] to prove a deep decomposition theorem for Bruck loops. That is, this
also was an important success of combining human and automated reasoning in loop theory.

[KK06]. There are many results in this paper proved by automated theorem provers. We analyze the
following results: for eachc in a power associative conjugacy closed loop,c3 is WIP (i.e.,c3(xc)−1 = x−1

for everyx), c6 is extra (i.e.,c6(x·yc6) = (c6x·y)c6 for everyx,y) andc12 is in the nucleus. (Initially, the
last property wasn’t obtained directly by Otter. Interestingly, other provers can do it.)

[Phi06]. The main result in this paper is that the variety of power associative, WIP conjugacy closed
loops is axiomatized, in loops, by the identities(xy·x) ·xz= x · ((yx·x)z) andzx· (x ·yx) = (z(x ·xy)) ·x.
We analyze this result.

[PV06]. This is a groundwork study of C-loops, and, as usual, there are many properties proved by
automated theorem provers. We analyze the following two: (1) in C-loops, the nucleus is a normal
subloop, and (2) in a commutative C-loop, ifa has order 4 andb has order 9, thena ·bx= ab·x (this is
one of the cases that led to a proof of the decomposition theorem for commutative torsion C-loops).

[KKP07]. The main result of the paper is that everyF-quasigroup is isotopic to a Moufang loop. This
was a longstanding open problem—it was the first open problem listed in Belousov’s 1967 book [Bel67].
We include this result as it stands, although in the original paper, Otter was used to prove only one
particular step.

[KPV07]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: a C-loop of exponent four with central squares is flexible.

[KPV08]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: in a Bol loop, ifc is a commutant element, thenc2 is in the left nucleus if and only ifc is
in the right nucleus.

[PV08]. The purpose of this paper is to find group-like axiomatizations for the varieties of loops of
Bol-Moufang type. We include the following typical result: a magma with 2-sided inverses satisfying
the C-law is a loop.

12
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[CDKxx]. This is a groundwork study ofBuchsteiner loops, i.e. loops that satisfy the identityx\(xy·
z) = (y·zx)/x. Buchsteiner loops arise from a study of loops of Bol-Moufang type [DJxx] and are closely
related to conjugacy closed loops. Again, some properties in the paper were proved automatically. The
result we analyze here is that in Buchsteiner loops, fourth powers are nuclear, i.e.,x4 ∈ N(Q) for every
x∈ Q.

[CGKxx]. The authors investigate some connections between loops whose loop rings, in characteristic
2, satisfy the Moufang identities and loops whose loop rings, in characteristic 2, satisfy the right Bol
identities. Similarly to [Kun98], rings are eliminated from the problem, and an automated theorem prover
is used for reasoning about the resulting first order conditions. We analyze the first order translation of
the main theorem, and also the following technical lemma: ifQ is a right Bol loop with the property that,
for all x,y∈ Q, xy= yx or x−1(xy) = y, thenQ is Moufang.

[JKVxx]. The structure and properties of commutative A-loops are revealed in the paper. Some tech-
nical steps were carried out automatically. For our study, we chose several problems related to the fact
that the product of two squares is again a square.

[KKPxx]. The main result in this paper is that in a strongly right alternative ring (with a unit element),
the set of invertible elements is a Bol loop under ring multiplication, and the set of quasiregular elements
is a Bol loop under “circle” multiplication. Aright alternative ringis a setRwith two binary operations,
+ and·, such that under+, R is an abelian group, under·, R is a right alternative magma, and such that·
distributes over+. A right alternative ring isstrongly right alternativeif · is a right Bol loop. The circle
operation is given byx◦y = x+y+xyand an element is calledquasiregularif it has a two-sided inverse
under◦. We analyze the following technical result: ifa is invertible (i.e., if it has a 2-sided inverse under
·), thenR(a−1) = R(a)−1 andL(a)−1 = R(a)L(a−1)R(a−1).

[KVxx]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: in a commutative RIF loop, all squares are Moufang elements and all cubes are C-
elements. An elementa is aMoufang elementif for all x andy, a(xy·a) = ax·ya. And it is aC-element
if for all x andy, x(a·ay) = (xa·a)y.

[PSxx]. Two results on loops with commuting inner mappings were obtained: (1) Bruck loops with
abelian inner mapping group are centrally nilpotent of class two; (2) Uniquely 2-divisible loops with
abelian inner mapping group of exponent 2 are actually abelian groups. In particular, (1) is a natural
complement to a recent result by Nagy and Vojěchovsḱy claiming the same property when “Bruck”
is replaced by “Moufang of odd order”. Both theorems were obtained by Waldmeister from scratch,
generating perhaps the most complicated proof ever obtained by a computer in loop theory. The final
proof of the Bruck case took almost a day of CPU time, resulting in a 2MB output (about 1500 pages),
excluding some handwork to prove that what the computer computes is actually equivalent to the English
sentence above. Its simplification and understanding is under current development.

5 Benchmark

5.1 The QPTP library

The problems described in Section 4 are collected in the QPTP library. As such, QPTP is a representative
collection of results in quasigroup and loop theory obtained by a computer. In its 12/08 distribution,
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E Gandalf Prover9 SPASS VampireWaldmeister
0.999-006 c-2.6 2008-09A 3.0 9.0 806

proofs in 300s 68 42 62 38 61 58
proofs in 3600s 79 69 70 48 76 69
proofs in 86400s 84 80 76 57 79 76
timeouts 25 29 33 52 30 12

Figure 4: Summary.

reflecting the state of the art at the end of 2008, it contains 109 problems (of which 88 unit equality). We
intend to keep the QPTP library updated.

The problems are stored in an internal format, making an extensive use of a list of basic definitions.
For example, the [Kun96a] problem saying that a quasigroup satisfying the first Moufang identity has a
unit, can be stated

#assumptions:
<<quasigroup
<<Moufang1
#goals:
x*(y/y)=x.
(y/y)*x=x.

We provide a tool for a translation to the TPTP format. QPTP files are split into several TPTP files
whenever they contain multiple goals. For technical details, see the Readme file.

Problems are named after the code of the paper in the bibliography followed by the underline and
the number of the selected result; multiple goals are then distinguished by letters (hence, e.g.,Phi06 2a
refers to the second problem selected from [Phi06], the first goal). If there are more reasonable ways to
formalize the statement in first order theory, alternative axiomatizations are given.

5.2 Analysis

We have done a simple analysis of the problems in the QPTP library by running selected automated
theorem provers. Based on the results of the CASC competition in recent years [SS06], we chose the
following six provers: E [Sch02], Gandalf [Tam97], Prover9 [McC05], SPASS [S], Vampire [RV02] and
Waldmeister [Hil03]. (We experimented with iProver, too, but, with little surprise, its performance on
unit equality problems was very poor.)

Each prover ran on each problem with a 24 hour time limit. The input files were provided by translat-
ing the corresponding TPTP files using the tptp2X tool (which comes with the distribution of the TPTP
library). We ran the provers with their default settings, and we did not tune any of the input files for a
particular prover, thus obtaining conditions similar to the CASC competition.

The overall performance of the provers is summarized in Figure 4. Out of 109 problems, 99 were
solved by at least one prover, 52 by all eligible ones. The 300s bound marks the time limit of the last
CASC competition.

The detailed results are presented in Figure 5. Running time (i.e., the time it took to prove the
theorem) is displayed in rounded seconds; a blank space means timeout, cross means that the problem
is not equational and thus ineligible for Waldmeister. Running times below 300s are displayed in bold,
running times over 1 hour in italic.

In our study, Waldmeister performed significantly better than the other five provers on equational
problems. The performances of E, Gandalf, Prover9 and Vampire look similar (incomparable in the
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E Gandalf Prover9 SPASS Vampire Waldmeister
0.999-006 c-2.6 2008-09A 3.0 9.0 806

AKP06 1 0 0 9 302 6 0
AKP06 2 16 199 80
AKP06 3 69492
CDKxx 1a
CDKxx 1b
CDKxx 1c
CGKxx 1 416 13672 1519 x
CGKxx 2 35 449 x
CGKxx 3 0 4320 69 1230 4 x
CGKxx 4 0 7778 23 0 43 x
CGKxx 4alt1 0 7792 235 2069 266 x
CGKxx 4alt2 0 4333 25 0 10 x
CGKxx 4alt3 0 7780 90 621 3 x
CGKxx 4alt4 0 7781 98 795 3 x
JKVxx 1 9539 68 228
JKVxx 1alt1 9705 72 141 228
JKVxx 2 351
JKVxx 3
JKVxx 4 28545
KK04 1 28020
KK04 2 31096
KK04 3 9778
KK06 1a 64 147 508 94
KK06 1b 1031 1490 739
KK06 1c 46267 1043 725
KK06 1d 53792 1043 723
KK06 1e 55126 1037 723
KKP02a1 1327 860 32427 x
KKP02a1alt1 844 605 488 224
KKP02a1alt2 854 610 493 224
KKP02a1alt3 830 623 493 224
KKP02a1alt4 842 622 502 222
KKP02b 1 3 35 223 211 398 x
KKP02b 1alt1 8 47 230 82650 495 9
KKP02b 1alt2 3 35 170 244 489 9
KKP02b 1alt3 9 37 226 36184 491 10
KKP02b 1alt4 8 37 211 23118 491 10
KKP02b 2 0 145 0 184 10 1
KKP02b 3 0 78 0 0 0 2
KKP02b 4a 26 315 1452 473 5
KKP02b 4b 0 0 0 0 0 0
KKP04 1a
KKP04 1b
KKP04 1c
KKP04 2 13059 2998 517
KKP07 1 2079
KKPxx 1 2 592 0 2 0 0
KKPxx 2a
KKPxx 2b
KP02 1
KP02 2 1 1 58 613 16 87
KP04a1 0 0 0 0 0 0
KP04a2 0 0 0 0 0 0
KP04a3 6 13 92 27531 137 3
KP04b1a 3 1 182 9028 34 4
KP04b1b 2 5 258 10703 25 5
KP04b2a 3 2094 122 464
KP04b2b 0 10 38 205 7 79
KP05 1a 0 1122 0 0 0 0
KP05 1b 0 1122 0 0 0 0
KP05 1c 0 0 0 0 0 0
KP05 1d 0 1121 0 0 0 0
KPV07 1 0 0 0 0 0 0
KPV08 1 0 0 0 0 0 0
KPV08 2 0 0 0 0 0 0
Kun00 1a 304 8345 15659 802
Kun00 1b 304 8389 1713 805
Kun00 1c 360 7055 799
Kun00 1alt1 9435 815
Kun00 2 0 0 0 0 0 0
Kun96a1 56 336 81 271 x
Kun96a1alt1 151 1090 108 220 3
Kun96a1alt2 9 334 189 238 3
Kun96a2 58 13 1889 290 x
Kun96a2alt1 8 2053 1432 247 4
Kun96a2alt2 52 13 1541 85 4
Kun96a3 0 0 0 0 0 x
Kun96a4 0 3241 0 0 0 x
Kun96b1 0 0 0 0 0 x
Kun96b2 0 0 2 5 0 x
Kun96b3 0 0 17 93 0 x
Kun96b3alt1 0 1080 6 77 20 0
Kun96b3alt2 0 0 5 91 42 0
Kun98 1 5 5431 151 158 2 x
KVxx 1 1380 254 3677 52
KVxx 2 6362 70723 104
Phi061a 61 28 14 23
Phi061b 39 2 4110 6 17
Phi062a 0 0 109 32 1 0
Phi062b 0 1 1 0 379 0
Phi062c 0 0 0 0 0 x
Phi063 0 3 41 412 9 0
PSxx1a 10146
PSxx1b 6227 229 8692
PSxx2 48430
PSxx3 815 60 18936 24 98
PSxx4a 0 0 2946 6 0
PSxx4b 0 0 692 3388 10 0
PSxx4c 0 0 3962 10 0
PSxx4d 0 1 951 1545 6 0
PV05a1 0 0 1 8 6 0
PV05a2 0 9 1 1 0
PV05b1 0 0 0 0 0 0
PV06 1a 0 1082 0 0 0 0
PV06 1b 0 1083 0 0 0 0
PV06 1c 0 1084 0 0 0 0
PV06 2 35 1 28 5 0
PV08 1a 0 1080 0 0 0 x
PV08 1b 0 1621 0 0 0 x

Figure 5: Detailed results.
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strict sense). SPASS is well behind the other provers.

Our results may seem somewhat surprising: why Prover9 has proved to be so useful in mathematical
research, while it did relatively modestly in the benchmark? This is partly due to how we organized the
test: default settings, autonomous mode. On the other hand, focusing solely on one prover in the past
appears now to be a bit limiting.

Indeed, parameter setting deserves much greater attention, but this is beyond the scope of the present
study. Let us just note that perhaps the most influential parameter is the term ordering. For instance,
Prover9’s default ordering is LPO. If Prover9 is manually reset to KBO (which algebraists usually do), it
proves a somewhat larger number of problems.

Finally, the reader may wonder about those theorems on which all provers were unsuccessful (these
are indicated by blank entries in Figure 5). After all, these are theorems that were first proved with the
assistance of an automated theorem prover (which was the sole criterion for inclusion in our study). Why
were none of the provers able to find proofs in our study? The answer is threefold. Firstly, we did not use
any advanced techniques in our study, such as the hints strategy (which is often the only way to obtain a
new result and is unique to Prover9). Secondly, we did not tune the provers for each particular problem.
And last but not least, we imposed a relatively short time limit.

6 Other areas of algebra

In general, one can say that automated theorem proving is particularly useful when one works in a
not fully developed environment — e.g., various kinds of weak associativity, such as in loops, or a
complicated structure added on top of a classical object, such as lattices with operators in algebraic
logic. Unfortunately, we do not know of any result obtained with ATP that could be called mainstream
algebra. This is probably due to the fact that such problems almost always include difficult arithmetics
and none of them can be easily formalized.

There are some ATP results about groups and Boolean algebras, though, for instance, various single
axiom projects, achieved mostly by the Argonne group and their collaborators beginning in the early
1990’s (see [MP96] for references, or [MPV03], [MVFHFW02] for more recent results).

Several open problems were solved by automated theorem provers in the domain of lattices with
operators (such as Boolean algebras and their many generalizations), the most prominent one being the
Robbins problem [McC97]. Recently, many interesting questions that can be approached automatically
are coming from algebraic logic, e.g. [VS06], [SV08].

We also note the book [MP96], an early attempt to use automated theorem provers in general algebra
on a large scale.

In this paper, our focus is on non-associative algebra. In addition to the many significant results in
quasigroups and loops, there are several other attempts to use ATP in this area. In fact, we believe that
this is a perfect playground for ATP, as the problems approached are often technical and unintuitive. We
survey all related papers we know about.

[PV05c]. A term is calledlinear if each variable occurs at most once in it. An identity is said to
be linear, if both sides are linear and contain the same variables. Otter and Mace4 were used in this
paper to classify all varieties of groupoids defined by a single linear identity in three variables (there are
exactly 14 nontrivial ones). Hentzel et. al. (1993) showed that the linear identity(xy)z= y(zx) implies
commutativity and associativity in all products of at least 5 factors. The present paper completes their
project by showing that no other linear identity of any length behaves this way, and by showing how the
identity (xy)z= y(zx) affects products of fewer than 5 factors.
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[DJMKS07]. This is an interesting example of exhaustive search. We investigated equational theories
with one binary operation, where each term is equivalent to exactly one linear term. A subgoal (that even-
tually led to a solution of the problem) was, to search for theories which have the property for all terms
in at mostn variables. Such theories are determined by theirn-generated free algebras, and those have
a known carrier: exactly all linear terms inn variables (the sizes are 1, 4, 21, 184, etc.). What remains
is to fill in the multiplication table. The search was carried out independently by a mathematician and
by a computer. For the computer solution, we wrote a Perl script that was completing the multiplication
table and calling Otter to check whether the theory collapses some linear terms. It took about 1 minute
to compute all possible 2-generated free algebras (in fact, they appeared earlier in the literature). It took
several days by hand and about 2 hours by computer to find all 3-generated free algebras. And using
some clever tricks, it wasn’t so difficult to find all 4-generated extensions, while the computer search
took about two months.

[Phi06b]. Prover9 helped to sharpen a result of D. A. Bredikhin (1992) by finding short equational
bases for two varieties of groupoids associated with involuted restrictive bisemigroups of binary relations.

[APS08]. Otter was used to prove some of the partial cases for a general conjecture that, in idempotent
groupoids, a certain term condition implies mediality.

[VM]. Automated theorem provers are indeed the perfect tools for supplying direct proofs for results
that have been known true, but with a complicated proof possibly involving additional assumptions (such
as the axiom of choice). Veroff and McCune reproved—much more compactly—a result by Kolibiar and
Marcisov́a (1974) on median algebras, certain ternary algebras coming from modular lattices.

[Sta08]. This is another example, providing a direct proof of a decompostion result for distributive
groupoids by Jězek and Kepka (1982). The theorem says that on every idempotent distributive groupoid
G (i.e., G satisfiesxx= x and both left and right distributivity), there exists a congruenceα of G such
thatG/α is symmetric and all blocks ofα are medial. This is a nice example of a second order statement
with a pretty simple but highly nonobvious first order formalization: existence of such a congruence on
G is equivalent to the fact thatG satisfies the identities

(xy·zu) · ((xy·zu) · (xz·yu)) = xz·yu

((xy·zu) · (xz·yu)) · (xz·yu) = xy·zu

(xy·zu) · (xz·yu) = (xz·yu) · (xy·zu).

Several problems extracted from these papers can be found in thenq folder (for non-quasigroup
problems) of the QPTP library. The problems did not participate in our benchmark, but they also were
submitted for the TPTP library. Running theorem provers on these problems, we realized one remarkable
case: Waldmeister fails on the distributive groupoid problems, even on those considered easy for other
provers (see also the discussion in [Sta08]).

7 Conclusions

While we hope our results are interesting to automated reasoning researchers (especially since they in-
volve problems from an active area of mathematical research), they may not besurprisingto these same
researchers, informed as these researchers are by the CASC results over the past ten years. Our re-
sults, though, might surprise loop theorists, who are less familiar with most of the provers in our study.
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But again, we stress that some of these loop theory results were originally obtained using advanced
Otter/Prover9 techniques such as the hints strategy. Could these be implemented in other provers?

Since the various automated theorem provers have different strengths and weaknesses, loop theorists
could profit by using a suite of theorem provers in their investigations. For instance, the result in [KKP07]
was originally derived as a series of results, a number of steps eventually leading to the main theorem. In
our study, Waldmeister proved it from scratch in 35 minutes. To state the obvious: some theorems will be
missed if one uses only one automated theorem prover. On the other hand, the actual proofs themselves
are, of course, of great importance, and the various automated theorem provers differ greatly in this
regard. A fruitful area for future research is simplification and interpretation of computer generated
proofs.

The QPTP library itself offers many opportunities for future work. It is a relatively large collection
of nontrivial but doable first order problems, in a single domain, yet of different natures. We believe
QPTP can be exploited for further research, for instance, on optimization of first order formalizations, or
on parameter setting.

We believe this is just beginning of the story. The point we want to make is that, yes, we mathe-
maticians really want to use automated theorem provers (at least some of us). They can help us with
some tedious work and, occasionally, even prove difficult theorems. We believe that automated theorem
provers will, sooner or later, become as widespread as computer algebra systems are today (or, perhaps,
integrated into them), to assist mathematicians (or at least algebraists) in their work. In order to attract
even more mathematicians today, we suggest the following:

• Make the provers work in more developed areas. (This will probably require using large libraries
of known results.)

• Make them as easy to use as major computer algebra systems. (Most of them in current use are
not especially user friendly.)

• Care about output; we want to understand the proof!

Acknowledgement.We thank Michael Kinyon, Josef Urban and Bob Veroff for carefully reading, and
then commenting on, an earlier version of this paper.
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[DJxx] A. Drápal, P. Jedlǐcka, On loop identities that can be obtained by nuclear identification, submitted.

[Hil03] T. Hillenbrand, Citius altius fortius: Lessons Learned from the Theorem Prover Waldmeister, in Dahn I.,
Vigneron L., Proceedings of the 4th International Workshop on First-Order Theorem Proving (Valencia,
Spain), Electronic Notes in Theoretical Computer Science 86.1, Elsevier Science, 2003.
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[MPV03] W. McCune, R. Padmanabhan, R. Veroff,Yet another single law for lattices, Algebra Universalis 50
(2003), no. 2, 165–169.

[MVFHFW02] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist, L. Wos,Short single axioms for Boolean
algebra, J. Automat. Reason. 29 (2002), no. 1, 1–16.

[Nag08] G. P. Nagy.A class of finite simple Bol loops of exponent 2, to appear in Trans. Amer. Math. Soc., 2008.
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[PV05c] J.D. Phillips and P. Vojtěchovsḱy, Linear groupoids and the associated wreath products,Journal of Sym-
bolic Computation, 40 (3), (2005), 1106–1125.
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