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Non-associative algebraic structures arise in many situations. Cayley’s octonions are
a notorious example, but there are far more: for example, non-associative loops arise in
coordinatization of projective planes [Pickert 1955], and the Einstein velocity addition in
relativity theory also forms a non-associative loop [Ungar 2001]. Selfdistributive algebras
appear naturally in the study of braids [Dehornoy 2000], and notably in knot theory, where
so called quandles are used as homotopy invariants of knots [Joyce 1982]. And there is so
much more. We wish to present a brief overview of the origins of non-associative algebra,
and a selection of current research topics and prospects.

Given the width of the subject, we shall focus our attention on three particular classes
that currently seem to attract most attention and have been traditionally covered by the
algebraic group in Prague:

1. quasigroups and loops,

2. selfdistributive algebras,

3. mediality and modes.

Particularly, we omit all aspects related to geometry, both classical and differential. We
also exclude the theory of non-associative algebras in the sense of ring theory, a subject
with identical origins, but different evolution.

For us, an algebra means just a universal algebra (or general algebra), i.e., a set
equipped with (finitary) operations. Algebras with a single binary operation are often
called groupoids, or binary systems, and play a central role in non-associative algebra.

Objects.

1. Quasigroups and loops.
Quasigroups are algebras with a binary operation ∗ such that the equations

a ∗ x = b and y ∗ a = b

have a unique solution for every a, b. Loops are quasigroups with a unit element, or “non-
associative groups”. While quasigroups are often studied from a combinatorial point of
view (note that finite quasigroups are essentially the same objects as latin squares), the
loop theory is, to some extent, built as a generalization of group theory, and a great deal
of attention is focused on various weak forms of the associative law. The deepest results
often exploit advanced group theoretical methods.
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This is the oldest and most developed discipline of non-associative algebra, originated in
1930’s in works of Sushkevich, Moufang, Bol, Murdoch and others, see [Pflugfelder 2000]
for comprehensive historical notes. The topic is covered by several books [Bruck 1958]
[Belousov 1967] [Pflugfelder 1990] [Chein et al. 1990] [Nagy and Strambach 2002] [Smith
2007] that study various aspects of the theory, and reflect different eras of non-associative
mathematics and different standpoints of the geographically distant schools.

To get a taste of an important recent result, consider the Lagrange property, the one
from elementary group theory, stating that the order of a finite group is divisible by the
order of every subgroup. It is very easy to prove the property for groups, however it fails
for a majority of general loops. The property was recently proven for all (finite) Moufang
loops, independently by [Grishkov and Zavarnitsine 2005] and [Gagola and Hall 2005];
the Moufang property is a weaker form of associativity, satisfied e.g. by octonions. Both
proofs are based on Doro’s classification of finite simple Moufang loops and Kleidman’s
determination of the maximal subgroups of the orthogonal groups PΩ8(q).

2. Selfdistributive algebras.
The notion of selfdistributivity refers to the fact that left or right (or both) translations

are endomorphisms. A groupoid is called left distributive, if

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)

for every a, b, c, i.e., if the left translation, La : x 7→ a ∗ x, is an endomorphism of the
algebra, for every a. A typical example is conjugation in groups: for a group G, consider
a new operation, a ∗ b = aba−1; the algebra (G, ∗) is left distributive.

The first explicit allusion to selfdistributivity seems to appear in the 1880 paper On the
algebra of logic by Benjamin Peirce, and only a little bit later in works of German logicians.
The first article fully devoted to selfdistributive structures was published in 1929 by Burstin
and Mayer, and addressed finite distributive quasigroups. Later, the theory was developed
by various mathematicians, on both sides of the Atlantic, with various motivations in mind.
Here are some highlights.

Ottmar Loos, in his book [Loos 1969], used continuous left distributive structures
to capture the algebraic properties of symmetric spaces. J. Ježek, T. Kepka and P.
Němec studied selfdistributive groupoids extensively in 1970’s and 1980’s, culminating
in their treatise [Ježek et al. 1981], collecting many structural results on (both left and
right) distributive groupoids, both in the non-idempotent and idempotent cases, including
their symmetric-by-medial decomposition. David Joyce [Joyce 1982] and S. V. Matveev
[Matveev 1984] independently discovered the knot quandle, a classifying knot invariant.
Richard Laver, a famous set theorist, studied in 1990’s left distributive groupoids of el-
ementary embeddings, see e.g. [Laver 1992]. The monograph Braids and selfdistributiv-
ity, published in 2000 by Patrick Dehornoy, contains deep results on free left distributive
groupoids, applications in the theory of braids, and an extension of Laver’s investigations.

The subject remains lively until today: during the last decade, over 100 papers have
appeared on quandles (or idempotent left distributive left quasigroups in our terminology),
mostly with respect to their applications in knot theory. See [Carter] for a survey and
prospects.

3. Mediality and modes.
Modes are idempotent algebras, with possibly many operations of arbitrary arity, such

that all of them are homomorphisms from the respective power of the algebra into it-
self. In other words, the operations commute one another. Modes have been extensively
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studied by Anna Romanowska, J. D. H. Smith, and their collaborators since 1980’s, with
various goals and motivations, see [Romanowska and Smith 2002], or [Romanowska 2005].
However, algebras with pairwise commuting operations appeared in works of many other
mathematicians in various contexts.

Most notably, in algebras with a binary operation, the property that ∗ commutes with
itself is described by the identity

(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d),

called mediality by most. The medial law was noticed by Sushkevich and Murdoch in their
pioneering works of 1930’s, in the context of quasigroups. More mathematicians discovered
the topic in 1950’s, often in connection to abstract properties of arithmetic mean. Many
results on medial groupoids were obtained by the Prague algebraic group, culminating in
the treatise [Ježek and Kepka 1983], containing important results on linear representations,
structural results for various subclasses (commutative, cancellative, divisible) and a classi-
fication of simple medial groupoids. Many results obtained in 1980’s and 1990’s in Warsaw
were collected in the book [Romanowska and Smith 2002], including the theory of affine
and quasi-affine representations. Keith Kearnes studied modes by methods of universal
algebra in 1990’s, see e.g. [Kearnes 1999]. Most results however hide in scattered papers
under various nick names, and new papers keep appearing in a somewhat weaker current
than in the case of selfdistributivity.

1. ∩ (2. ∪ 3).
The intersection refers to medial and/or selfdistributive quasigroups. Both were one

of the first classes of non-associative algebras to be ever considered, see above. The first
important result was the Toyoda-Murdoch-Bruck theorem, found independently by the
three men in 1940’s, stating that medial quasigroups can be derived from abelian groups
taking the operation

a ∗ b = f(a) + g(b) + c,

where f, g are two commuting automorphisms and c a constant. The theorem was general-
ized in many ways, including a representation of both left and right distributive quasigroups
by commutative Moufang loops [Belousov 1967]. A different kind of powerful representa-
tion was discovered for left distributive quasigroups by V. M. Galkin [Galkin 1979], on
cosets of groups. It is often the case that quasigroups from a certain class are modeled
using groups or a sort of weakly associative loops, and the representation theorem is used
to prove properties of the class.

Methods.
Most researchers in non-associative algebra use the efficient language of universal alge-

bra, including the notions of homomorphism and congruences, structural concepts such as
direct and subdirect decompositions, the construction of free algebras using terms and iden-
tities, etc., although the advanced methods of modern universal algebra (tame congruence
theory, commutator theory, etc.) have found little use so far.

We decided to comment on two powerful methods used in non-associative algebra.
Structure theory describes objects of an abstract class, often by representing (some of)
them using objects of a different, better known, class. Through representations, problems
are often translated to a different area of algebra, such as group theory, and solved there.
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The second technique we wish to point out is formal equational reasoning, including the
use of automated theorem provers.

Structure theory and representations.
There is no formal definition of what structure theory means, and we do not intend

to give one. For an abstract class of algebras, the general aim is to understand how its
objects look like, by means of decomposition (congruences and factoralgebras, various forms
of products, combinatorial constructions, etc.), representation of indecomposable objects,
and so on. It is often useful to describe structural elements, such as simple and subdirectly
irreducible algebras. The outcome of a structural result may for instance be counting
objects up to isomorphism, determination of abstract properties, etc.

There are many ways the term “representation” is used in literature. The general aim
is to describe members of one class using a construction over members of another class,
usually far better known. Typical constructions involve reducts, embeddings, factors, sums,
etc. Typical target classes are modules, groups and other mainstream structures.

To show some examples, note that the classical Toyoda-Murdoch-Bruck theorem, men-
tioned earlier, says that every medial quasigroup is isomorphic to an algebra (M, ∗), where
∗ is a binary affine function over a module on the set M (over the endomorphism ring of
an abelian group). Many properties, such as counting (small) finite medial quasigroups,
can be derived easily.

A more complicated result of this sort is the Galkin’s theorem, stating that every left
distributive quasigroup Q is isomorphic to an algebra (G/N, ◦), where G is the left multi-
plication group of Q, N is the stabilizer of a fixed element e and

aN ◦ bN = aea−1bN.

The representation was recently used by J. Vlachý to explain why the smallest non-medial
left distributive quasigroup has 15 elements. A similar representation can be derived for
connected quandles (i.e., those where the left multiplication group acts transitively) too,
and L. Vendramin used it recently to compute the number of connected quandles up to
order 35, using the computer system GAP and the (built-in) classification of transitive
groups of degree ≤ 35.

A different example of a structural result is the symmetry-by-mediality theorem for
distributive groupoids [Ježek and Kepka 1984]. Every idempotent distributive groupoid G
has a congruence α such that G/α is medial and all blocks of α are Steiner quasigroups.
One of the consequences is, for instance, that free idempotent distributive groupoids are
cancellative and thus embed, in a way, into commutative Moufang loops.

Representation problems.
A complementary question can be asked: given a representation method, which algebras

can be represented? Some of the general results have important consequences in non-
associative algebra.

For example: which algebras admit a representation by affine functions over a module?
An algebra A is called quasi-affine, if there is a module M over a ring R such that A ⊆M
and all operations of A can be represented by affine functions, i.e., by functions

f(x1, . . . , xn) = c+ r1x1 + · · ·+ rnxn,

for some scalars r1, . . . , rn ∈ R and a constant c ∈ M . An algebra is called affine, if
moreover A = M and the two algebras are polynomially equivalent, i.e., they have the
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same set of derived (polynomial) operations. (Indeed not all algebras are quasi-affine: for
instance, a group is quasi-affine iff it is abelian, and if so, it is actually affine.)

Affine representations have a long history. The Toyoda-Murdoch-Bruck theorem actu-
ally says that medial quasigroups are affine (over a commutative ring). Kepka and Němec
studied affine quasigroups over general rings already in 1970’s, and in this context J. D. H.
Smith (and in another context H. P. Gumm soon after) realized the connection between
affine representability and the abstract condition that is now called abelianess. While it
is easy to see that quasi-affine algebras are abelian, the converse in not true, although
the two notions are known to be equivalent under many additional assumptions, e.g., for
algebras that have a weak near unanimity term [Stronkowski and Stanovský 2010], or that
are simple idempotent [Kearnes 1996]. The problem is often refered to as “abelian iff
quasi-affine” [Szendrei 1998], and the general aim is, to determine conditions, when the
equivalence holds, or provide counterexamples, when it does not.

A more general (and less powerful) type of representation is using semimodules over
semirings, instead of modules. It was proved in [Ježek 1979] that all algebras are repre-
sentable this way. How about restricting to commutative semirings? What we obtain is a
proper class of modes, characterized independently in [Stanovský 2009] [Stronkowski 2009].
Characterizing algebras representable by modules over commutative rings remains an open
problem; this is in fact equivalent to determine whether “abelian iff quasi-affine” holds for
modes.

Equational reasoning.
Many important classes of non-associative algebras can be axiomatized using a finite

set of equations. For example, quasigroups can be axiomatized using auxilliary operations
/, \ for solutions of the equations a ∗ x = b and y ∗ a = b, with axioms

x\(x ∗ y) = y, x ∗ (x\y) = y, (y ∗ x)/x = y, (y/x) ∗ x = y.

Selfdistributivity is an equation, and so is mediality, or more generally, the fact that two
operations commute. More importantly, surprisingly many properties can be formalized
in first order logic within the theory we study, often using only equations. For example,
a group is nilpotent of class 2 iff it satisfies the equation xyx−1y−1z = zxyx−1y−1, and
analogously one can axiomatize nilpotent groups of an arbitrary (fixed) class.

While the problem whether a given equation follows from a given set of equational
axioms is undecidable, there are fairly efficient software systems that perform the job,
and, occasionally, succeed in finding highly non-trivial proofs. Automated theorem provers
(both equational, such as Waldmeister, and for general first order logic, e.g. Prover9,
E, Vampire) found their way into mathematical research, supporting proofs of several
important theorems, mostly in loop theory. A thorough survey of methods and results can
be found in [Phillips and Stanovský 2010]. Here we mention one of the most important
theorems proved with assistance of automated reasoning.

It was a major open problem for several decades, whether diassociative automorphic
loops satisfy the Moufang laws. [Kinyon et al. 2002] gave affirmative answer, by first
showing that diassociative automorphic loops have so called inverse property, which can be
stated using only finitely many equations (unlike diassociativity), and then used a theorem
prover, Otter, to assist reasoning in this class. It is worth noticing that unlike Otter a
decade ago, the current version of the Waldmeister system can prove the theorem straight
from its axioms within minutes, showing the advance in both software development and
computer power.
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Concluding remarks.
I tried to present the field of non-associative algebra as a lively subject, with many

different motivations and goals, using a variety of techniques. I would like to point out,
once again, the many connections it has to other fields. Most of all, it is group theory,
providing both tools and motivation, particularly in the theory of loops. No less motivation
provides geometry: low dimensional topology (braids, knots and selfdistributivity), differ-
ential geometry (smooth binary systems, omitted in my text), projective geometry. And I
also find interesting the many ways the selfdistributive law has appeared in various sub-
jects of mathematics (such as Laver’s groupoids of elementary embeddings). I believe the
interactions provide an endless source of inspiration for future research in non-associative
algebra.

This text is based on the introduction of my habilitation thesis (Charles University in
Prague, 2011).
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A note on information sources. It is not always easy to find out what is going on in a
field outside one’s expertise. Non-associative mathematics is rather fragmented, with no
universal forum. The only subject with a developed infrastructure seems to be the theory
of quasigroups and loops. To see what are current problems, I recommend visiting websites
of the two major conferences in the field: the Loops conference held in Czech Republic,
and the Mile High Conference on Non-associative Mathematics, held in Denver, both once
in four years.
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