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Abstract

State-of-the-art automated theorem provers (ATPs) are today able to solve relatively complicated
mathematical problems. But as ATPs become stronger and moreused by mathematicians, the length
and human unreadability of the automatically found proofs become a serious problem for the ATP
users. One remedy is automated proof compression by invention of new definitions.

We propose a new algorithm for automated compression of arbitrary sets of terms (like mathe-
matical proofs) by invention of new definitions, using a heuristics based on substitution trees. The
algorithm has been implemented and tested on a number of automatically found proofs. The results
of the tests are included.

1 Introduction, motivation, and related work

State-of-the-art automated theorem provers (ATPs) are today able to solve relatively complicated mathe-
matical problems [McC97], [PS08], and are becoming a standard part of interactive theorem provers and
verification tools [MP08], [Urb08]. But as ATPs become stronger and more used by mathematicians,
understanding and refactoring the automatically found proofs becomes more and more important.

There is a number of examples, and significant amount of more or less successful relevant work
in the field of formal proof refactoring. The most well-knownexample is the proof of the Robbins
conjecture found automatically by EQP. This proof has been semi-automatically simplified by the ILF
system [Dah98], and later also rewritten as a Mizar formalization [Gra01]. Other examples include the
refactoring of the proof of the Four Color Theorem by Gonthier [Gon07], the hint strategy used regularly
to simplify the proofs found automatically by the Prover9 system [Ver01], translation of resolution proofs
into assertion level natural deduction proofs [Hua96], various utilities for formal proof refactoring in the
Mizar system, and visualization of proofs and their compactification based on various interestingness
criteria in the IDV and AGiNT systems [TPS07], [PGS06]. Introduction of definitions is a common part
of state-of-the-art first-order ATPs, used to compute efficient clause normal forms [NW01]. Introduction
of definitions is also an important part of unfold-definition-fold transformation in logic programming1,
the main purpose there is usually speed-up of the logic programs (reducing number of computation
steps).

The work presented here tries to help understanding of formal proofs by automated finding of re-
peated patterns in the proofs, suggesting new definitions that capture the patterns and shorten the proofs,
and help to develop a structured theory. We believe that thisapproach might not only help mathemati-
cians to better understand the long automatically found proofs, but also that following the recent exper-
iments with meta-systems for automated reasoning in large structured theories [USPV08] this approach
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1It was firstly well defined in [TS84] then extended in [PP95] and also automated in [Vv07]
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could provide another way to attack hard problems automatically by enriching the theory first with new
concepts, and smart heuristic abstracting away ("forgetting about") some of the concepts’ properties irrel-
evant for the particular proof. The last mentioned is probably not the only machine-oriented application
of proof compactification: compact proofs are likely to be more easy to verify, and also to combine and
transform automatically in various ways.

The structure and content of this paper is as follows. Section 2 formally describes the approach used
for proof compression by invention of new definitions. In Section 3 an efficient heuristic algorithm for
finding best definitions based on substitution trees is suggested and its first implementation is described.
In Section 4 the implementation is evaluated on ca. 8000 proofs from the TPTP library, and on several
algebraic proofs. In Section 5 several examples demonstrating the work of the algorithm are shown and
discussed. Section 6 discusses the possible extensions, improvements, testing, and uses of this approach,
and concludes.

2 Problem statement

As mentioned above, the problem of proof improvement and refactoring is quite wide, and it can be
attacked by different methods, and by employing different criteria.

The motivation for the approach taken here is that given the original proof, it can contain a large
number of “similar” complex terms (terms with a large weight). Mathematicians would typically quickly
simplify such proofs by introducing suitable new concepts and notation. While it is nontrivial to tell what
exactly makes a new definition mathematically plausible andworth introducing in a certain proof or the-
ory, there is at least one well-defined and easy-to-use measure of the “plausibility” of a new definition,
namely the degree in which it reduces weight of the particular proof. The problem then is to find the def-
initions that suitably generalize the largest number of similar terms, or more precisely, to find definitions
that have the best value in terms of decreasing the overall weight of the proof after replacing terms with
the newly defined symbol.

The precise definition of the problem is as follows.

2.1 Problem of proof compression by new definitions

2.1.1 Proof:

A formal mathematicalproof is understood generally, as a sequence (list, or DAG, tree, etc.) of formulae
(or sequents, or just arbitrary Prolog terms) connected by inference rules. The inference rules are not
relevant for the initial approach, only the formulae matter. For the purpose of this work, it suffices to
treat proofs as (a set of) arbitrary Prolog terms over some initial signature of symbols (e.g., predicate and
function symbols used in the proof, and logical connectives). Particular instance of this approach are the
first-order proofs written in the TPTP language2, which are just sequences of first-order TPTP formulae
and clauses (written as Prolog terms) annotated with their inference information. The input data for our
algorithm are then just the formulae and clauses (set of Prolog terms), without the inference data.3

2http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
3Note that the bound variables in TPTP first-order formulae are represented by Prolog variables in the TPTP syntax,

however, these variables are not really "free" in the Prolog(and also first-order) sense. A proper treatment for our algorithm
would be to e.g., rename such bound variables to de Bruijn indices, however the first version of our algorithm does not do this.
This treatment is suboptimal, in the sense that a definition with a redundant variable can be introduced, however this hasno
impact on the correctness of the algorithm.
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2.1.2 Weight:

A weight assignment wis a function from the proof signature to integers, togetherwith an integer value
for variables. Theweight of a proof signature symbol or variable is equal to the value of the weight
assignment function on it. The weight of a term, formula, or proof is a sum of the weights of the
symbols and variables contained in it. The weights of symbols, terms, formulae, and proofs under a
particular weight assignmentw are denotedw(s), w(t), w(F), w(P). Unless specified otherwise, the
simple “symbol-counting” weight assignment giving value 1to all symbols and variables will be used as
default in what follows.

2.1.3 New definition:

Given a proof (Prolog term)P, anew definition D wrt Pis a binary Prolog clauseD of the form

s(X1, ...,Xn):- T(X1, ...,Xn) (D)

wheres is a symbol not appearing inP, T(X1, ...,Xn) is a Prolog term over the signature ofP, and 0≤ n.
Note that this approach does not allow recursive definitions, and does not allow new variables in the body
of the definition (otherwise themost compressing definitionproblem below becomes Turing-complete).
Unless specified otherwise, we will also require that with a given weight assignmentw, the definitionD
satisfies the strict monotonicity condition

w(s(X1, ...,Xn)) < w(T(X1, ...,Xn))

2.1.4 Definition application at a position:

When S is a term matching the body of the definitionD (ie., there is a substitutionσ such that
T(X1, ...,Xn)σ = S), thenD(S) will denote the replacing ofS by the appropriately instantiated head
of the definition (ie.,s(X1, ...Xn)σ , whereσ is as above). Similarly,D(P|p) will denote the (unique)
replacement of the subterm at positionp in a termP.

2.1.5 Exhaustive definition application on the whole term:

Now consider the following definition
s(X) :- f ( f (X)) (D1)

and the term
f ( f ( f (a))) (P1)

ThenD1 can be applied either at the topmost position, yieldings( f (a)), or at the first subterm, yielding
f (s(a)). However simultaneous application at both positions is notpossible. In both cases, the default
weight of the original term decreased from 4 to 3. Then consider the term

f ( f ( f ( f (a)))) (P2)

The first application ofD1 can now be done at three different positions, yieldings( f ( f (a))), f (s( f (a))),
and f ( f (s(a))). For the first and third result,D1 can be applied again, yieldings(s(a)) with weight 3 in
both cases, while the second result with weight 4 cannot be further reduced usingD1. Hence the order
of application of the definitions matters. The notationD∗(P) will therefore denote any of the (possibly
many and different) exhaustive applications of definitionD to termP, i.e.,D∗(P) is a term whereD can
no longer be applied at any position.D∗

minw
(P) (or justD∗

min(P) when the weight assignment is fixed) will
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denote those exhaustive applications (again, generally many) such that the weight of the resulting term
is minimal. Note (on termsP1 andP2 and definitionD1) thatD∗(P) andD∗

min(P) are not unique, and can
be obtained by different application paths, however in whatfollows we will be interested mostly only in
the minimal weight and irreducibility byD.

2.1.6 The proof compression problems:

There are several well-defined problems in this setting. Themost compressing definitionproblem is,
for a given proofP to find the new definitionD wrt to P that compresses the proof most, i.e.,w(D)+
w(D∗

min(P)) is minimal across all possible definitionsD. SinceD∗
min(P) is non-deterministic, in practice

this problem also includes finding the particular sequence of applications ofD to P that result in a
particularD∗

min(P).
Thegreatest proof compressionproblem is, to find a set of definitionsD1, . . . ,Dn and a sequence of

their combined applicationsD∗
1..n(P) such thatw(D1)+ · · ·+ w(Dn)+ w(D∗

1..n(P)) is minimal wrt to a
given proofP and weight assignmentw. Let us again denote byD∗

1..nmin
(P) the sequences of definition

applications for which this final measure is minimal. In thissetting, the definitions can have in their
bodies the symbols newly introduced by earlier definitions,however mutual recursivity is not possible,
because the definitions applied first cannot refer to the symbols introduced later.

There are two (“greedy”) ways to make the general greatest proof compression problem simpler and
efficiently implementable. The first simplification consists in restricting the search space to only those
sequences of definition applications where each new definition is applied exhaustively, before another
new definition is considered. So the sequence of definition applications is then determined by an initial
linear ordering of the set of definitions. This restriction can obviously result in worse proof compression
than is possible in the general case that allows mixed application of the definitions.

The second simplification applies greediness once more, restricting the initial linear ordering of the
set of definition to be done according to the compression power of the definitions. This means that first
the most compressing definitionD1 is exhaustively applied to the proof, yielding a new proofD∗

1min
(P)

together with the added clauseD1. Let us denote this new proofP1. Then again, the most compressing
definitionD2 is found forP1 (containing alsoD1), and added and applied exhaustively, yielding proofP2.
This greedy process generates (provided all weights are positive and definitions monotone wrtw) a finite
sequence of definitions and proofs. The final proofPn can then no longer be compressed by introducing
any new definition. This greedy algorithm, based on efficiently approximated algorithm for finding the
most compressing definition is the basis for our implementation and experiments.

2.1.7 Is compressed proof really a proof?

One could argue that, after performing compression on a proof, the result is not a proof anymore. Con-
sider, for example, the following fragment of a resolution proof:

. . . , a | b, ¬a, b, . . .

Using the definitiond = a | b, we obtain

. . . , d, ¬a, b, . . .

Strictly speaking, this is not a resolution proof anymore, the inference is broken. The way we understand
a compressed sequence as a proof is, using “macro-inferences”, which means inference rules that, first,
expand all occurences of definitions, then perform the original inference, and finally fold the result using
the definitions.This is a common phenomenon when dealing with formal proofs and their presentation in
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e.g. formal proof assistants: Some knowledge (typically the rewriting and the definitional knowledge) is
applied implicitly, without explicit reference to it and its explicit application.

2.2 Motivating example

Let’s work out an example of the most compressing definition in a very simple setting: let the input
consist of a single term

f ( f (. . . ( f (a)))),

or shortly f n(a), for a single unary symbolf , constanta and somen. The weight of the term isn+ 1.
Any compressing definitionD has to be

d(X) = f m(X)

for somem, and the shortest compressionD∗
min( f n(a)) is, up to the order of function symbols,

dnmodm f ndivm(a).

The weight of the definition ism+ 4, the weight of the resulting term isndivm+ nmodm+ 1. Hence,
finding the most compressing definition is equivalent to finding m minimizing the expression

m+ndivm+nmodm.

This problem has obviously polynomial complexity with respect to the input size, but it suggests that
arithmetic can be involved.

3 Implementation

3.1 The most compressing definition and the least general generalization

First it is necessary to describe all the possible candidates for a new definition, and count their number
(note that we are searching only for the bodies of the definitional clauses, because the heads are formed
by a new symbol and a list of free variables occurring in the body). Searching for the most compressing
definition for a set of termsM (representing a given proof) corresponds to searching for some least
general generalization (lgg - see [Plo69] for exact definition) over a subset of all subterms ofM. Not all
compressing definitions arelgg’s, and not even the most compressing one has to be anlgg, however, the
latter case is very rare. Our heuristics for compressing proofs will be based on searching for the most
compressinglgg.

Let us look at an example which shows limits of our approach. LetM consist of a single term

f (g(X, . . . ,X), . . . ,g(X, . . . ,X)),

where f is ann-ary symbol,g is anm-ary symbol, and the total weight is(m+ 1) ·n+ 1. Thelgg set
consists of the following terms:

{ f (g(X, . . . ,X), . . . ,g(X, . . . ,X)),g(X, . . . ,X),X}

Now, there are two reasonable candidates for the most compressing definition:

• d(X) = f (X, . . . ,X). ThenD∗
min(M) = d(g(X, . . . ,X)) and the total weight ism+n+6.
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• d(X) = g(X, . . . ,X). ThenD∗
min(M) = f (d(X), . . . ,d(X)) and the total weight ism+2n+5.

So, ifn= 1, both definitions are the most compressing, while forn> 1 the first definition wins. However,
lgg always gives the second one.

3.2 Finding the most compressing definition using substitution trees

In this subsection, we describe our heuristics for the problem of finding the most compressing definition
for a set of termsM. Our approach is based on a data structure calledsubstitution tree(see [Gra96]),
which has several useful properties:

1. Substitution trees are standard way to effectively save all subterms fromM.

2. All nodes of the tree then always represent the use oflgg on a subset of all subterms ofM. More-
over, there is always a tree containing a node that represents the body of the most compressing
definition.

3. From the tree it is possible to quickly compute the upper estimate of the efficiency of the proof
compression in the case of using a particular node as the bodyof the definition.

Now we will describe Algorithm 1. The input is a set of terms that correspond to some proof. The
output is a term, an approximation of the most compressing definition. When such a definition does not
exist, the algorithm returns “fail”. At line 7 the variableU is used to denote all subterms from the input.
Then a substitution treeT is created fromU . T additionally remembers in its leaves the frequency of the
occurrences of terms fromU . At line 9, procedure propagate_freq_into_tree is called with T, described
in Algorithm 2. This procedure recursively adds to each nodeof T the frequency corresponding to the
sum of its children. From this information it is possible to compute the upper estimate for the number of
application of the definitions that correspond to the node ofT

The function at line 10 described at Algorithm 3 counts recursively the gain from the variable in all
nodes of T that appear in the substitutions at the left-hand side. In the leaves the gain is computed from
each variable at the left-hand side of the substitution as the frequency of the leaf times the weight of
the term on the right hand side of each substitution where theweight of the term is computed using the
functionw. In the nodes that are not leaves the gain from each variable on the left-hand side is computed
as the weight of the term on the right-hand side, where the weight of the term is determined using the
functionh (see line 11 in Algorithm 3). The gains for functionh are computed by merging the gains of
the node’s children by summing the values at the same variables (lines 5, 6 in Algorithm 3). The gains
obtained in this way will be used for fast computing of the estimate of the efficiency of the searched-for
definition (lines 11 to 20 in Algorithm 1).

Now we will describe the upper estimate of the efficiency of the definition given by nodeN in the
tree T. First we create the definitionD corresponding to the node. This is done by composing all
substitutions from the root toN. The resulting substitution will define the body of the definition, and all
its substitutional variables, and variables that appearedin the terms inserted into the tree (these variables
have to be distinguished, see [Gra96]) will be defined as the arguments in the head of the definition

The upper estimate of the definition’s efficiency - the definition’s gain (i.e. the upper estimate of
w(proof before application of the definition) -w(proof after application of the definition) is described at
lines 15 to 19.

Upper estimates are computed, because an exact computing ofthe definition’s gain is quite inefficient
(we have to go through the whole proof, and apply the definition). On the other hand, the computation
of the upper estimate of all nodes fromT in the way described above has the same complexity as just
building the substitution treeT.
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Algorithm 1 the most compressing definition

1. function most_compressing_definition (proof : set of terms) : term;
% this function returns the most compressing definition as term of the form
% de f(x1, ...,xn):- T (x1, ...,xn) of inputproofwhere x1, ...xn are variables,
% T is some term with at least one occurrence of every variablex1, ...xnand
% de f is a new function symbol. If there is no compressing definition of proof
% then the function returns fail.

2. var
3. U : multiset of terms;

4. T : substitution tree;

5. L : list of tuples of the form:
〈gain : integer, tag: (upper_bound, exact), definition : term〉;

6. {
7. U := union of all subterms of every element of proof;

8. T := construct a substitution tree fromU with frequencies of all terms fromU in leaves;

9. propagate_freqs_into_tree(T);

10. (rootT).substitution_gain := propagate_gains_of_substitutions_into_tree(T);

11. L := empty;

12. for each nodeN of treeT do {
13. L := L + 〈G,upper_bound,D〉 where % concatenates tuple to list

14. D := create_definition_form_node(N),

15. G := (N.freq−1)∗k(D) + ( j(D,N) - p(D) where
16. k(d :- b) := w(b)−w(d), % definition gain

17. j(d :-b,v) := h′(b)−h′(d) where % definition gain of subst.

18. h′(x)
{

n if 〈x,n〉 ∈ v.substitution_gain
w(x) otherwise ,

19. p(d :-b) := w(d :-b)+1, % penalization of def. declaration

20. }
21. sortL with decreasing order by gain, tag where tag exact > tag upper_bound;

22. while (L[1].tag = upper_bound)and (L[1].gain>0)do {
23. L[1].gain := calculate the exactL[1].definition gain as: w(proof) - w(greedy application of

L[1].definition on proof) -p(L[1].definition)where
24. p(d :-b) := w(d :-b)+1; % penalization of def. declaration

25. L[1].tag := exact; % changestagof the first element of list L

26. L := merge L[1] with L[2..];
% merges the first element of list with its tail by the same rules as at 21.

27. }
28. if L[1].gain > 0 then return L[1].definition else return fail;

29. }
7
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Algorithm 2 propagate frequencies into tree

1. procedure propagate_freqs_into_tree (T : substitution_tree) ;

2. {
3. if T is leafthen exit; % Frequency of leaf is already calculated.

4. (rootT).substitution_gain := empty;

5. for each sonSof root T do {
6. propagate_freqs_into_tree(subtree ofT whereS is root); % Calculates freqs in subtree

S.

7. (rootT).freq := (rootT).freq +S.freq;

8. }
9. }
The resulting estimate is inserted into the listL as a tuple〈upper estimate, tag: upper_bound, defi-

nition D〉 (see line 13). After inserting all the upper estimates of allthe nodes ofT, the listL is sorted
decreasingly by the size of the upper estimate. If the upper estimates are equal, the tuple with tag “exact”
is preferred to the tuple with tag “upper_bound”.

Now we always test if the first member of the listL is already an exact efficiency value denoted with
the tag “exact”. If so, the valueD in this member is the searched-for most compressing definition. This
definition is the best among all the nodes of the treeT, but it does not have to be the best definition
absolutely, because we are selecting only from the nodes of the treeT. If the value is not exact, we
compute the exact value ofD for the proof (by replacing). The result is saved as the first element of the
list, and is tagged “exact”. Then we sort the list, and repeat, see lines 22 to 27.

If the resulting gain is more than 0, it means that the applieddefinition shortens the proof and this
definition is returned at the output. If not, we return “fail”, because no compressing definition appears
among the nodes ofT.

Algorithm 4 describes the greedy approach (see Subsection 2.1.6) for finding an approximation of
the greatest proof compression.

4 Testing

The initial implementation described above has been testedon the whole TPTP library [Sut09], and
on two families of proofs coming from recent research in algebra. In both cases the simplest symbol-
counting weight function was used for measuring the proof improvement.

4.1 Testing on the TPTP Library

The TPTP library contains a large number of ATP problems fromvarious areas of ATP use, which makes
it suitable for large-scale evaluation of the proof compression algorithm. For the testing described here,
TPTP version 4.0.1 was used, containing 16512 problems. Allavailable TPTP proofs found by the EP
version 1.1 theorem prover [Sch02] were obtained from the TPTP developer Geoff Sutcliffe. This is a
testing set of 7807 ATP proofs in the TPTP syntax, which is a subset of the Prolog syntax. These proofs
were postprocessed by a simple Perl script into a list of formulae (i.e., forgetting about the inference
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Algorithm 3 propagate gains of substitutions into tree

1. function propagate_gains_of_substitutions_into_tree (T : substitution_tree)
: set of couples of the form:〈var : subst. variable, gain : integer〉 ;

2. var R : set of couples of the form:〈var : substitution variable, gain : integer〉 ;

3. {
4. (rootT).substitution_gain := empty; % there are no subst. variables in leaves.

5. for each sonSof root T do {
6. (root T).substitution_gain := merge (rootT).substitution_gain with propa-

gate_gains_of_substitutions_into_tree(subtree ofT where S is root) so that, couples with
the same variable is merged into one couple and its gain is a sum of gains of all original couples
with the same variable;

7. }
8. R := empty;

9. for each substitutionθ=T of substitution set in rootT do {
10. R := R∪〈θ ,h(T)〉 where

11. h(x)
{

n if 〈x,n〉 ∈ (root T).substitution_gain
w(x) otherwise ;

12. }
13. if T is leafthen
14. for each couple〈x,n〉 of Rdo {
15. R := (R \ 〈x,n〉)∪〈x, n*(root T).freq〉;

16. }
17. return R;

18. }
structure). This again can be considered to be just a list of Prolog terms, and hence it is already an input
to the proof compression algorithm explained above.

The testing was done on an eight-core 64bit Intel Xeon E5520 2.27 GHz Linux machine with 8GB
of RAM. SWI Prolog was used to run the proof compression algorithm. SWI Prolog has some internal
memory limits that do not allow it to get past 2GB boundary, sofor very large proofs the implementation
can now fail for lack of memory. Because the implementation can also take quite a long time for large
proofs (the longest example we are aware of was about one hour), we have given each of the TPTP
proofs a time limit of 60 seconds to be able to finish the large-scale testing in reasonable time. 4890
of the 7807 proofs (63%) were completely compressed within the time limit, i.e., the algorithm has
successfully finished in 60 seconds. For the remaining 2917 proofs the algorithm typically has found
the initial most compressing definitions, but has not converged to the point where no more compressing
definitions exist. The final compression ratios for the 4890 successful runs can be viewed online at our
webpage4, and all the TPTP proofs together with the algorithm inputs and outputs can also be viewed

4http://mws.cs.ru.nl/~urban/compression/00tstp_final_ratios
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Algorithm 4 the greatest proof compressing

1. function greatest_proof_compressing (proof : set of terms) : set of terms;

2. var
3. R : set of terms;

4. T : definition;

5. {
6. R := proof;

7. T := most_compressing_definition(R);

8. while T 6= fail do {
9. R := T∪(application of definitionT onR);

10. T := most_compressing_definition(R);

11. }
12. return R;

13. }
TPTP problems proved by EP compressed in 60s timeout in 60s
16512 7807 4890 2917
greatest comp. ratio least comp. ratio median ratio comp. below 50%
0.1844 0.9969 0.8100 135

Table 1: Results of testing the proof compression algorithmon the TPTP library

there5. The interesting data extracted from the testing are summarized in Table 1, and Figure 1 shows
the graph of the compression performance on the 4890 finishedproofs.

4.2 Testing on algebraic problems

One of the aspects of the present work is, to address the problem of human understanding of machine
generated proofs. For this reason, we tested our implementation on two families of proofs, coming from
different areas of current research in algebra.

4.2.1 Loops with abelian inner mappings

We investigated a proof, obtained by Waldmeister, that every uniquely 2-divisible loop with abelian
inner mapping group of exponent 2, is commutative and associative [PS08]6. In both cases, the very first
definition the implementation found, was the right inverse operation (that is, the term 1/x), and the left
inverse followed soon. Other interesting definitions were shortcuts for various compositions of the inner
mappings. Both proofs had final ratio about 0.75.

5http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/
6http://mws.cs.ru.nl/~urban/compression/aim_2div/
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Figure 1: Proof compression ratios on the TPTP library, sorted from the best to the worst
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Figure 2: Proof shortening ratios by the most compressing definition on the TPTP library, sorted from
the best to the worst

4.2.2 Symmetric-by-medial groupoids

We investigated three related proofs, obtained in [Sta08] with Prover97. The importance of the term
xy·zu in the theory of distributive groupoids was recognized immediately in each case. In the latter two
cases, it cuts the proof weight by more than 10%. Sadly, otherdefinitions found by the implementation
seem to have little mathematical meaning. The final ratios were 0.65, 0.72, and 0.75, respectively.

4.2.3 Algebraic problems in TPTP

Many algebraic problems were recently submitted to TPTP [PS08], for instance, problems in the interval
GRP654 to GRP763. Our notes in Section 5.2 are also based on the inspection of the results on these
problems.

7http://mws.cs.ru.nl/~urban/compression/symbymed/
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5 Examples and discussion

5.1 A good and a bad example

To get a taste of the results, we shall look closer at one of themost successful, and one of the most
unsuccessful compressions produced by our implementationon the TPTP problems.

The champion is SWV158, with final compression ratio 0.1844 (from 2277 to 420)8. The first def-
inition is of enormous weight, 86, and its application savesalmost half of the proof weight. This is an
equality, with a variable on one side, and a very nested term on the other side, with many constant leaves
and just one free variable with 6 occurrences. Three more heavy definitions of a similar kind, and 10
lighter ones, finish the compression.

To the other extreme, let’s mention GRP754, with final compression ratio 0.9710 (from 726 to 705)9.
There is a single compressing definition, settingdef1(A, B, C)= (A=mult(B, C)), which is applied
on roughly two thirds of the proof lines.

Generally speaking, heavy definitions are rare. Most definitions save just very few symbols, but are
applied many times in the proof.

5.2 Understanding machine generated proofs

Our experiments show that introducing a new definition that formally reduces weight of the proof, rarely
gives a notion interesting from mathematician’s point of view. Interesting exceptions exist: the imple-
mentation discovered notions like left and right inverse, and in some cases isolated important concepts
that occur frequently in the proof.

Yet, reading the result of the overall greedy algorithm, it is a mess. The problem seems to have
several layers. First of all, only few definitions have a goodmathematical meaning. It is desirable, to
introduce other measures, to judge which definitions are “good” and which are “bad”, perhaps in the
spirit of AGInT [PGS06]. The most compressing criterion is areasonable heuristic, but far from perfect.

Another aspect is that, for human readers, learning new definitions is costly. In fact, looking at the
examples, we realized that many definitions save just one character, even the top ones (their choice by
the algorithm comes from the fact that they can be used many times). Perhaps we shall add a penalty
to each new definition, based on how difficult is it to grasp it,relatively to how useful it is. Too short
definitions, or those that are used only few times, shall be discarded.

One particular example of “bad” definition is the following.For the sake of simplicity, assume the
signature consists of a single binary function symbolf . Then, (almost) any proof can be simplified
introducing the predicateP(x,y,z), defined byf (x,y) = z, saving one symbol per (almost every) line.
Further in this direction, the formulae in the proof are actually very likely to be in the formf (_,_) =
f (_,_), and the corresponding 4-ary predicate symbol shortens theproof by 5/7. Indeed, such definitions
don’t bring any better understanding. The weight function,or the “beauty criterion”, shall avoid this sort
of definitions.

6 Future work and conclusions

The presented system provides a useful means for experimenting with introducing new definitions based
on the frequency and weight of subterms in a proof. The general problem of greatest proof compression
seems to be quite hard, however our heuristic greedy implementation seems to perform reasonably well

8http://mws.cs.ru.nl�/urban/compression/Solutionststp/SWV/SWV158+1/
9http://mws.cs.ru.nl/�urban/compression/Solutionststp/GRP/GRP754-1/
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already in its first version. It seems to be an interesting open problem, to determine the complexity class
of finding the greatest proof compression.

The initial evaluation using the most straightforward weight assignment has allowed us to immedi-
ately see some deficiencies in overly greedy introduction ofnew definitions. The system is sometimes
capable of identifying mathematically interesting concepts that significantly compress the proofs, how-
ever many times the introduced definitions seem to be of little mathematical value, and only complicate
the proof understanding. As already mentioned above, this will likely lead to further research about the
proper offset between the benefits of the proof compression,and the benefits of not having to deal with
too many similar concepts in one’s head. It is obvious that shorter proofs don’t always have to be “nicer”
(whatever it means), but it is obviously also good to have tools that can produce the best result according
to a precisely defined criterion.

The advantage of our system is that a lot of experimenting canbe done using the weight assignments.
For example, we could try:

• to weight equality symbol with zero (this is sufficient to avoid definitions of the formf (x,y) = z),

• to add learning penalties, for instance, by setting the weight of a new symbol by the maximal
weight of symbols in its defining term, plus one,

• try to learn weight assignment patterns by data-mining techniques on a large body of available
structured mathematics, e.g., the formal Mizar library.

The last option even suggests some more interesting experiments in the context of a large formal body of
human-written mathematics. For example, it is feasible (using the MPTP system) to expand the whole
Mizar library (or a suitable part of it) into a basic set-theoretical notation, i.e., using just the membership
and equality predicates, and eliminating all definitions introduced by humans. This will likely result in
a very large, but manageable (e.g. with complete term sharing in the implementation) blow-up of the
library. Then the system can be used to search for interesting definitions automatically, and the results
can be compared with the definitions introduced by human authors.

Another potential use that we are very interested in, is the use of the subsystem as a “concept devel-
oping” component in larger meta-systems (like MaLARea [USPV08]) for theorem proving in structured
and large theories. The experience with ATP in large theories so far shows that blind recursive inclu-
sion of all available definitions and all the theorems known about them significantly decreases the ATP
performance in the large theories. Introducing new concepts, and only selecting some of their important
properties (like commutativity) is also a very common feature of abstract mathematical developments
done by human mathematicians. Both the human evidence, and the evidence from doing ATP in large
theories therefore points to the importance of including good concept creation into the overall process of
mathematical theorem proving and theory development.
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