
Automated Theorem Proving in Loop Theory
J. D. Phillips

Wabash College, Crawfordsville, IN, USA
phillipj@wabash.edu

David Stanovsḱy ∗
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Abstract

In this paper we compare the performance of various automated theorem provers on nearly all of
the theorems in loop theory known to have been obtained with the assistance of automated theorem
provers. Our analysis yields some surprising results, e.g., the theorem prover most often used by loop
theorists doesn’t necessarily yield the best performance.

1 Introduction

Automated reasoning tools have had great impact on loop theory over the past decade, both in finding
proofs and in constructing examples. It is widely believed that these achievements have transformed loop
theory, both as a collection of deep results, as well as the mode of inquiry itself. Automated reasoning
tools are now standard in loop theory.

To date, all automated proofs in loop theory have been obtained by Prover9 [McC05] or its predeces-
sor Otter [McC03], and all models have been generated by SEM [ZZ] , Mace4 [McC05], and recently the
Loops package for GAP [NV] which G. Nagy used to help find the first nonMoufang, finite simple Bol
loop (definitions to follow in section 2), thus solving one of the oldest open problems in loop theory. The
present paper is devoted to automated theorem proving. For model building, it seems that GAP/Loops is
far better than general purpose automated reasoning tools, especially in certain of the more well known
varieties of loops, as it exploits the underlying group theory with its fast algorithms. (Also, most interest-
ing problems about finding finite loops either include properties that cannotbe easily formalized in first
order theory (such as simplicity), or are known to have lower bound at least several hundred elements.)

While [Phi03] is an introduction to automated reasoning for loop theorists, the present paper is in-
tended as its complement: for computer scientists as an introduction to one of the areas in algebra,
namely loop theory, in which automated reasoning tools have had perhaps thegreatest impact. The paper
is self-contained in that we don’t assume the reader is familiar with loop theory.

Our goals are twofold. Firstly, we catalogue the loop theory results to date that have been obtained
with the assistance of automated theorem provers. Secondly, we lay the groundwork for developing
benchmarks for automated theorem provers on genuine research problems from mathematics. Toward
that end, we create a library called QPTP (Quasigroup Problems for Theorem Provers) and test the prob-
lems on selected automated theorem provers. Note that we don’t intend to mirror the TPTP library
[SS98]. Rather, we select a representative subset of problems that mathematicians approached by auto-
mated reasoning in their research.

We now give a brief outline of the paper.
Section 2 contains a brief introduction to loop theory, with an emphasis on formal definitions (as

opposed to motivation, history, applications, etc.). We think this self-contained introduction to loop
theory is the right approach for our intended audience: computer scientists interested in applications of
automated reasoning in mathematics. For a more rigorous introduction to the theory of loops see [Bel67],
[Bru71], or [Pfl90].

∗This work is a part of the research project MSM 0021620839 financedby MŠMT ČR. The second author was partly
supported by the GǍCR grant #201/08/P056.
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Section 3 contains a catalogue of all the theorems from loop theory that we used in our analysis.
Taken together, the papers that contain these theorems—and we give fullcitations for all of them—
constitute a complete list of those results in loop theory that have been achieved to date with the assistance
of automated theorem provers.

Section 4 is devoted to the tests of selected theorem provers on these results.
Section 5 contains final thoughts as well as suggested directions for future work.
Additional information on our library, the problem files and the output files maybe found on the

website

http://www.karlin.mff.cuni.cz/~stanovsk/qptp

2 Basic Loop Theory

We call a set with a single binary operation and with a 2-sided identity element 1 amagma. There are
two natural paths from magmas to groups, as illustrated in Figure 1.
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Figure 1: Two paths from magmas to groups.

One path leads through themonoids—these are the associative magmas, familiar to every computer
scientist. The other path leads through theloops—these are magmas in which every equation

x ·y = z

has a unique solution whenever two of the elementsx, y, z are specified. Since groups are precisely
loops that are also monoids, loops are known colloquially as “nonassociative groups”, and via this di-
agram, they may be thought of as dual to monoids. Many results in loop theorymay by regarded as a
generalization of results about groups.

As with the class of monoids, the class of loops is too large and general to yieldmany of its secrets to
algebraic inquiry that doesn’t focus on narrower subclasses. Here, we simply catalog a few of the most
important of these subclasses (the abundant evidence arguing for theirimportance may be found in many
loop theory sources).

First, a comment about notation: we use a multiplication symbol for the binary operation. We usually
write xy instead ofx · y, and reserve· to have lower priority than juxtaposition among factors to be
multiplied, for instance,y(x ·yz) stands fory · (x · (y ·z)). We use binary operations\,/ of left andright
division to denote the unique solutions of the equationx ·y = z, ie.,y = x\z andx = z/y. Loops can thus
be axiomatized by the following six identities:

x ·1 = x, 1·x = x,

x\(xy) = y, x(x\y) = y, (yx)/x = y, (y/x)x = y.

Loops without the unit element 1 are refered to asquasigroups; in the finite case, they correspond to
Latin squares, via their multiplication table.
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2.1 Weakening associativity

A left Bol loopis a loop satisfying the identity

x(y·xz) = (x ·yx)z; (lBol)

right Bol loopssatisfy the mirror identity, namely

z(xy·x) = (zx·y)x. (rBol)

In the sequel, if we don’t specify right or left, and simply write “Bol loop”,we mean a left Bol loop.
A left Bol loop that is also a right Bol loop is calledMoufang loop. Moufang loops are often axiom-

atized as loops that satisfy any one of the following four equivalent (in loops) identities:

x(y·xz) = (xy·x)z, z(x ·yx) = (zx·y)x, xy·zx= x(yz·x), xy·zx= (x ·yz)x.

Generalizing from the features common to both the Bol and the Moufang identities, an identityϕ = ψ
is said to be ofBol-Moufang typeif: (i) the only operation appearing inϕ = ψ is multiplication, (ii) the
number of distinct variables appearing inϕ , ψ is 3, (iii) the number of variables appearing inϕ, ψ is
4, (iv) the order in which the variables appear inϕ coincides with the order in which they appear inψ .
Such identities can be regarded as “weak associativity”. For instance, inaddition to the Bol and Moufang
identities, examples of identities of Bol-Moufang type include theextra law

x(y·zx) = (xy·z)x, (extra)

and theC-law

x(y·yz) = (xy·y)z. (C)

There are many others, as we shall see. Some varieties of Bol-Moufang type are presented in Figure 2
(for a complete picture, see [PV05]).
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Figure 2: Some varieties of weakly associative loops.

For loops in which each element has a 2-sided inverse, we usex−1 to denote this 2-sided inverse of
x. In other words,

x−1x = xx−1 = 1.

In Bol loops (hence, also in Moufang loops), all elements have 2-sided inverses. In Moufang loops,
inverses are especially well behaved; they satisfy theanti-automorphic inverse property

(xy)−1 = y−1x−1, (AAIP)
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a familiar law from the theory of groups. Bol loops don’t necessarily satisfy the AAIP; in fact, the ones
that do (left or right), are Moufang. Dual to the AAIP is theautomorphic inverse property

(xy)−1 = x−1y−1. (AIP)

Not every Bol loop satisfies the AIP, but those that do are calledBruck loops. Bruck loops are thus dual
to Moufang loops, with respect to these two inverse properties, in the classof Bol loops.
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Figure 3: The role of AIP.

A loop is power associativeif each singleton generates an associative subloop. Bol loops are power
associative. Moufang loops satisfy theflexiblelaw

x ·yx= xy·x. (flex)

Flexible Bol loops, either left or right, are Moufang. Left Bol loops satisfy both theleft inverse property

x−1 ·xy= y (LIP)

and theleft alternative property

x ·xy= xx·y. (LAP)

The right inverse property(RIP) and theright alternative property(RAP) are defined in the obvious
ways. Theinverse property(IP) thus means both the RIP and the LIP, and a loop is calledalternativeif
it is both RAP and LAP. Moufang loops and C-loops are alternative and have the inverse property. The
weak inverse propertyis given by

(yx)\1 = x\(y\1). (WIP)

2.2 Translations

In a loopQ, the left and right translations byx∈ Q are defined by

L(x) : y 7→ xy, R(y) : x 7→ xy.

Themultiplication group, Mlt(Q), of a loopQ is the subgroup of the group of all bijections onQ gener-
ated by right and left translations:

Mlt(Q) = 〈R(x),L(x) : x∈ Q〉.

The inner mapping groupis the subgroup Mlt1(Q) fixing the unit element 1. Mlt1(Q) is generated by
the following three families of mappings, thus rendering the definition equational, and fit for automated
theorem provers:

T(x) = L(x)−1R(x),
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R(x,y) = R(xy)−1R(y)R(x),

L(x,y) = L(yx)−1L(y)L(x).

If Q is a group, then Mlt1(Q) is the group of inner automorphisms ofQ. In general, though, Mlt1(Q)
need not consist of automorphisms. But in those cases in which it does, theloop is called anA-loop.
Groups and commutative Moufang loops are examples of A-loops.

A subloop invariant to the action of Mlt1(Q) (or, equivalently, closed underT(x), R(x,y), L(x,y))
is callednormal. Normal subloops are kernels of homomorphisms, and are thus analogousto normal
subgroups in group theory. (In loops, there is no counterpart of the coset definition of a normal subgroup.)

A loop is calledleft conjugacy closedif the conjugate of each left translation by a left translation is
again a left translation. This can be expressed equationally as

z·yx= ((zy)/z) ·zx. (LCC)

The definition ofright conjugacy closedis now obvious, and is given equationally as

xy·z= xz· (z\(yz). (RCC)

A conjugacy closed loop(CC-loop) is a loop that is both LCC and RCC.
We end this section by defining two classes of loops that are closely related toboth Moufang loops

and A-loops.RIF loopsare inverse property loops that satisfy

xy· (z·xy) = (x ·yz)x ·y. (RIF)

ARIF loopsare flexible loops that satisfy

zx· (yx·y) = z(xy·x) ·y. (ARIF)

2.3 Important subsets and subloops

Thecommutant, C(Q), of a loopQ is the set of those elements which commute with each element in the
loop. That is,

C(Q) = {c : ∀x∈ Q,cx= xc}.

The commutant of a loop need not be a subloop. Even in those cases when the commutant is a subloop
(for instance, in Moufang loops), it need not be normal (of course, the commutant in a group is normal,
and in group theory it is called the center, as we shall see).

The left nucleusof a loopQ is the subloop given by

Nλ (Q) = {a : a·xy= ax·y,∀x,y∈ Q}.

The middle nucleus and the right nucleus,Nµ(Q) andNρ(Q) respectively, are defined analogously; both
are subloops. Thenucleus, then, is the subloop given by

N(Q) = Nλ (Q)∩Nµ(Q)∩Nρ(Q).

Thecenteris the normal subloop given by

Z(Q) = N(Q)∩C(Q),

thus coinciding with the language from groups.C(Q) need not have any relationship withN(Q); that is,
C(Q)∩N(Q) = Z(Q) can be trivial. The situation in Bol loops is strikingly different. In a (left) Bolloop
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Q, Nλ (Q) = Nµ(Q), and this subloop need not have any relationship withNρ(Q), i.e., the intersection
can be trivial. Thus, in a Moufang loop, all nuclei coincide, andN(Q) is a normal subloop. Moreover, if
Q is Bruck, thenNλ (Q) ≤C(Q).

Thecommutator, [x,y] of x andy, in a loopQ is given by

xy= yx· [x,y].

Theassociator, [x,y,z] of x, y, andz, is given by

xy·z= (x ·yz) · [x,y,z].

The point is that the lack of associativity in loops provides a structural richness, part of which can
be captured equationally, thus rendering loops excellent algebraic objects to investigate with automated
theorem provers.

3 The Theorems

The present section catalogues all papers in loop theory to date whose results were obtained with the
assistance of an automated theorem prover. All proofs were obtained byProver9 or Otter. The proofs
were always translated to human language and usually simplified (none of thepapers presents a raw
output from a prover), hence none of the results relies on soundnessof Otter/Prover9. As far as we know,
no automatically generated proof was found to be incorrect during translation.

In some cases, the main results weren’t obtained directly with automated theorem provers. Instead,
provers were used to prove key technical lemmas, or even just special cases, which in turn helped mathe-
maticians find proofs of the main results. This is explained in more detail below, see, e.g., our description
of [AKP06].

We list the papers in chronological order. From each paper, we choose up to five theorems for the
QPTP library.

[Kun96a]. This is an important paper, because it was the first to use automated theoremprovers in loop
theory and, in fact, one of the first noneasy results in mathematics obtained automatically. The theorem
says that a quasigroup satisfying any one of the four Moufang laws is, infact, a loop, i.e., has a unit
element. We analyze this result for each of the four Moufang identites. Notethat the proof for the third
and the fourth Moufang identities can by done relatively easily by hand, while the proof for the first and
the second one was only discovered by Otter.

[Kun96b]. This is a sequel to the previous paper. The main result is the determination of which of the
Bol-Moufang identities, implies, in a quasigroup, the existence of a unit element. We analyze three of
these identities.

[Kun00]. There are many results in this paper proved by automated theorem provers. We analyze the
following two: (1) If G is conjugacy closed, witha,b∈ G andab= 1, thenba is in the nucleus ofG. (2)
If G is conjugacy closed, the commutant ofG is contained in the nucleus.

[KKP02a]. The main result in this paper is that inverse property A-loops are Moufang; we analyze
this result. This was one of the major long-standing open problems in loop theory, and perhaps the most
important automated theorem proving success in loop theory. And it marks thepoint at which the number
of loop theorists using automated theorem provers in their work jumped from one to three.
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[KKP02b]. There are many results in this paper proved by automated theorem provers; we include the
following four: (1) 2-divisible ARIF loops are Moufang, (2) flexible C-loops are ARIF, (3) Moufang
loops are RIF, (4) RIF loops are ARIF.

[KK04]. There are many results in this paper in which automated theorem provers helped, e.g., finite
nonassociative extra loops have nontrivial centers. We analyze the following result: In an extra loop,z
commutes with[x,y, t] if and only if t commutes with[x,y,z] if and only if [x,y,z][x,y, t] = [x,y,zt].

[KKP04]. There are many results in this paper proved by automated theorem provers. We include the
following one: in CC-loops, associators are in the center of the nucleus.

[KP04]. The main result in this paper is that commutants of Bol loops of odd order are,in fact,
subloops. Obviously, this is not a first order statement, however its proofrelies on several lemmas
proved by a theorem prover. We analyze the following one: IfQ is a Bol loop, and ifa,b∈C(Q), then
so too area2, b−1 anda2b.

[KP05]. The main result in this paper is to give a basis for the variety of rectangular loops which
consists of 7 identities, thus improving Krapež’s pre-existing basis of 12 axioms [Kra00]. Arectangular
loop is a direct product of a loop and a rectangular band. Arectangular bandis a semigroup which is
a direct product of a left zero semigroup and right zero semigroup. Aleft (right, resp.)zero semigroup
is a semigroup satisfyingx · y = x (x · y = y, resp.). We analyze part of this result by showing that the
identities

x\(xx) = x, (xx)/x = x, x · (x\y) = x\(xy), (x/y) ·y = (xy)/y, x\(x(y\y)) = ((x/x)y)/y,

(x\y)\((x\y) · (zu)) = (x\(xz)) ·u, ((xy) · (z/u))/(z/u) = x · ((yu)/u)

imply each of the following identities (in algebras with three binary operations·,\, and/):

(x\y)\((x\y)z) = x\(xz), (x/y)\((x/y)z) = x\(xz), x(y\(yz)) = xz, ((xy)/y)z= xz,

(x ·yz)/(yz) = (xz)/z, (x(y\z))/(y\z) = (xz)/z, (x(y/z))/(y/z) = (xz)/z.

[PV05]. The main result of this paper is the systematic classification of all varieties of loops axioma-
tized by a single identity of Bol-Moufang type, achieved to a large extent automatically. We include a
typical result from [PV05]: in loops, the following two identities are equivalent (and thus both axiomatize
the so-called variety of LC-loops):x(y·yz) = (x ·yy)zandxx·yz= (x ·xy)z.

[AKP06]. One of the main results in this paper is that in a Bruck loop, elements of order a power
of two commute with elements of odd order. Obviously, automated theorem provers can’t prove this
result directly, as it is a result about infinitely many positive integers. On theother hand, one may use
automated theorem provers to generate proofs aboutspecificintegers, and then use these proofs to help
construct the proof of the general result. The three specific cases weanalyze here: in a (left) Bruck loop,
elements of order 22 commute with elements of oder 3, elements of order 22 commute with elements of
order 32, and elements of order 24 commute with elements of order 32. The three different cases give rise
to clear performance differences between the automated theorem provers, as we shall see. We note that
this property was used in [AKP06] in a proof of a deep decomposition theorem for Bruck loops. That is,
this also was an important success for automated theorem provers in loop theory.
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[KK06]. There are many results in this paper proved by automated theorem provers. We analyze the
following results: for eachc in a power associative conjugacy closed loop,c3 is WIP (i.e.,c3(xc)−1 = x−1

for everyx), c6 is extra (i.e.,c6(x·yc6) = (c6x·y)c6 for everyx,y) andc12 is in the nucleus. (Initially, the
last property wasn’t obtained directly by Prover9. Interestingly, otherprovers can do it.)

[Phi06]. The main result in this paper is that the variety of power associative, WIP conjugacy closed
loops is axiomatized, in loops, by the identities(xy·x) ·xz= x · ((yx·x)z) andzx· (x ·yx) = (z(x ·xy)) ·x.
We analyze this result.

[PV06]. There are many results in this paper proved by automated theorem provers. We analyze the
following two: (1) in C-loops, the nucleus is normal, and (2) in a commutative C-loop, if a has order 4
andb has order 9, thena ·bx= ab· x (this is one of the cases that led to a proof of the decomposition
theorem for commutative torsion C-loops).

[KKP07]. An F-quasigroupis a quasigroup that satisfies the following two equations:x · yz= xy·
(x\x)z andzy· x = z(x/x) · yx. The main result of the paper is that everyF-quasigroup is isotopic to
a Moufang loop. This was a long-standing open problem—it was the first open problem listed in Be-
lousov’s 1967 book [Bel67]. We analyze this result.

[KPV07]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: a C-loop of exponent four with central squares is flexible.

[KPV08]. There are many results in this paper proved by automated theorem provers. We include the
following one: in a Bol loop, ifc is a commutant element, thenc2 is in the left nucleus if and only ifc is
in the right nucleus.

[PV08]. The purpose of this paper is to find group-like axiomatizations for the varieties of loops of
Bol-Moufang type. We include the following typical result: a magma with 2-sidedinverses satisfying
the C-law is a loop.

[CDKxx]. A Buchsteiner loopis a loop that satisfies the following identity:x\(xy· z) = (y · zx)/x.
These loops are closely related to conjugacy closed loops, and are closely related to loops of so-called
Bol-Moufang type [DJxx]. The result from [CDKxx] that we analyze here is that in Buchsteiner loops,
fourth powers are nuclear (i.e.,x4 ∈ N(Q) for everyx∈ Q).

[KKPxx]. The main result in this paper is that in a strongly right alternative ring (with a unit element),
the set of units is a Bol loop under ring multiplication, and the set of quasiregular elements is a Bol
loop under “circle” multiplication. Aright alternative ringis a set,R, with two binary operations,+
and ·, such that under+, R is an abelian group, under·, R is a right alternative magma, and such that
· distributes over+. A right alternative ring isstrongly right alternativeif · is a right Bol loop. A
unit in an alternative ring is an element that has a two-sided inverse. The circle operation is given by
x◦ y = x+ y+ xy. And finally, an element isquasiregularif it has a two-sided inverse under circle,
e.g. x◦ x′ = x′ ◦ x = 0. We analyze the following technical result: Ifa has a 2-sided inverse, then
R(a−1) = R(a)−1 andL(a)−1 = R(a)L(a−1)R(a−1).
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[KVxx]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: in a commutative RIF loop, all squares are Moufang elements and all cubes are C-
elements. An elementa is aMoufang elementif for all x andy, a(xy·a) = ax·ya. And it is aC-element
if for all x andy, x(a·ay) = ((xa·a)y.

A remark on TPTP. The intersection of the TPTP and QPTP libraries is empty (by now). The only
loop theory problem in TPTP is the equivalence of the four Moufang identities (GRP200 – GRP206).
This result is included in the book [MP96], which demonstrates the power ofOtter in selected areas of
mathematics (the other loop theory problems in the book are several single axioms).

4 Benchmark tests

In the present section, we analyze the problems in the QPTP library by running them on selected auto-
mated theorem provers. Based on the results of the CASC competition in recent years [SS06], we chose
the following five provers: E [Sch02], Prover9 [McC05], Spass [S], Vampire [RV02] and Waldmeister
[Hil03].

We ran each prover on each file twice: with 3600 and 86400 seconds time limit (1 hour and 1 day).
The problems from the library were translated to the TPTP syntax, and the input files for the provers
were generated by the tptp2X tool. We ran the provers with their default settings, and we didn’t tune any
of the input files for a particular prover, thus obtaining conditions similar to theCASC competition.

Our results are presented in Figure 4. The names of the problems start with the code of the paper in
the bibliography followed by the code of the selected result. In the case when there is no single obvious
way to formalize the statement in first order theory, alternative axiomatizationsare given. (For details,
see the QPTP website.) Running time (i.e., the time it took to find a proof) is displayedin rounded
seconds; a blank space means timeout, cross means that the problem is not equational and thus ineligible
for Waldmeister. Running times over 360s (the time limit of the last CASC) are displayed in bold,
running times over 1 hour in italic.

The total number of problems in QPTP is 80, of which 68 are equational. 71 problems were solved
by at least one prover, 38 by all of them. The overall performance of the provers is summarized in Figure
5.

In our study, Waldmeister performed better than the other four provers onequational problems. The
performances of E, Prover9 and Vampire seem to be similar (incomparable inthe strict sense), although
E can be quite fast on some difficult problems. Spass seems to be well behindthe other provers.

In order to minimize bias in our study, we ignored basic parameter settings. Whilesome provers
work fully automatically (e.g., Vampire), other actually haveno default setting (e.g., Waldmeister). In
our case, “default” is defined by the output of tptp2X. In particular, this means the set(auto) mode for
Prover9 and some explicit term ordering for Waldmeister.

In fact, term ordering is perhaps the most influential parameter. Waldmeister’s default ordering is
KBO with weights 1, while Prover9’s default is LPO. If Prover9 is manually reset to KBO, it proves
six additional files, but fails for two files that were proved with LPO; this way, Prover9’s performance
becomes closer to Waldmeister’s. Another influential parameter is symbol ordering. Prover9 chooses a
relatively smart one (inverse> left/right division> multiplication), while Waldmeister gets from tptp2X
an alphabetical one (inverse> left division> multiplication> right division). When reset to the smarter
choice, it’s on average much faster, although it fails to prove any additional problems. (Note that perhaps
the smartest choice is division> inverse> multiplication.) Indeed, parameter setting deserves much
greater attention, but this is beyond the scope of the present study.
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file/prover E 0.999-006 Prover9 1207 Spass 3.0 Vampire 8.0 Waldmeister 806
AKP06 1 0 11 459 6 0
AKP06 2 16 1110 74
AKP06 3
CDKxx 1a
CDKxx 1b
CDKxx 1c
KK04 1 29919
KK04 2 29387
KK04 3 10322
KK06 1a 57 507 59
KK06 1b 922 592
KK06 1c 46277 570
KK06 1d 53534 560
KK06 1e 46687 554
KKP02a1 3023 26735 x
KKP02a1alt1 848 36852 553 205
KKP02a1alt2 848 35016 500 208
KKP02a1alt3 1001 24832 550 213
KKP02a1alt4 1018 24242 584 202
KKP02b 1 4 120 99 97 x
KKP02b 1alt1 9 205 488 8
KKP02b 1alt2 3 147 413 484 8
KKP02b 1alt3 9 208 56918 491 9
KKP02b 1alt4 9 190 53195 485 9
KKP02b 2 0 0 475 10 1
KKP02b 3 0 0 0 0 2
KKP02b 4a 31 1462 138 4
KKP02b 4b 0 0 0 0 0
KKP04 1a
KKP04 1b
KKP04 1c
KKP04 2 2856 580
KKP07 1 2265
KKPxx 1 2 0 3 8 0
KKPxx 2a
KKPxx 2b
KP04 1 0 0 0 0 0
KP04 2 0 0 0 0 0
KP04 3 7 73 72463 270 2
KP05 1a 0 0 0 0 0
KP05 1b 0 0 0 0 0
KP05 1c 0 0 0 0 0
KP05 1d 0 0 0 0 0
KPV07 1 0 0 0 0 0
KPV08 1 0 0 0 0 0
KPV08 2 0 0 0 0 0
Kun00 1a 352 7088 12482 705
Kun00 1b 353 7536 15412 736
Kun00 1c 353 3264 19762 706
Kun00 1alt1 38587 690
Kun00 2 0 0 0 0 0
Kun96a1 56 75 258 x
Kun96a1alt1 128 112 218 3
Kun96a1alt2 9 68 238 3
Kun96a2 57 1256 285 x
Kun96a2alt1 8 398 284 3
Kun96a2alt2 51 1282 164 3
Kun96a3 0 0 0 0 x
Kun96a4 0 0 0 0 x
Kun96b1 0 0 1 0 x
Kun96b2 0 1 9 0 x
Kun96b3 0 19 161 5 x
Kun96b3alt1 0 7 125 28 0
Kun96b3alt2 0 5 148 43 0
KVxx 1 357 1692 49
KVxx 2 1705 3172 95
Phi061a 72 29 14 21
Phi061b 46 2 8632 6 17
Phi062a 0 118 41 1 0
Phi062b 0 1 0 473 0
Phi062c 0 0 0 0 x
Phi063 0 41 857 9 0
PV05 1 0 1 19 6 0
PV05 2 9 5 1 0
PV06 1a 0 0 0 0 0
PV06 1b 0 0 0 0 0
PV06 1c 0 0 0 0 0
PV06 2 34 17 4 0
PV08 1a 0 0 1 0 x
PV08 1b 0 0 0 10 x

Figure 4: Detailed results.

prover E 0.999 Prover9 1207 Spass 3.0 Vampire 8.0 Waldmeister 806
proofs in 360s 53 46 31 44 46
proofs in 3600s 59 53 35 57 56
proofs in 86400s 62 61 39 60 59
timeouts 18 19 41 20 9

Figure 5: Summary.
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Finally, the reader may wonder about those theorems on which all proverswere unsuccessful (these
are indicated by blank entries in Figure 4). After all, these are theorems thatwere first proved with the
assistance of an automated theorem prover (which was the sole criterion for inclusion in our study). Why
were none of the provers able to find proofs in our study? Firstly, we didn’t tune the input files. And,
perhaps more importantly, we didn’t use any advanced techniques in our study (e.g., Prover9’s powerful
hints strategy), which is often the way to obtain a new mathematical result.

5 Conclusions

While we hope our results are interesting to automated reasoning researchers (especially since they in-
volve problems from an active area of mathematical research), they may not besurprisingto these same
researchers, informed as these researchers are by the CASC resultsover the past ten years. Our re-
sults, though, might surprise loop theorists, who are less familiar with most of the provers in our study.
But again, we stress that some of these loop theory results were originally obtained using advanced Ot-
ter/Prover9 techniques such as the hints strategy or sketches [Ver01].Could these be implemented in
other provers?

Since the various automated theorem provers have different strengths and weaknesses, loop theorists
could profit by using a suite of theorem provers in their investigations. Forinstance, the result in [KKP07]
was originally derived as a series of results, a number of steps eventuallyleading to the main theorem.
In our study, Waldmeister proved it from scratch in 40 minutes. To state the obvious: some theorems
will be missed if one uses only one automated theorem prover. On the other hand, the actual proofs
themselves are, of course, of great importance, and the various automated theorem provers differ greatly
in this regard. Some provers don’t even give the proof, they simply indicate that they’ve found one,
while others, notably Prover9, produce relatively readable proofs, and even include tools to simplify
them further.

There are clearly many opportunities for future work. We intend to keep our catalogue of loop theory
results as up-to-date as possible. We eventually hope to test our files on more automated theorem provers;
in particular, on some instantiation based ones, to check the hypothesis that those are weak on algebraic
problems (that always require a lot of computation with equality). Another obvious direction for future
work is to analyze results in other domains, for instance quasigroups and other nonassociative algebras.

It would be immensely useful to compare the various provers’ performanceby using input files and
techniques designed to obtain the best performance for each particular prover. In particular, and for
example, what are the best first order descriptions of properties like “existence of a unit” (the formula
∃x∀y(xy= y & yx= x), or the identities(x/x)y = y,y(x/x) = y, or the identities(x\x)y = y,y(x\x) = y),
or of the Moufang property (in what ways might the fact that the four defining identities of this variety
are equivalent impact “best performance” strategies amongst the various provers?).

A possible new direction of exploiting automated reasoning to prove new theorems about loops
could be, first, to create a knowledge base of definitions and theorems in loop theory (those that can be
expressed within the first order theory of loops) and then to apply tools for reasoning in large theories.
Particularly, such a knowledge base would substantially differ from otherrecent projects such as the
MPTP [Urb04]. The QPTP library can be viewed as the zeroth step towards such a library.

Acknowledgement.We thank Michael Kinyon and Bob Veroff for carefully reading, and then comment-
ing on, an earlier version of this paper.
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nal of Algebra and its Applications, 6 (1), (2007), 1–20.
[KPV08] M.K. Kinyon, J.D. Phillips, and P. Vojtěchovsḱy, When is the commutant of a Bol loop a
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