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Abstract. Differential modes provide examples of modes that
do not embed as subreducts into semimodules over commutative
semirings. The current paper studies differential modes, so-called
Szendrei differential modes, which actually do embed into semi-
modules. These algebras form a variety. The main result states
that the lattice of non-trivial subvarieties is dually isomorphic to
the (non-modular) lattice of congruences of the free commutative
monoid on two generators. Consequently, all varieties of Szendrei
differential modes are finitely based.

1. Introduction

As a consequence of results of Ježek-Kepka [4], each idempotent and
entropic groupoid, i.e. each groupoid mode as defined e.g. in [11],
embeds into a semimodule over a commutative semiring. As shown
by M. Stronkowski [13, 14] and D. Stanovský [12], this is no longer
true for modes with operations of larger arity. In [5], A. Kravchenko,
A. Pilitowska, A. Romanowska and D. Stanovský presented a broad
class of modes that are not embeddable into such semimodules. These
algebras generalize an example of Stanovský [12], and belong to the
class D3 of so-called (ternary) differential modes. Recall that a differ-
ential mode is an idempotent algebra (A, f) with one ternary operation
f(x, y, z) =: (xyz) satisfying the identities

(1.1) ((xy1y2)z1z2) = ((xz1z2)y1y2) (left normal law)
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and

(1.2) (x(y1z1z2)(y2t1t2)) = (xy1y2) (left reductive law).

These identities imply entropicity. Consequently, differential modes are
indeed modes, i.e. they are idempotent and entropic. Note one further
identity

(1.3) (x(xy1z1)(xy2z2)) = x

satisfied by differential modes.
The paper [5] explains the relationship between differential modes

and differential groupoids. It contains some structural investigations
and analysis of the lattice of varieties. It also provides a survey of
some other classes of modes that are known to be embeddable into
semimodules over a commutative semiring (see also [7]), and shows
that the class of differential modes splits into two subclasses: the va-
riety of those that do embed, and the class of those that do not. The
former class is characterized as the variety Sz(D3) of differential modes
satisfying two (equivalent) Szendrei identities :

(1.4) ((x11X12x13)X21x31) = ((x11X21x13)X12x31),

(1.5) ((x11x12X13)x21X31) = ((x11x12X31)x21X13).

The present paper studies the variety of Szendrei differential modes,
differential modes that are embeddable into semimodules. The main
goal is to describe the lattice of their varieties. We start with an alter-
native characterization of free Szendrei differential modes in Section 2,
and then use it in Section 3 to show that subvarieties of Sz(D3) can
be based by identities in two variables. The main result of Section 3 is
that non-trivial subvarieties of the variety Sz(D3) of Szendrei differen-
tial modes form a lattice dually isomorphic to the lattice of congruences
of the square of the additive monoid of natural numbers. As a corollary,
we show that all subvarieties are finitely based, and that the lattice is
not modular. The final sections contain a more detailed analysis of
the varieties relatively based by one binary identity, and a discussion
concerning the size of relative bases and of the covers of the unique
atom of the lattice of subvarieties of Sz(D3). This unique atom is the
variety of left-zero algebras defined by the identity (xyz) = x.

The present paper is a continuation of [5], and we refer readers to
that paper for all unexplained details. The notation and terminology
follows that paper. Note also that, as in [5], the results of this paper
may be generalized to the case of n-ary differential modes in an obvious
way. For further information concerning the theory of modes, we refer
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readers to the two monographs [9] and [11]; for universal algebra, one
may also consult standard books on the subject.

2. Free Szendrei differential modes revisited

Free Szendrei modes were characterized by Theorem 4.4 of [5]. Here
we will provide an alternative characterization, better suited to the
needs of the current paper. First let us recall a useful notation: the
expression xRk

yz is an abbreviation for (. . . ((xyz)yz) . . . yz), where yz
is repeated k times, and Rij, with natural numbers i, j, refers to Rxixj

.
By Lemma 2.5 of [5], the Szendrei identities are equivalent in the

variety D3 of ternary differential modes to the unique identity

(2.1) (xyz) = ((xyx)xz).

Then, by the left normal law and (2.1), the following equation is satis-
fied in all Szendrei modes for each natural number k:

(2.2) xRk
yz = xRk

yxR
k
xz.

By Theorem 4.2 of [5], each word w = w(x1, . . . , xn) with the leftmost
variable x1 is equivalent in D3 to the standard word

(2.3) x1R
k12
12 . . . Rk1n

1n Rk21
21 . . . Rk2n

2n . . . Rkn1
n1 . . . Rknn

nn ,

where the indices ij run over the set n×n and are ordered lexicograph-
ically. Now using (2.2) and the left normal law, we can reduce (2.3)
to

(2.4) x1R
l12
12 Rl21

21 Rl13
13 Rl31

31 . . . Rl1n
1n Rln1

n1 .

Note that some of the lij may be equal to 0. Now recall that the orbit
of an element a in a differential mode M is the smallest set containing
a and closed under all the mappings Rbc, for b, c ∈ M . The alternative
description of free Szendrei differential modes follows immediately.

Theorem 2.1. Let w = w(x1, . . . , xn) be an element of the free Sz(D3)-
algebra FSz(X) over a set X, where the set {x1, . . . , xn} is precisely the
set of variables in w, with xi as its leftmost variable. Then w may be
expressed uniquely in the standard form

(2.5) xiR
li1
i1 Rl1i

1i . . . Rlin
in Rlni

ni

for some lij, lji ∈ N with lii = 0. The elements (2.5) form the orbit of
xi, and a left-zero subalgebra. The algebra FSz(X) is the LZ ◦LZ-sum
of the orbits of its generators in X.
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Recall that the orbits of generators define a (unique) congruence of
FSz(X) with left-zero classes and left-zero quotient. The LZ ◦LZ-sum
construction allows one to reconstruct the whole algebra from these
classes and the quotient.

Each orbit of a free generator also carries the structure of a commu-
tative monoid. The monoid operation ◦ in the orbit of xi is defined
by

xiR
ki1
i1 Rk1i

1i . . . Rkin
in Rkni

ni ◦ xiR
li1
i1 Rl1i

1i . . . Rlin
in Rlni

ni :=(2.6)

xiR
ki1+li1
i1 Rk1i+l1i

1i . . . Rkin+lin
in Rkni+lni

ni ,

while the monoid identity is the generator xi. We denote by M(xi) the
monoid defined in this way on the orbit of xi.

Corollary 2.2. Let FSz(n) be the free Szendrei differential mode on
the set X = {x1, . . . , xn} of n free generators. Then the mapping

ι : M(xi) → (N× N)n−1;

xiR
li1
i1 Rl1i

1i . . . Rlin
in Rlni

ni 7→ (li1, l1i, . . . , li(i−1), l(i−1)i, li(i+1), l(i+1)i, . . . , lin, lni)

is an isomorphism of the monoids M(xi) and ((N× N)n−1, +, 0).

In particular, the orbit of x in the free Szendrei differential mode on
two generators x and y consists of elements of the form xRi

xyR
j
yx with

(i, j) as the image under ι. Each of the monoids M(x) and M(y) is
isomorphic to the monoid N× N.

3. The lattice of varieties

The aim of this section is to describe the lattice of varieties of Szen-
drei differential modes. First recall that the lattice has a unique atom,
the variety of left-zero algebras. This follows immediately from the fact
that each differential mode decomposes as an LZ ◦ LZ-sum. In par-
ticular, both sides of an identity satisfied by a non-trivial differential
mode must have the same leftmost variable.

Next we show that to describe the lattice of varieties of Szendrei
differential modes, we only need the free algebra on two free generators.

Proposition 3.1. Each subvariety of the variety Sz(D3) of Szendrei
differential modes possesses a relative basis consisting of identities in
two variables.

Proof. Let s = t be an identity in variables x1, . . . , xn, where x1 is the
leftmost variable in both s and t. By Theorem 2.1,

s = x1R
k12
12 Rk21

21 . . . Rk1n
1n Rkn1

n1
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and

t = x1R
l12
12 Rl21

21 . . . Rl1n
1n Rln1

n1 .

We show that the identity s = t is equivalent to the following set E
of identities in two variables:

(e2) x1R
k12
12 Rk21

21 = x1R
l12
12 Rl21

21 ,

(e3) x1R
k13
13 Rk31

31 = x1R
l13
13 Rl31

31 ,

· · ·

(en) x1R
k1n
1n Rkn1

n1 = x1R
l1n
1n Rln1

n1 .

(Obviously, we can replace all the variables xi in E, for i = 2, . . . , n,
by the same variable, say y.)

First note that by substituting x1 for xj in s = t, for each j 6= i, one
obtains the identity (ei) . On the other hand, an easy induction shows
that the set E implies the identity s = t. Indeed, if the identities (e2)
- (ei) imply the identity

(Ei) x1R
k12
12 Rk21

21 . . . Rk1i
1i Rki1

i1 = x1R
l12
12 Rl21

21 . . . Rl1i
1i Rli1

i1 ,

then by replacing x1 in (Ei) by the two sides of the identity (ei+1), and
then using the left normal law, one readily obtains (Ei+1). �

Now it is easy to see that the proper fully invariant congruences of
the free Szendrei mode FSz(2) are determined by their restriction to
the orbit of any free generator. Note that the monoids of any two
free generators in each free Szendrei differential mode are isomorphic.
Then the invariance under substitution corresponds to the preservation
of the monoid operation on each of the orbits. This remark justifies
the following proposition.

Proposition 3.2. The following conditions hold for the free Szendrei
differential mode FSz(2) on two generators:

(a) The restriction of a fully invariant congruence of FSz(2) to the
orbit of a free generator is a congruence of its monoid.

(b) A proper congruence of the monoid of a free generator extends
uniquely to a fully invariant congruence of FSz(2).

Note that the improper congruence of the monoid of a generator
extends to two congruences of FSz(2): to its largest congruence, and
to the congruence whose blocks are precisely the two orbits. In terms
of the corresponding varieties, the former corresponds to the trivial
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variety defined by x = y, and the latter to the variety of left-zero
algebras defined by (xyx) = (xxy) = x.

Corollary 3.3. Proper fully invariant congruences of FSz(2) are uniquely
determined by the congruences of the monoid of any free generator.

As a corollary to Propositions 3.1 and 3.2, and Corollary 2.2, one
obtains the following theorem.

Theorem 3.4. The lattice of non-trivial subvarieties of the variety
Sz(D3) of Szendrei differential modes is dually isomorphic to the lattice
Cg(N× N) of congruences of the monoid (N× N, +, 0).

Theorem 3.4 has several interesting consequences.

Corollary 3.5. Each variety of Szendrei differential modes has a finite
basis for its identities.

Proof. By Rédei’s Theorem (see e.g. [1]), each finitely generated com-
mutative semigroup is finitely presented. In particular, this means that
every congruence of a free commutative monoid on two generators is
generated by a finite number of pairs of natural numbers. They corre-
spond to the finite number of equations in two variables. �

It is known that the lattice of varieties of differential groupoids is
distributive. This is no longer true in the case of (ternary) differential
modes.

Corollary 3.6. The lattice of varieties of Szendrei differential modes
is not modular.

Proof. The congruence lattice of (N × N, +, 0) contains the following
lattice isomorphic to the “pentagon” lattice N5:

rr rJ
JJ







��r
@@ r

cg(((0, 0), (1, 0)), ((0, 0), (0, 1)))

cg(((0, 0), (1, 1)))
cg(((0, 0), (1, 0)))
cg(((1, 1), (2, 1)))

ε

In the picture, the symbol cg((j, k), (m,n)) denotes the principal con-
gruence generated by the pairs (j, k) and (m, n), while ε denotes the
least congruence of N× N corresponding to the equality relation. �

Congruences of free commutative monoids have been extensively
studied, see e.g. [2, Ch. 9]. They are completely determined by means
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of certain abelian groups, the so-called Rédei groups, and certain map-
pings from these groups into ideals of the monoids. However, in the
case considered in this paper, when we deal only with the monoid
(N × N, +, 0), there is a more direct description of the congruences
that we present in the next section. Our description provides an easy
comparison of varieties, and an easy way of relating some of them to
corresponding varieties of differential groupoids.

4. Varieties defined by a single binary identity

In this section we will describe the poset of subvarieties of Sz(D3)
relatively based by one identity in two variables.

Note that by [5, §5], each of the derived binary operations of differ-
ential modes is in fact a differential groupoid operation. (In particular,
a derived operation in two variables x and y has the form xRi

xyR
j
yx.)

The defining identities of the subvarieties of D2, when applied to the
derived operation x ◦ y := xRi

xyR
j
yx, also define subvarieties of the va-

riety D3, and provide a sublattice of the lattice L(D3) of varieties of
differential modes.

Recall (see [8]) that each proper non-trivial subvariety of the variety
D2 of differential groupoids is relatively based by a unique identity of
the form xyk = xyk+l for some natural number k and positive integer
l. Denote such a variety by Dk,k+l

2 . These subvarieties form the lattice
L(D2)

− ∼= N×Z+, the first factor with the usual linear ordering and the
second ordered by the divisibility relation. Note also that the lattice of
non-trivial subvarieties is dually isomorphic to the congruence lattice
Cg(N) of the monoid (N, +, 0) of natural numbers. (This latter is
described e.g. in [3, Ch. I.7].)

By Theorem 3.4, to describe varieties relatively based by a unique bi-
nary identity, it suffices to consider principal congruences of the monoid
N×N, and then to deduce the relation between the corresponding sub-
varieties.

For (m, n), (m′, n′) ∈ N × N, let cg((m, n), (m′, n′)) be the principal
congruence generated by the pair ((m,n), (m′, n′)). Note that if there
is (k, l) in N× N such that

((p, q), (r, s)) = ((m + k, n + l), (m′ + k, n′ + l)),

then

((p, q), (r, s)) ∈ cg((m, n), (m′, n′)).

In what follows, a congruence cg((m, n), (m′, n′)) corresponds to the
subvariety Vm′,n′

m,n of Sz(D3) defined by the identity xRm
xyR

n
yx = xRm′

xy Rn′
yx.

Note also that Vm′,n′
m,n ≤ Vm′+k,n′+l

m+k,n+l .
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Consider elements of N × N located as the corresponding points of
the real plane R × R with the usual coordinate axes. Note that any
two points (m, n) and (m′, n′) of N× N uniquely define a straight line
L in R×R containing these two points and described by the equation

y =
n′ − n

m′ −m
(x−m) + n,

or by

(4.1) y = ±j

i
(x−m) + n,

where j and i are relatively prime positive integers, or else by y = c
or x = c for some non-negative integer c. The complete set of integral
solutions of (4.1) consists of points (m + ki, n + kj) if the coefficient of
x in (4.1) is positive or (m− ki, n + kj) if it is negative, where k runs
over the set Z.

Now there are two basic cases (Case 1 and Case 2 below) to consider
for the principal congruences cg((m,n), (m′, n′)) of the monoid N×N.
Without loss of generality, assume further that n ≤ n′.

Case 1: Congruences of the form θ = cg((m, n), (m′, n′)), where
(m, n) < (m′, n′).

In this case the line L is determined by the point (m, n) and the
non-negative coefficient j/i of x. Let

L(i, j,m, n) := {(m + ki, n + kj) | k ∈ N}.

Let

Lij := L(i, j, 0, 0),

the intersection of N × N with the line L0 parallel to L, given by the
equation y = j

i
x. Note that it consists of the points (ki, kj) for k ∈ N.

We will first consider the principal congruences θ of the form

(4.2) cg((ki, kj), ((k + l)i, (k + l)j))

for a positive number l, i.e. congruences generated by two points of Lij.
Note that each finite θ-class is a singleton, and that any two points of
N × N related by θ belong to a line parallel to L0. Observe also that
each such congruence restricts to a congruence of the submonoid Lij of
N× N. On the other hand, since for all (p, r) > (0, 0), we have

((p+ki, r+kj), (p+(k+l)i, r+(k+l)j)) ∈ cg((ki, kj), ((k+l)i, (k+l)j)),
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each such restriction extends uniquely to the original congruence θ of
N× N. Now the mapping

θ 7→ θ|Lij 7→ cg(k, k + l)

defines a one-to-one correspondence between the congruences θ of the
form (4.2) from Cg(N × N) and the congruences from Cg(N). As all
non-trivial congruences of (N, +, 0) are principal [3, Ch. I.7], it follows
that for fixed i and j as above, the mapping actually defines a lattice
isomorphism. Note that similar observations hold for points of lines
parallel to the y-axis. This proves the following lemma.

Lemma 4.1. For each pair (i, j) of relatively prime natural numbers

i and j, the varieties V(k+l)i,(k+l)j
ki,kj , with k ∈ N and l ∈ Z+, form a

lattice isomorphic to the dual of the lattice Cg(N) with the top element
removed, and hence isomorphic to the lattice L(D2)

−. Each of these
varieties contains the variety V i,j

0,0.

It is clear that for any two distinct coprime pairs (i, j) and (i′, j′),

the corresponding varieties V i,j
0,0 and V i′,j′

0,0 are incomparable, and hence

also any two varieties V(k+l)i,(k+l)j
ki,kj and V(r+s)i′,(r+s)j′

ri′,rj′ .

Note that for fixed i and j as above, the varieties V li,lj
0,0 , where l runs

over Z+, form a lattice isomorphic to the lattice Z+ with the divisibility
relation, and are in one-to-one correspondence with the varieties D0,l

2 of
differential groupoids. It is easy to see that for any point (m,n) ∈ N×N
the mapping

V li,lj
0,0 7→ Vm+li,n+lj

m,n

also provides a lattice isomorphism. This justifies the following propo-
sition.

Proposition 4.2. Let (i, j) be a pair of relatively prime natural num-
bers. Then the varieties Vm+li,n+lj

m,n , with (m, n) ∈ N × N and l ∈ Z+,
form a lattice isomorphic to the lattice N × N × Z+ and hence to
N× L(D2)

−.

In particular, for fixed i and j, the varieties V(k+l)i,(k+l)j
ki,kj and the

varieties Dk,k+l
2 form isomorphic lattices.

Case 2: Congruences of the form θ = cg((m, n), (m′, n′)), where
(m, n) and (m′, n′) are incomparable

We may assume now that n′ > n and m′ < m. In the case under
consideration, the line L is determined by the point (m, n) and the
negative coefficient − j

i
of x. As in Case 1, set

L(i, j,m, n) := N× N ∩ {(m− ki, n + kj) | k ∈ Z},
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the intersection of the line L with the set N× N. Also set

Lij := L(i, j, i, 0),

the intersection of N × N with the line L0 parallel to L, given by the
equation y = − j

i
(x− i). It consists of the points (i, 0) and (0, j). Note

that the sets L(i, j,m, n) are finite.

First consider the principal congruences θ of the form cg((i, 0), (0, j))
for positive integers i and j. Note that in this case all θ-classes are
finite, and any two points of N×N related by θ belong to a line parallel
to L0. In particular, for any (p, r) ∈ N× N \ {(0, 0)},

((p + i, r), (p, r + j)) ∈ cg((i, 0), (0, j)).

Let [(k, l)) := {(s, t) ∈ N×N | (s, t) ≥ (k, l)}. Note that the elements of
N×Nr [(i, 0))∪ [(0, j)) form one-element θ-classes. And if at least one
of i and j is bigger than 1, then the elements of {(p, r) | i ≤ p < 2i, 0 ≤
r < j} ∪ {(p, r) | 0 ≤ p < i, j ≤ r < 2j} form two element θ-classes.
(Each point represents a two element θ-class consisting precisely of
one point in the first summand and one in the second). Each of the
remaining classes has more than two elements. The same remarks hold
in the case when i = j and i > 1.

Now, for fixed i and j, consider the congruences of the form

cg((p + i, r), (p, r + j))

with (p, r) > (0, 0), collapsing two points of a line parallel to L0. Clearly
cg((p+i, r), (p, r+j)) < cg((i, 0), (0, j)). For (p, r) different from (p′, r′)
the congruences cg((p + i, r), (p, r + j)) and cg((p′ + i, r′), (p′, r′ + j))
are distinct, since they have different numbers of one-element classes.
It follows that for fixed (i, j) and (p, r) running over N×N r {(0, 0)},
one obtains distinct congruences. Moreover, if (p, r) < (p′, r′) then
cg((p′ + i, r′), (p′, r′ + j)) < cg((p + i, r), (p, r + j)). This implies the
following proposition.

Proposition 4.3. For each pair (i, j) of coprime natural numbers i
and j different from (0, 0), the varieties Vp,r+j

p+i,r , where (p, r) ∈ N × N,
form a lattice isomorphic to the lattice N × N with the usual ordering
relation. They all contain the variety V0,j

i,0 .

A similar proposition holds in the case i = j and i > 1. Note also
that V0,j

i,0 < V0,jk
ik,0 .

5. The size of relative bases

As shown already in [5], a variety of differential modes defined by a
finite set of identities has a relative basis consisting of a single identity.
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In the case of Szendrei varieties, the single identity may be obtained
as follows. First write each identity of the basis in the standard form
as in the proof of Proposition 3.1. Then replace it by the equivalent
set of identities in two variables. Finally, replace the union of these
sets by a unique identity, as was done in the last part of the proof of
Proposition 3.1. Note however that the number of variables in this
identity may be quite large.

Although varieties of Szendrei differential modes may be relatively
based by identities in two variables, the following examples show that
a single such identity may not be sufficient.

Example 5.1. The variety LZ3 of left-zero algebras is relatively based
by two identities (xxy) = x and (xyx) = x in two variables. But there
is no single identity in two variables that would imply both of them.

Example 5.2. It is clear that if any two pairs of points of N × N
are related by the same principal congruence then they belong to two
parallel lines. If two pairs of points belong to two non-parallel lines,
they determine a subvariety that is defined by two (but no fewer) binary
identities.

There are varieties of differential modes defined by more than two,
say n, binary identities, but not by k < n binary identities.

Example 5.3. Consider the join θ of the principal congruences θi :=
cg((n−i, i), (n−i+1, i)) of the (additive) monoid N×N, for i = 0, . . . , n.
It is easy to see that the congruence θ is not generated by a smaller
number of principal congruences. It follows that the variety determined
by the congruence θ has a relative basis consisting of n binary identities,
but not by a smaller number of such identities.

6. Covers of the variety of left-zero differential modes

First note that the free algebra on two generators in a variety cover-
ing LZ3 must have precisely one proper non-trivial fully invariant con-
gruence, with the quotient being a left-zero algebra. When restricted to
the orbit of any free generator, this congruence must be the improper
congruence of the monoid of the orbit, and its only non-trivial congru-
ence. The only commutative monoids with this property are the simple
monoids. Such finite simple commutative monoids are isomorphic to
(Zp, +, 0) for a prime p, or to the 2-element semilattice 2. To obtain
(Zp, +, 0) or 2 as a quotient of the monoid N×N, one should apply an
appropriate maximal congruence. Now (Zp, +, 0) may be obtained by
first applying a congruence cg((0, 0), (p, 0)) or ((0, 0), (0, p)), and then
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a congruence that will reduce lines parallel to the axes to points. This
procedure provides two types of congruences:

cg(((0, 0), (p, 0)), ((a, 0), (0, 1))) and cg((0, 0), (0, p)), (0, a), (1, 0))),

where a = 0, 1, . . . , p− 1. For given p and a 6= 0, two such congruences
actually coincide. The congruences correspond to varieties defined by
two identities in two variables:

x = xRp
xy and xRa

xy = xRyx

in the case a = 0, 1, . . . , p− 1, or

x = xRp
yx and x = xRxy.

The following maximal congruences of N × N provide the 2-element
semilattice as a quotient:

cg(((1, 0), (2, 0)), ((0, 0), (0, 1))), cg(((0, 1), (0, 2)), ((0, 0), (1, 0))),

cg(((1, 0), (2, 0)), ((0, 1), (1, 0))) = cg(((0, 1), (0, 2)), ((1, 0), (0, 1))).

The corresponding varieties are defined by the following pairs of iden-
tities:

xRxy = xR2
xy and x = xRyx,

xRyx = xR2
yx and x = xRxy,

xRxy = xR2
xy and xRyx = xRxy.
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