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Abstract. We study a variety of modes (idempotent algebras with mutually

commuting term operations), so called differential modes, having a strongly

solvable chain 0 ≤ α ≤ 1 in their congruence lattices. We show an explicit
description of subdirectly irreducible algebras in this variety, and use it to

compute residual bounds of its subvarieties. It follows from our results that

all subvarieties with a finite residual bound are finitely based.

1. Introduction

Modes are idempotent algebras with a commutative clone of term operations, or,
in other terms, idempotent algebras where all term operations are homomorphisms.
We are interested in so called (n-ary) (left) differential modes, a structuraly simple
yet non-trivial subclass of strongly solvable modes, consisting of the modes that
possess a congruence such that all its blocks and the factor are left projection
algebras. Equivalently, this is a variety axiomatized by the following three identities:

f(x, x, . . . , x) = x

f(f(x, y2, . . . , yn), z2, . . . , zn) = f(f(x, z2, . . . , zn), y2, . . . , yn)

f(x, f(y21, . . . , y2n), . . . , f(yn1, . . . , ynn)) = f(x, y21, . . . , yn1)

The study of general differential modes was initiated in [5], which explains our
motivation and contains the following results: alternative axiomatizations, a de-
scription of reducts, a decomposition based on the congruence λ (to be defined in
Section 2), a description of free algebras, including normal forms of terms, a proof
that finitely based subvarieties are relatively 1-based, and an example of a locally
finite subvariety with no finite base for its identities. The second paper of the series
[7] contains a thorough discussion of the lattice of subvarieties of Szendrei differ-
ential modes, including the fact that all of them are finitely based (actually in two
variables).

However, the study of binary differential modes started much earlier in [9, 10, 12]
(alternative names, such as LIR-groupoids, were used) and also in [8, 11], taking
care of a special case, when all translations are permutations (n-cyclic groupoids).
The binary case is significantly simpler, because binary modes are Szendrei modes
(see Section 4 for a discussion). The results of [9, 10] and some of [12] were ap-
propriately generalized in [5, 7], however our previous two papers did not address
subdirectly irreducible algebras. The present paper fills the gap. One of the main
theorems of [11], the description of subdirectly irreducible binary differential modes,
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where all translations are permutations of a bounded order, is a special case of our
Corollary 4.2 (the cocyclic case). The ideas behind our construction of B ∝F C
and Proposition 3.3 can be traced in [8, 11].

My personal interest in strongly solvable modes comes from the desire to under-
stand what are (finite) modes. There are two results by Keith Kearnes addressing
this question. In [2], he proved that every locally finite variety V of modes de-
composes into three subvarieties V1, V2 and V5, consisting of the strongly solvable
modes, the affine modes and the semilattice modes in V. In [4], he proved that
subdirectly irrecudible modes come in three very different families, corresponding
to the three properties. While the latter two types are well understood [3, 13], a
little is known about the strongly solvable case. Differential modes are a natural
class to begin with.

The main result of the present paper is an explicit description of subdirectly
irreducible differential modes (Theorem 3.5). We use it to determine which vari-
eties of Szendrei differential modes have finite residual bound (Theorem 5.5), and
prove that no non-Szendrei variety has finite residual bound (Theorem 5.4). As a
consequence, we obtain that Park’s conjecture holds for differential modes. The
discussion of residual bounds fundamentally relies on the description of subdirectly
irreducible commutative unary algebras by Z. Ésik and B. Imreh [1].

The paper is organized as follows. In Section 2, we briefly recall what we need
from the previous papers on differential modes, particularly the Mal’tsev decom-
position to projection algebras. Most facts are presented in a slightly novel way.
Section 3 contains the description of subdirectly irreducible differential modes, and
the next section its specialization to Szendrei differential modes. In Section 5, we
discuss the residual bounds. The final section contains remarks on how the results
relate to other problems in universal algebra.

2. Decomposition theorem

To improve clarity of the text, we will consider ternary algebras in this paper,
with the (only) operation denoted simply by brackets, avoiding commas. It means,

(xyz)

will stand for the result of the single basic operation on arguments x, y, z. Our
results can be generalized to other arities in an obvious way. (As noted above, the
binary case does not capture full generality.)

(Ternary) modes are characterized by the following two identities: the idempotent
law

(xxx) = x

and the entropic law

((x11x12x13)(x21x22x23)(x31x32x33)) = ((x11x21x31)(x12x22x32)(x13x23x33)).

A mode is called (left) differential (for a reason explained in [12]), if it also satisfies
the (left) reductive law

(x(yu1u2)(zv1v2)) = (xyz).(R)

In left reductive algebras, every term is equivalent to a term in the left reduced form

((((xy1z1)y2z2) . . . )ynzn).
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In particular, the entropic law is equivalent to the identity

((xyz)uv) = ((xuv)yz).(E)

By a left projection algebra (or left zero algebra) we mean an algebra that satisfies
the identity

(xyz) = x.

In the sequel, we shall omit the adjective “left”. Indeed, we could have chosen any
coordinate to be the distinguished one.

Let A be a ternary algebra and a, b ∈ A. By a (right) translation we mean the
mapping

Rab : A→ A, x 7→ (xab).

The translations generate the (right) multiplication monoid of A, denoted by

RA = 〈Rab : a, b ∈ A〉.

In differential modes, RA is a commutative submonoid of the endomorphism monoid:
indeed, (E) is equivalent to the fact that translations are mutually commutative,
and (E) and (R) respectively give that

Rab((xyz)) = ((xyz)ab) = ((xab)yz) = ((xab)(yab)(zab)) = (Rab(x), Rab(y), Rab(z)).

Consequently, the images of the translations are subalgebras of A. We define the
orbit of an element a by

RA(a) = {ϕ(a) : ϕ ∈ RA}.

It also forms a subalgebra of A: (ϕ1(a)ϕ2(a)ϕ3(a)) = (ϕ1(a)aa) = ϕ1((aaa)) =
ϕ1(a), so it is actually a left projection subalgebra. Now comes a crucial structural
concept in the theory of differential modes: we define a relation λ by

a λ b iff RA(a) ∩RA(b) 6= ∅.

In other words, a λ b iff there are ϕ,ψ ∈ RA such that ϕ(a) = ψ(b).

Proposition 2.1. Let A be a differential mode. Then

(1) λ is the smallest congruence such that A/λ is a projection algebra;
(2) if bi λ ci, i = 1, 2, then (ab1b2) = (ac1c2). Particularly, the blocks of λ are

projection algebras.

Proof. (1) Let us first show that λ is a congruence. Reflexivity and symmetry is
obvious, and if ϕ(a) = ψ(b) and χ(b) = υ(c), then, by (E), χϕ(a) = χψ(b) =
ψχ(b) = ψυ(c). If ai λ bi, i = 1, 2, 3, then (a1a2a3) λ a1 λ b1 λ (b1b2b3), hence
λ is a congruence. Now, let α be the congruence generated by the pairs (R(a), a),
for every a ∈ A and every translation R. Since α ≤ λ, we immediately see that
A/λ is a projection algebra. Are the two congruences equal? Assume a λ b with
ϕ(a) = ψ(b) for some ϕ = R1 · · ·Rn ∈ RA and ψ = R′1 · · ·R′m ∈ RA, where the
Ri and R′i are translations. Then a α Rn(a) α Rn−1Rn(a) α . . . α R1 · · ·Rn(a) =
R′1 · · ·R′m(b) α . . . α R′m(b) α b. Hence α = λ.

(2) Assume ϕi(bi) = ψi(ci), i = 1, 2. It follows from (R) that (ab1b2) =
(aϕ1(b1)ϕ2(b2)) = (aψ1(c1)ψ2(c2)) = (ac1c2). For the latter claim, put c1 = c2 =
a. �
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Let α ≤ β be congruences of an algebra A. We say that β is strongly abelian
over α, if for every term t and all tuples ā, b̄, c̄ such that ai β bi β ci for every i

t(a1, a2, . . . , an) α t(b1, b2 . . . , bn) implies t(a1, c2, . . . , cn) α t(b1, c2 . . . , cn).

An algebra is called strongly abelian, if the largest congruence 1 is strongly abelian
over the smallest congruence 0. Projection algebras are strongly abelian, since
every term depends on exactly one variable. Conversely, projection algebras are
the only strongly abelian differential modes. Consider t(x, y, z) = (xyz): since
t(a, b, c) = t((abc), (abc), (abc)), strong abelianess gives t(a, a, a) = t((abc), a, a),
and so a = ((abc)aa) = ((aaa)bc) = (abc) using (E) and idempotency. (In general,
an idempotent algebra is strongly abelian if and only if it is a direct product of
projection algebras on possibly different coordinates.)

Proposition 2.2. Let A be a differential mode. Then λ is strongly abelian over 0.

Proof. Consider a term t(x1, x2, . . . , xn) and tuples ā, b̄, c̄ such that ai λ bi λ ci
for every i. We can assume that t is in the left reduced form and we shall check
two cases. First, let x1 be the leftmost variable. Then, assuming t(a1, . . . , an) =
t(b1, . . . , bn) and using Proposition 2.1(2) recursively, we obtain t(a1, c2, . . . , cn) =
t(a1, a2, . . . , an) = t(b1, b2, . . . , bn) = t(b1, c2, . . . , cn). In the other case, let xk be
the leftmost variable for some k > 1. Then we do not even need the premise
of the implication, and, again, using Proposition 2.1(2) recursively, we obtain
t(a1, c2, . . . , cn) = t(b1, c2, . . . , cn). �

An algebra is called strongly solvable of length n, if there are congruences 0 =
α0 ≤ α1 ≤ . . . ≤ αn = 1 such that αi+1 is strongly abelian over αi, for every i.

Theorem 2.3. Let A be a ternary mode. Then the following are equivalent:

(1) A satisfies the identity (R).
(2) A has a congruence α such that A/α and all blocks of α are projection

algebras.

Moreover, if the conditions are satisfied, then A is strongly solvable of length 2.

Proof. (1) ⇒ (2) follows from Proposition 2.1, put α = λ.
(2) ⇒ (1). Using idempotency and entropicity,

(x(yu1u2)(zv1v2)) = ((xxx)(yu1u2)(zv1v2)) = ((xyz)(xu1v1)(xu2v2)).

Now (xab) α x for any a, b, because the factor is a projection, and so

((xyz)(xu1v1)(xu2v2)) = (xyz),

because the blocks of α are projections.
Finally, note that 0 ≤ λ ≤ 1 is a strongly solvable chain in the congruence lattice

of A: The case 0 ≤ λ is discussed in Proposition 2.2, and 1 is strongly abelian over
λ, because A/λ is a projection algebra, hence strongly abelian. �

Consequently, the variety of differential modes is the Mal’tsev product of the
variety of projection algebras over itself, relative to modes (this means, by definition,
the variety of modes satisfying the condition (2)).
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3. Description of subdirectly irreducibles

We recall that an algebra A is subdirectly irreducible (or briefly SI ), if it cannot
be decomposed as a subdirect product in a non-trivial way. Equivalently, if the in-
tersection of all non-trivial congruences is non-trivial. It means, A has the smallest
non-trivial congruence, called the monolith of A.

Simple algebras are indeed subdirectly irreducible. It follows from Theorem
2.3 that the only simple differential mode is the two-element projection algebra. It
generates the only minimal subvariety of differential modes, the variety of projection
algebras. A differential mode is called proper, if it is not a projection algebra.

We start with a construction of differential modes. Let B,C be disjoint non-
empty sets, and gc, hc, fcd : B → B mappings, for every c, d ∈ C. Put

A = B ∪ C
and define a ternary operation ( ) by

(cuv) = c, (bb1b2) = b, (bb1c) = gc(b), (bcb1) = hc(b), (bcd) = fcd(b)

for every b, b1, b2 ∈ B, c, d ∈ C and u, v ∈ A. The algebra (A, ( )) will be denoted

B ∝F C,

where F stands for the collection (gc, hc, fcd : c, d ∈ C) of the defining mappings.
When we write B ∝F C for some F , we implicitly assume that F is admissible for
the construction, and we shall use the above notation for the mappings.

Lemma 3.1. The algebra B ∝F C is a differential mode if and only if the mappings
from F are mutually commutative.

Proof. The identity (R) follows from the fact that right translations on the elements
of C act as the identity, and right translations on the elements of B do not depend
on the parameters from B. The identity (E) is equivalent to the fact that the
mappings are mutually commutative. �

We prove that every SI differential mode can be constructed in this way.

Lemma 3.2. In every SI differential mode, λ has exactly one non-trivial block (i.e.,
with more than 1 element).

Proof. Consider two non-trivial blocks U, V of λ and put ρ = U2∪id and σ = V 2∪id.
Since ρ, σ ⊆ λ, Proposition 2.1(2) shows that both are congruences of A. They are
non-trivial, but have a trivial intersection, hence the algebra is not SI. �

Proposition 3.3. Let A be a proper SI differential mode. Then A = B ∝F C,
where B is the unique non-trivial block of λ, C = A r B, and gc, hc, fcd : B → B
are defined by gc(b) = (bbc), hc(b) = (bcb) and fcd(b) = (bcd).

Proof. Since (cuv) λ c for all c ∈ C, u, v ∈ A, we see that (cuv) = c. And it follows
from Proposition 2.1(2) that, on elements of B, the translations do not depend on
their parameters from B: it says that (bb1b2) = (bbb) = b for all b, b1, b2 ∈ B; and
it says that (bb1c) = (bbc) = gc(b) and (bcb1) = (bcb) = hc(b) for all b, b1 ∈ B,
c ∈ C. �

Our main result is a characterization of those collections of mappings F that
determine an SI differential mode.
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Lemma 3.4. Let A = B ∝F C be a proper differential mode and consider the
unary algebra B = (B,F ). Then the congruence lattice of B is isomorphic to the
interval [0, λ] in the congruence lattice of A, or briefly,

Con(B) ' [0, λ]Con(A).

Proof. We prove that
(1) if β is a congruence of B, then β ∪ id is a congruence of A;
(2) if α ≤ λ is a congruence of A, then α ∩B2 is a congruence of B.

Put ϕ(β) = β∪ id and ψ(α) = α∩B2. Both mappings preserve the order, ψϕ(β) =
β, and ϕψ(α) = α whenever α ≤ λ = B2∪id. Hence the two lattices are isomorphic.

To prove (1), put α = β ∪ id. We need to check that x α u, y α v, z α w implies
(xyz) α (uvw). If x ∈ C, then (xyz) = x = u = (uvw). Now assume x ∈ B. If
y, z ∈ C, then y = v, z = w and (xyz) = fyz(x) = fvw(x) α fvw(u) = (uvw). If
y ∈ C and z ∈ B, then y = v and (xyz) = (xyx) = hy(x) = hv(x) α hv(u) =
(uvu) = (uvw) using Proposition 2.1(2). The case y ∈ B, z ∈ C is similar. And if
y, z ∈ B, Proposition 2.1(1) gives (xyz) = x α u = (uvw).

The case (2) is rather obvious: let β = α∩B2 and assume x β y. Then fcd(x) =
(xcd) α (ycd) = fcd(y), gc(x) = (xxc) α (yyd) = gc(y), and hc(x) = (xcx) α (ycy) =
hc(y). �

Theorem 3.5. A ternary algebra A is a proper SI differential mode if and only
if A = B ∝F C for some admissible collection of mappings F such that the unary
algebra B = (B,F ) satisfies the following conditions:

(SI1) B is commutative and |B| > 1.
(SI2) B is subdirectly irreducible.
(SI3) B does not contain disjoint subalgebras.
(SI4) (i) B contains no one-element subalgebra, or

(ii) for every c at least one of the following takes place:

fcc 6= id, gc 6= id, hc 6= id, fcd 6= gd for some d, fdc 6= hd for some d.

(SI5) For every c 6= d, at least one of the following takes place:

gc 6= gd, hc 6= hd, |{fcc, fdd, fcd, fdc}| > 1, fce 6= fde for some e, fec 6= fed for some e.

Proof. (⇒) Consider the representation A = B ∝F C defined in Proposition 3.3.
The mappings mutually commute by Lemma 3.1. The unary algebra B is SI ac-
cording to Lemma 3.4. A subalgebra of B generated by an element a ∈ B is exactly
the orbit RA(a). Any two orbits intersect, because λ = B2 ∪ id. If condition (SI4)
were to fail, we would have an element b ∈ B fixed by all the mappings of F , and
an element c ∈ C that fails (ii). Then it is easy to check that {b, c}2 ∪ id is a
congruence that intersects λ trivially. If condition (SI5) failed for certain elements
c, d ∈ C, then it is easy to check that {c, d}2 ∪ id is a congruence that intersects λ
trivially.

(⇐) Assume the conditions are met and consider the algebra A = B ∝F C.
Condition (SI1) ensures we obtained a differential mode (Lemma 3.1). Condition
(SI3) says that λ = B2∪ id. (See the explanation in the previous part of the proof.)
According to (SI2) and Lemma 3.4, in the interval [0, λ]Con(A), the intersection of
non-trivial congruences is non-trivial. To prove that A is SI, it is sufficient to show
that for every non-trivial congruence α of A, the intersection α ∩ λ is non-trivial.
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First, assume b α c for some b ∈ B, c ∈ C, and use (SI4). Either (i) holds and
{b} is not a subalgebra. Then there is a translation R such that R(b) 6= b, and so
R(b) α R(c) = c, and we obtain a non-trivial pair b (α∩λ) R(b). Or (ii) holds, and
we have five cases.

• If fcc(b′) 6= b′ for some b′ ∈ B, then b′ = (b′bb) (α ∩ λ) (b′cc) 6= b′.
• If gc(b′) 6= b′ for some b′ ∈ B, then b′ = (b′bb) (α ∩ λ) (b′cb) 6= b′.
• If hc(b′) 6= b′ for some b′ ∈ B, then b′ = (b′bb) (α ∩ λ) (b′bc) 6= b′.
• If fcd(b′) 6= gd(b′) for some b′, then fcd(b′) = (b′bb) (α ∩ λ) (b′cb) = gd(b′).
• If fcd(b′) 6= hd(b′) for some b′, then fcd(b′) = (b′bb) (α ∩ λ) (b′bc) = hd(b′).

Second, assume c α d for some c, d ∈ C, c 6= d, and use (SI5).
• If gc(b) 6= gd(b) for some b ∈ B, then (bcb) (α ∩ λ) (bdb) is a non-trivial

pair. Similarly for hc(b) 6= hd(b).
• If fuv(b) 6= fu′v′(b) for some b ∈ B and u, v, u′, v′ ∈ {c, d}, then (buv) (α ∩
λ) (bu′v′) is a non-trivial pair.
• If fce(b) 6= fde(b) for some b ∈ B and e ∈ C, then (bce) (α ∩ λ) (bde) is a

non-trivial pair. Similarly for fec(b) 6= fed(b).
In both cases, α ∩ λ is non-trivial. �

Conditions (SI4) and (SI5) may appear very technical, but they formalize the
intuition that F should not contain “redundant mappings”, in the following sense.
(SI4) says that if there is a common fixpoint b ∈ B for all mappings from F (hence
{b} is a one-element subalgebra), then no action caused by c ∈ C should be trivial
(or we could factor b ∼ c). (SI5) says that the action by two different elements of
C should differ (or we could factor out similarly acting pairs).

Subdirectly irreducible commutative unary algebras were classified by Z. Ésik
and B. Imreh in [1]. A unary algebra will be called cocyclic, if it is term equivalent
to a G-set with G = Zpk for some prime p and k ∈ N ∪ {∞}. (Note that these
are exactly the subdirectly irreducible abelian groups.) Now, subdirectly irreducible
commutative unary algebras come in three families, and each member of the families
is subdirectly irreducible:

(I) cocyclic unary algebras;
(II) disjoint union of a cocyclic unary algebra and a singleton unary algebra;

(III) unary algebras where the intersection of all subalgebras consists of a single
element, satisfying a handful of combinatorial properties, to be described
below.

To describe item (III), consider a commutative unary algebra B = (B,F ) such
that the intersection of all subalgebras consists of a single element z. Define a
quasiorder relation ≤ by a ≤ b iff b = t(a) for a term t. Hence a ≤ b precisely if b
is in the subalgebra generated by a. Let a ≡ b iff a ≤ b and b ≤ a. The relation ≡
is indeed a congruence of B. Now, according to [1], B is subdirectly irreducible if
and only if the following conditions are met.

(N1) The intersection Z of all at least two-element subalgebras of B is non-empty.
(N2) For every basic operation f of B, either f(a) ≡ a for all a and f is a

permutation, or f(a) 6≡ a for all a 6= z.
(N3) The unary algebra (B r {z}, G), where G consists of all restrictions of

mappings from F that are permutations, is a disjoint union of pairwise
isomorphic cocyclic algebras or singletons.
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(N4) For every a ∈ B r Z and every b 6= a, there is a term t that represents a
non-permutational mapping on B such that
(i) t(a) 6= t(b),
(ii) at least one of t(a), t(b) belongs to the union of blocks from M , where

M is defined as the smallest subset of B/≡ such that its complement
has no maximal elements (in the quasiorder ≤).

Note that if B is finite, then M = B/≡, hence (ii) is trivially satisfied.
We shall call type (III) algebras nilpotent. (In the infinite case, this is not exactly
correct terminology. Ésik and Imreh called such algebras separable quasi-nilpotent.
We decided to stick to the shorter name, for we are mostly considering finite alge-
bras.)

All type (II) algebras fail condition (SI3) of Theorem 3.5. The other two types
give rise to SI differential modes, to be called cocyclic and nilpotent, respectively.
Condition (SI4)(i) is satisfied by the cocyclic ones and fails for the nilpotent ones.
We can restate our main theorem in the following way:

Corollary 3.6. A ternary algebra A is a proper SI differential mode if and only if
A = B ∝F C for some admissible collection of mappings F such that the following
conditions are satisfied:
(SI1-4) For the unary algebra (B,F ), one of the two options applies:

(I) it is cocyclic;
(III) it is nilpotent, and for every c ∈ C at least one of the following holds:

fcc 6= id, gc 6= id, hc 6= id, fcd 6= gd for some d, fdc 6= hd for some d.

(SI5) For every c 6= d, at least one of the following holds:

gc 6= gd, hc 6= hd, |{fcc, fdd, fcd, fdc}| > 1, fce 6= fde for some e, fec 6= fed for some e.

We finish the section with a note on terminology. When we refer to the qua-
siorder of a nilpotent SI mode A = B ∝F C, we mean the quasiorder ≤ of the
corresponding unary algebra (B,F ). Similarly for the congruence ≡. The length of
a nilpotent algebra, or a nilpotent SI differential mode, is defined to be the largest
n such that there is a chain z > a1 > a2 > . . . > an, or infinity, if there are
arbitrarily long finite chains. We say that the congruence ≡ is trivial, if it is the
identity relation, and hence ≤ is an order.

4. The Szendrei case

Many examples of modes, such as convex sets with barycentric operations, admit
a sort of a linear representation, and thus satisfy a more restrictive variant of the
entropic law, presented in [16] by Á. Szendrei. We use the name Szendrei identities,
and the modes satisfying them are called Szendrei modes. For a ternary operation,
the identities can be expressed as

((x11x12x13)(x21x22x23)(x31x32x33)) = ((x1̄1x1̄2x1̄3)(x2̄1x2̄2x2̄3)(x3̄1x3̄2x3̄3))

where ¯ is a mapping that flips a single pair of indices ij, ji and leaves the other pairs
untouched. Hence, in the ternary case, there are exactly three different Szendrei
identities. If (R) holds, one of them is trivial and the other two say that

((xyz)uv) = ((xuz)yv) and ((xyz)uv) = ((xyv)uz).
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It is easy to check that the two identities are equivalent (in modes) to a single one,

(xyz) = ((xyx)xz).(Sz)

The importance of Szendrei identities is given by the following theorem [14][15]:
A mode satisfies Szendrei identities if and only if it embeds into a semimodule over
a commutative semiring. The theory of Szendrei differential modes is significantly
simpler than the general one, see [7], and resembles that of differential groupoids.

Lemma 4.1. The algebra B ∝F C is a Szendrei mode if and only if the mappings
from F are mutually commutative and fcd = gdhc for every c, d ∈ C.

Proof. In one direction, (Sz) directly implies fcd(b) = (bcd) = ((bcb)bd) = gdhc(b)
for all b ∈ B, c, d ∈ C. In the other direction, the identity (Sz) is obviously satisfied
if x ∈ C, so assume x ∈ B. If y, z ∈ B, use the fact that B is a projection algebra.
If y ∈ B, z ∈ C, then (xyx) = x, and so ((xyx)xz) = (xxz) = (xyz). For y ∈ C,
z ∈ B proceed similarly. And the last case, y, z ∈ C, describes the condition
fcd = gdhc. �

Corollary 4.2. A ternary algebra A is a proper SI Szendrei differential mode if
and only if A = B ∝F C for some admissible collection of mappings F such that
the following conditions are satisfied:
(SI Sz) fcd = gdhc for every c, d ∈ C.
(SI1-4) For the unary algebra (B,F ), one of the two options applies:

(I) it is cocyclic;
(III) it is nilpotent, and for every c ∈ C, gc 6= id or hc 6= id.

(SI5) For every c 6= d in C, gc 6= gd or hc 6= hd.

Condition (SI5) implies that the size of C is bounded by the number of pairs of
mappings B → B, i.e.,

|C| ≤ (|B||B|)2.

Actually, in the case of cocyclic SIs, the bound can be improved to |B|2, since
there are only |B| mappings that preserve the cycle. There is no such bound in the
general (non-Szendrei) case, as we shall see in the next section.

5. Residual bounds

The residual bound of a variety is the smallest cardinal κ such that all subdirectly
irreducible algebras have size < κ. A variety is called residually large, if there is no
such cardinal.

In the present section, we determine varieties of differential modes with finite
residual bound. It turns out that there are no such non-Szendrei varieties (Theorem
5.4), and rather few Szendrei varieties (Theorem 5.5). Moreover, non-Szendrei
varieties are residually large, and so are all the remaining locally finite Szendrei
varieties.

The proof of Theorem 5.4 splits into two parts. First, we prove that every non-
Szendrei variety contains a finite SI algebra of one of three special types. Then, we
will discuss residual bounds for each of the three cases, reusing one of them in the
Szendrei case.

Lemma 5.1. A variety containing a nilpotent SI differential mode A = B ∝F C
of length at least 2, also contains a nilpotent SI algebra A′ = B′ ∝F ′ C′ of length
2 such that the congruence ≡ is trivial, the order ≤ is linear and |C ′| ≤ 2.
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(The conditions imply that |B′| = 3 and |A′| ≤ 5.)

Proof. Define an equivalence α by a α b if and only if either a, b ∈ B and a ≡ b, or
a = b ∈ C. Clearly, α is a congruence of A, and consider the algebra A/α. Choose
[a] ∈ B/α in distance 2 from [z] and a witness ϕ ∈ F of this fact (i.e., a ∈ B
such that there is b with [a] < [b] < [z], and there is no b′ with [a] < [b′] < [b] or
[b] < [b′] < [z], and ϕ : [a] 7→ [b] 7→ [z] in A/α). If it is possible to choose ϕ = gc
or ϕ = hc or ϕ = fcc for some c, do so and let C ′ = {c}. Otherwise, for ϕ = fcd
put C ′ = {c, d}. Let A′ be the subalgebra of A/α generated by {[a], [c] : c ∈ C ′}.
The corresponding unary algebra is certainly SI, nilpotent of length 2, with trivial
≡ and a linear order. If |C ′| = 1, conditions (SI4) and (SI5) are trivial. If |C ′| = 2,
they follow from the fact that no single parameter translation is equal to ϕ. Hence,
A′ is SI. �

Lemma 5.2. Every non-Szendrei variety of differential modes contains a finite SI
algebra A′ = B′ ∝F ′ C′ satisfying one of the following conditions:

(l0) It is non-Szendrei cocyclic and |C ′| = {c, d} with fcd 6= gdhc.
(l1) It is non-Szendrei nilpotent of length 1 and |C ′| = {c, d} with fcd 6= gdhc.
(l2) It is nilpotent of length 2, ≡ is trivial, ≤ is linear and |C ′| ≤ 2.

(In (l0) and (l1), it may happen that c = d.)

Proof. Every non-Szendrei variety of differential modes contains a non-Szendrei SI
algebra A = B ∝F C. If it is nilpotent of length at least 2, we use Lemma 5.1. So
assume it is either cocyclic, or nilpotent of length 1.

According to Lemma 4.1, there are c, d ∈ C and a ∈ B such that fcd(a) 6=
gd(hc(a)). If it is possible to choose c = d, do so; otherwise, pick arbitrarily. Let A′

be the subalgebra of A generated by a, c, d. It is certainly non-Szendrei. Since a is
not fixed by at least one of the mappings fcd, gd, hc, it induces a non-trivial λ block
B′. And there are at most two trivial λ blocks, {c} and {d}, hence A′ = B′ ∝F ′ C′.
We check A′ satisfies conditions (SI4) and (SI5). If c = d, the conditions are trivial.
Case c 6= d: (SI4) since fcd 6= gdhc, we get hc 6= id or fcd 6= gd, and similarly also
gd 6= id or fcd 6= hc; (SI5) if we had gc = gd, then fcc = gchc = gdhc 6= fcd.

Finitely generated subgroups of finite cyclic groups, or of the group Zp∞ , are
finite cyclic groups. Consequently, A′ will be finite even if A was not. If A was
cocyclic, A′ will also be SI and cocyclic (possibly shorter) and meet condition (l0).
If A was nilpotent and F ′ contains only permutations, then A′ will again be SI and
cocyclic and meet condition (l0). Otherwise, A′ will meet condition (l1). �

A side remark: Lemma 5.1 does not assure that starting with a non-Szendrei
algebra, we also obtain a non-Szendrei algebra. One can extend Lemma 5.2 in
the following way: in the construction, if the initial algebra A is nilpotent of an
arbitrary length, and if ≡ is trivial, the resulting algebra A′ is also non-Szendrei
nilpotent SI, with trivial ≡ and linear order (not necessarily of length 2). However,
if ≡ is non-trivial on A, then A′ may fail to be SI.

Lemma 5.3. A variety containing a finite SI differential mode satisfying condition
(l0) or (l1) or (l2), is residually large.

Proof. Let A = B ∝F C be such an SI differential mode. We provide three
constructions for the respective types.
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(l0) Denote B = {0, . . . , pk − 1}, and assume the mapping x 7→ x + 1 mod
pk generates the right multiplication monoid (actually group) RA (we implicitly
assume the mapping acts identically on C). Let n be a cardinal number and put

A′ = B(n) ∪ {u ∈ An : there is i such that ui ∈ C, and uj ∈ B for all j 6= i}.

Here and later in the proof, X(n) denotes the set of all x ∈ Xn such that all but
finitely many entries are zero. Clearly A′ is a subalgebra of An and we define a
congruence α on A′ such that u α v if and only if

• either
∑
ui ≡

∑
vi (mod pk),

• or ui = vi ∈ C for some i.
The factor A′/α has exactly |B|+ n · |C| elements, to be denoted

• [0], . . . , [pk − 1], depending on the sum of the entries mod pk,
• [ci], for the block of vectors with c ∈ C at position i.

Then, for every a, b, b′ ∈ B, c, d ∈ C, i, j < n, and u, v arbitrary,
([ci][u][v]) = [ci], ([a][b][b′]) = [a],
([a][b][ci]) = [gc(a)], ([a][ci][b]) = [hc(a)],
([a][ci][dj]) = [gdhc(a)] if i 6= j, ([a][ci][di]) = [fcd(a)].

Hence the congruence λ on A′/α has a single non-trivial block {[b] : b ∈ B}, the
corresponding unary algebra is again cocyclic, and

g[ci] = gc, h[ci] = hc, f[ci][di] = fcd, and f[ci][dj] = gdhc if i 6= j.

We check that the algebra A′/α satisfies condition (SI5).
Case |C| = 1. Denote C = {c} and assume fcc 6= gchc. Then, for [ci] 6= [cj], take

e = [cj] and note that f[ci][cj] = gchc 6= fcc = f[cj][cj].
Case |C| = 2. Denote C = {c, d} in a way that fcd 6= gdhc.
• For [ci] 6= [di], use (SI5) for A.
• For [ci] 6= [cj], take e = [dj] and note that f[ci][dj] = gdhc 6= fcd = f[cj][dj].
• For [di] 6= [dj], take e = [ci] and note that f[ci][dj] = gdhc 6= fcd = f[ci][di].
• For [ci] 6= [dj], i 6= j, either gc 6= gd and thus g[ci] 6= g[dj]; or fcd 6= gchc and

thus f[cj][dj] 6= f[cj][ci]; or both gc = gd and fcd = gchc, but in such case
gchc = fcd 6= gdhc = gchc, contradiction.

(l1) Denote B = {z, 0, . . . , pk−1}, where z is the terminal point and 0, . . . , pk−1
are the elements of the other ≡ block (possibly k = 0), and assume the mapping
x 7→ x+1 mod pk generates the right multiplication monoid RA. The construction
is very similar to the previous one. Let n be a cardinal number and put

A′ = B(n) ∪ {u ∈ An : there is i such that ui ∈ C, and uj ∈ B for all j 6= i}.

Clearly A′ is a subalgebra of An and we define a congruence α on A′ such that
u α v if and only if

• either u, v ∈ (B r {z})(n) and
∑
ui ≡

∑
vi (mod pk),

• or u, v ∈ B(n) and both contain the z entry,
• or ui = vi ∈ C for some i.

The factor A′/α has exactly |B| + n · |C| elements, to be denoted as above,
[0], . . . , [pk−1] and [z] and [ci], respectively. Formulas for the operation are exactly
as in case (l0), hence the congruence λ on A′/α also has a single non-trivial block
{[b] : b ∈ B}, and the corresponding unary algebra is SI nilpotent of length 1. It
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satisfies condition (SI5) for the very same reason it did in the previous case, and
condition (SI4) follows immediately from the fact that it was satisfied by A.

(l2) Denote B = {x, y, z}, and assume the mapping x 7→ y 7→ z 7→ z, to be
called the shift mapping, generates the right multiplication monoid RA. By (N2),
RA actually consists of the identity mapping, the shift mapping and the constant
mapping onto z.

If there is c ∈ C such that one of gc, hc, fcc is the shift mapping, replace C
by {c} and obtain a new SI differential mode satisfying (l2), to be used for the
construction. Let n ≥ 2 be a cardinal number and put

A′ = (Bnr{x}n) ∪ {u ∈ An : there is i such that ui ∈ C, and uj ∈ B for all j 6= i}.
Clearly A′ is a subalgebra of An and we define a congruence α on A′ such that
u α v if and only if

• either there is a single coordinate i such that ui = vi = y, and uj = vj = x
for all j 6= i,
• or both u, v have exactly two entries equal y and the other entries equal x

(on possibly different coordinates),
• or u, v ∈ Bn and do not meet any of the preceding conditions,
• or ui = vi ∈ C for some i.

The factor A′/α has exactly n+ 2 + n · |C| elements, to be denoted
• [i], i < n, for the block of vectors with single y at position i,
• [y], for the block of vectors with precisely two y’s,
• [z], for the block of remaining vectors from Bn,
• and [ci] for the block of vectors with c ∈ C at position i.

It is easy to see that the congruence λ on A′/α has again a single non-trivial
block. The congruence ≡ is trivial (hence (N3) holds), and its elements are ordered
[i] > [y] > [z] for every i < n (hence (N1) holds). To check (N2), consider a
translation ϕ in A′/α fixing some [i] or fixing [y]. Note that ϕ acts non-trivially
in at most two coordinates, and the involved translations in A have to fix x or y
at these positions. Hence, by (N2) in A, both are identities and thus ϕ is identity
too. For (N4), to separate [i], [j] with i 6= j, consider the translation acting as
the shift mapping in the i-th coordinate and identically in the other coordinates.
Consequently, the corresponding unary algebra is SI nilpotent of length 2 (now with
a non-linear order).

We check A′/α satisfies conditions (SI4) and (SI5). Let ϕ,ψ ∈ RA and ϕ′, ψ′

be the mappings on A′/α acting as ϕ,ψ, respectively, in the i-th coordinate, and
identically in the other coordinates. Observe that if ϕ 6= ψ, then ϕ′([j]) 6= ψ′([j])
for every j 6= i. Now, (SI4) follows immediately from the observation. So does
(SI5) for all pairs [ci] 6= [di] for every c, d ∈ C. For the remaining pairs, we consider
two cases.

Case |C| = 1. Denote C = {c}. One of gc, hc, fcc is the shift mapping. Assume it
is gc (the other options are proved similarly). Then g[ci]([i]) = [z] 6= [y] = g[cj]([i]),
hence g[ci] 6= g[cj] for every i 6= j, and (SI5) holds.

Case |C| = 2. Denote the elements c, d in a way that fcd is the shift mapping.
Then, for every i 6= j, f[ci][di]([j]) = [y], but f[ui][vj]([j]) 6= [y] for every choice
of u, v ∈ C. Hence, for every [ci] 6= [cj], f[ci][di] 6= f[cj][di]; for every [di] 6= [dj],
f[ci][di] 6= f[ci][dj]; and for every [ci] 6= [dj], f[ci][di] 6= f[dj][di]. So (SI5) holds for all
pairs. �
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Theorem 5.4. Every non-Szendrei variety of differential modes is residually large.

Proof. Immediate consequence of Lemmas 5.2 and 5.3. �

Now we turn to the Szendrei case. Contrary to the general case, we have a
bound on the size of an SI algebra in terms of the size of its non-trivial λ block.
Consequently, some varieties turn out to be residually rather small.

In [7] we proved that every subvariety of Szendrei differential modes is relatively
based by identities in two variables, and that the non-trivial subvarieties are in 1-1
correspondence with congruences of the monoid (N0,+)2 in the following way: to
a congruence ζ, assign the subvariety Vζ relatively based by

((((((xxy) . . . )xy︸ ︷︷ ︸
i

) yx) . . . )yx︸ ︷︷ ︸
j

) = ((((((xxy) . . . )xy︸ ︷︷ ︸
k

) yx) . . . )yx︸ ︷︷ ︸
l

)

for every (i, j) ζ (k, l). This defines an order reversing bijection between the two
lattices. The least congruence corresponds to the variety of Szendrei differential
modes, the largest congruence to the variety of projection algebras. We will refer
to varieties by the corresponding congruences.

Theorem 5.5. Let Vζ be a variety of Szendrei differential modes given by a con-
gruence ζ.

(1) Vζ has a finite residual bound if and only if there are m,n > 1 such that
(m, 0) ζ (1, 0) and (0, n) ζ (0, 1).

(2) If Vζ is locally finite and the previous condition fails, it is residually large.

Proof. An SI Szendrei differential mode A = B ∝F C belongs to Vζ if and only
if gich

j
c = gkch

l
c for every c ∈ C and every (i, j) ζ (k, l). Given a mapping f , the

smallest r and s such that fr = fr+s will be called the length and the period of f
(if they exist). Note that in a locally finite variety, there is a bound on the length
and period of every translation in every algebra.

(⇐) The identities force that all right translations have bounded period p ≤
lcm(m − 1, n − 1) and length at most 1. Consequently, all SIs in Vζ are either
nilpotent of length 1, or cocyclic. In the nilpotent case, |B| ≤ p+ 1, in the cocyclic
case, |B| ≤ p. According to the notes following Corollary 4.2, any SI in Vζ has size
at most (p+ 1) + (p+ 1)2(p+1).

(⇒) Assume the condition fails. It means the equation

(((x yz) . . . )yz︸ ︷︷ ︸
k

) = (xyz)

fails in Vζ for every k. This must be witnessed by subdirectly irreducible algebras
in Vζ . If there is a nilpotent SI of length at least 2 in Vζ , we can use Lemmas
5.1 and 5.3 and are done. If there is no such, i.e., if all SIs in Vζ are cocyclic or
nilpotent of length 1, then Vζ is not locally finite, and either there is an SI with an
infinite λ block (the Zp∞ action), or there are (infinitely many) SIs with arbitrarily
large finite λ blocks. In either case, the residual bound of Vζ is not finite. �

6. Related problems

Theorem 3.5 and the Ésik-Imreh classification of subdirectly irreducible commu-
tative unary algebras bring an insight into the rather intricate structure of subdi-
rectly irreducible algebras in an interesting class of strongly solvable modes. We
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wish to point out a connection of our results to two major open problems of uni-
versal algebra that concern subdirectly irreducible algebras.

One of the motivations behind our work was, to solve Park’s problem for modes.
It asks whether varieties with a finite signature and finite residual bound are finitely
based (for a background information, see [17]). Park conjectured an affirmative an-
swer. It follows from our results that Park’s conjecture holds for all varieties of
differential modes. Actually, for a rather trivial reason: Theorem 5.4 says that all
varieties of differential modes with finite residual bound are Szendrei; but all vari-
eties of Szendrei differential modes are finitely based, as proved in [7] by reduction
to Rédei’s finiteness theorem for commutative semigroups. (A non-Szendrei variety
with no finite base was constructed in [5].)

The other problem I had in mind, the RS problem, asks whether there is a finitely
generated variety with a finite signature and residual bound ℵ0 (for a background
information, see [6]). According to our results, there is no such variety of differential
modes.

Both questions have been answered assuming certain Mal’tsev conditions: for
congruence modular varieties using commutator theory, and also for congruence
meet-semidistributive varieties. Searching for a (counter)example, one shall focus
on varieties satisfying no non-trivial Mal’tsev condition. Perhaps not as simple as
differential modes, yet this is a part of my motivation to study strongly solvable
modes.

Acknowledgement. I wish to thank Micha l Stronkowski for his interest in my
work, for reading a preliminary version of this text and suggesting several ideas
that improved Section 5.
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