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Abstract. Modes are idempotent and entropic algebras. Al-
though it had been established many years ago that groupoid
modes embed as subreducts of semimodules over commutative semir-
ings, the general embeddability question remained open until M.
Stronkowski and D. Stanovský’s recent constructions of isolated ex-
amples of modes without such an embedding. The current paper
now presents a broad class of modes that are not embeddable into
semimodules, including structural investigations and an analysis of
the lattice of varieties.

It is well known that each entropic groupoid (“medial” in the ter-
minology of Ježek-Kepka) with surjective operation embeds as a sub-
reduct into a semimodule over a commutative semiring [1]. In partic-
ular, each idempotent and entropic groupoid, i.e. each groupoid mode
(as defined e.g. in [12]) embeds into such a semimodule. (See [1] and
[6]). Surprisingly, this is no longer true for modes with operations of
larger arity. As shown by M. Stronkowski [17] and [18], a mode embeds
as a subreduct into a semimodule over a commutative semiring if and
only if it satisfies the so-called Szendrei identities. A simpler proof was
then given by D. Stanovský [16]. Stronkowski also proved that free
modes do not satisfy the Szendrei identities, while Stanovský [16] pro-
vided a 3-element example of a mode with one ternary operation (Ex-
ample 1.1). In this paper we analyze Stanovský’s example, and show
that it belongs to the variety of so-called ternary differential modes,
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which form a ternary counterpart of the variety of differential groupoid
modes [10]. We investigate properties of this variety, and show that it
contains a broad class of modes not satisfying the Szendrei identities,
i.e. not embeddable into semimodules over commutative semirings. To
simplify notation, we consider only algebras with one ternary opera-
tion, but all our results may easily be extended to algebras with one
basic operation of any arity n > 3.

Note that the possibility of embedding given algebras as subreducts
into other “richer” algebras provides an efficient method for inves-
tigating their structure. In particular, if these richer algebras are
(semi)modules, such an embedding allows us to represent operations
as linear combinations, providing so-called linear representations for
the algebras being embedded. The method appeared to be quite suc-
cessful in investigating the structure of modes. Apart from the above-
mentioned result of Ježek and Kepka (and a number of partial results
preceding it), let us mention the result of K. Kearnes [2] that semilat-
tice modes embed into semimodules over commutative semirings, and
results of A. Romanowska, J.D.H. Smith and A. Zamojska-Dzienio [11],
[13], [14], [20] showing that certain sums of cancellative modes embed
into certain special semimodules over commutative semirings. We now
know that not all modes have the embeddability property. Thus it be-
comes critical to locate the borderline between three classes of modes:

• those embeddable into modules over commutative rings;
• those embeddable into semimodules over commutative semir-

ings;
• those that do not embed into semimodules.

An essential role is also played by modes equivalent to affine spaces
over commutative rings, and modes equivalent to affine semimodules
over commutative semirings. Recall that affine spaces are characterized
as Mal’cev modes, and form full idempotent reducts of the correspond-
ing modules, while affine semimodules form full idempotent reducts of
the corresponding semimodules. Differential modes are well suited to
investigations of the embedding problems.

The paper provides some results from a larger project that investi-
gates these problems, and analyzes embeddability and non-embeddabi-
lity of differential modes.

First we introduce the algebras in question, and show how they are
related to differential groupoids (Sections 1 and 2). The main part
of the paper concerns three topics. In Section 3, we show that each
ternary differential mode has a homomorphism onto a left-zero algebra
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with left-zero subalgebras as the congruence classes of the correspond-
ing kernel. Then we show that the mode can be reconstructed from
these classes and the quotient by means of a special construction called
an Lz ◦Lz-sum. We frequently use this construction in the subsequent
work. Section 4 provides a characterization of absolutely free differ-
ential modes (Theorem 4.2), and of free differential modes in three
subvarieties playing a special role in our investigations:

• The variety of Szendrei modes (those embeddable into semi-
modules over commutative semirings) (Theorem 4.4);

• The variety of so-called hemisemiprojection modes;
• The variety of semiprojection modes.

We also show that the only Szendrei hemisemiprojection modes are
left-zero algebras. This provides a new class of modes not embeddable
into semimodules (Corollary 4.6). The final Section 5 is devoted to va-
rieties of differential modes. In contrast with differential groupoids, the
lattice of varieties of ternary differential modes is much more complex.
Though proper nontrivial finitely based varieties can also be defined by
one more additional identity (Theorem 5.2), the number of variables in
such identities grows rapidly, and there are varieties not having a finite
basis for their identities (Theorem 5.5).

A deeper analysis of embeddability and nonembeddability of differ-
ential modes will be provided in a subsequent paper that will contain
more information about geometrical aspects of differential modes, and
a more detailed analysis of Szendrei and hemisemiprojection modes.

For further information concerning the theory of modes, we refer the
reader to the two monographs [9] and [12]; for universal algebra, one
may also consult standard books on the subject. We frequently follow
the notation and terminology used in the two monographs on modes.
In particular, we often use algebraic notation for functions and oper-
ations, reserving special notation for binary and ternary operations.
The concepts “term” and “word” are synonymous, as are the concepts
“term operation” and “derived operation”.

1. Introduction

In [19], Á. Szendrei introduced certain identities which are satisfied
by reducts of any type of affine spaces over a commutative ring R with
identity. For a given type τ , these are identities arising from each word
(term) of type τ of the form

x11 . . . x1nw . . . x1n . . . xnnww,
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where w is a derived operator with n variables defining a basic oper-
ation of the reduct in question, by interchanging xij and xji for fixed
1 ≤ i, j ≤ n. Note that these Szendrei identities are satisfied by all
subreducts (subalgebras of reducts) of semimodules over commutative
semirings. Semirings with identity and semimodules over such semir-
ings are defined similarly as rings and modules, however with com-
mutative semigroups replacing abelian groups. In this paper we con-
sider only commutative semirings, and semimodules over such semir-
ings. The idempotent subreducts of semimodules are obviously modes,
i.e. they are idempotent and entropic (each singleton is a subalgebra
and each operation is a homomorphism.) For example, in the case
of one ternary operation f(x, y, z) =: (xyz) there are three Szendrei
identities:

(1.1) ((x11X12x13)(X21x22x23)(x31x32x33)) =

((x11X21x13)(X12x22x23)(x31x32x33)),

(1.2) ((x11x12X13)(x21x22x23)(X31x32x33)) =

((x11x12X31)(x21x22x23)(X13x32x33)),

(1.3) ((x11x12x13)(x21x22X23)(x31X32x33)) =

((x11x12x13)(x21x22X32)(x31X23x33)).

Example 1.1. An example we are interested in is the 3-element algebra
(D, f), where D = {0, 1, 2}, with one ternary operation f : D3 →
D; (a, b, c) 7→ f(a, b, c) =: (abc). The operation f is defined by

(abc) :=

{
2− a, if b = c = 1

a otherwise.

It is easy to check that the algebra (D, f) is a mode, but does not
satisfy the identity (1.2). Indeed, ((210)(000)(100)) = (201) = 2 6=
0 = (000) = ((211)(000)(000)). Hence it is not embeddable into a
semimodule over a commutative semiring.

Note that the algebra (D, f) is an “almost left-zero” algebra. It
differs from a left-zero algebra only in two places: (011) = 2 instead of
0 and (211) = 0 instead of 2.

Let us call an algebra (A, f) with an n-ary operation f an i-zero
or i-trivial or just a projection algebra if the operation f is the i-
th projection. Note that an n-dimensional diagonal algebra (A, f) is
always a direct product of n trivial (projection) subalgebras, one 1-zero
(or left-zero) algebra, one 2-zero algebra, and so on. (See [4].) (An n-
zero algebra will also be called a right-zero algebra.) Such algebras
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are embeddable into modules over commutative rings (see e.g. [20]),
whence they satisfy Szendrei identities.

The algebra (D, f) of Example 1.1 can be easily rewritten to obtain
“almost i-zero” ternary 3 element algebra. More generally, similar
examples of almost i-zero algebras can be produced from n-element i-
trivial algebras with one n-ary operation. All such algebras are modes
and none of them satisfies Szendrei identities. Consequently, they do
not embed into semimodules over commutative semirings. To avoid
technical complications, next sections deal only with modes with one
ternary operation that generalize Example 1.1. However, it would be
very easy to extend all the following notions and results to modes with
one n-ary operation for all n ≥ 4.

2. Ternary differential modes and differential groupoids

Let us start with collecting a couple of further remarks concerning
the algebra (D, f).

The algebra (D, f) contains the two element left-zero subalgebra
{0, 2} and has the two element left-zero quotient. It follows that the
variety V(D) generated by (D, f) contains a non-trivial subvariety (gen-
erated by this two element left-zero algebra) of Szendrei modes.

Lemma 2.1. The algebra (D, f) satisfies the following identities:

(2.1) ((xy1y2)z1z2) = ((xz1z2)y1y2) (left normal law),

and

(2.2) (x(y1z1z2)y2) = (xy1y2) = (xy1(y2t1t2)).

We omit an easy proof. Note that the last identities of Lemma 2.1 are
equivalent to the following one:

(2.3) (x(y1z1z2)(y2t1t2)) = (xy1y2) (left reductive law).

Consider now the variety D3 of modes with one ternary operation f ,
defined by the identities (2.1) and (2.3). Call this variety the variety
of ternary differential modes. The variety forms a ternary counterpart
of the variety D2 of differential groupoids. Recall that the variety D2

of differential groupoid modes or briefly differential groupoids is the
variety of groupoid modes defined by the identity

x · xy = x,

or equivalently the idempotent law, the left normal law

xy · z = xz · y,
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and the reductive law

x · yz = x · y.
See [10] (and in particular explanation concerning relations of differen-
tial groupoids and differential groups), and also [7], [8] and [12].

The identities (2.1) and (2.3) are counterparts of the left normal
and reductive identities of differential groupoids. Now it seems quite
obvious that most of the basic properties of differential groupoids carry
over to their ternary counterpart. First easy observation shows that
the varieties D2 and D3 have similar types of axiomatizations.

Proposition 2.2. The variety D3 may be defined by any one of the
three following sets of identities:

(1) the idempotent, left normal and left reductive laws,
(2) the idempotent, entropic and left reductive laws,
(3) the idempotent and entropic laws and the following absorption

law

(2.4) (x(xy1z1)(xy2z2)) = x

Proof. Let us show that the last set of identities implies the second one.
Using first (2.4), then entropic law and finally (2.4) again, we obtain
the following:

(xy1y2) = ((xy1y2)((xy1y2)z1t1)((xy1y2)z2t2))

= ((x(xy1y2)(xy1y2))(y1z1z2)(y2t1t2))

= (x(y1z1z2)(y2t1t2)).

The remaining implications are shown in a similar way. �

Now note that each word x ◦ y on two variables x and y, and with
the left-most variable x, is equivalent in D3 to one of the following

(2.5) xRk
xyR

l
yxR

m
yy.

Here the symbol xRn
ab means ((. . . ((xab)ab) . . . )ab) with ab repeated n

times, and xR0
ab = x. (The meaning of the symbol Rab will be explained

in more details in Section 3.) We omit an easy inductive proof of this
fact that uses left reductive, left normal and idempotent laws.

Proposition 2.3. The binary derived operations x ◦ y of a ternary
differential mode (A, f) determined by any of (2.5) is a differential
groupoid operation.

Proof. As all derived operations of a mode satisfy idempotent and en-
tropic laws (see [12, Corollary 5.5]), it is sufficient to check that these
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operations satisfy the (binary) reductive law. Indeed, the left reductive
law (2.3) implies that

x ◦ (y ◦ z) = xRk
x(y◦z)R

l
(y◦z)xR

m
(y◦z)(y◦z) = xRk

xyR
l
yxR

m
yy = x ◦ y.

�

Note also that the binary derived operations with the left-most variable
y are right differential groupoid operations.

It is well known that each derived operation of a differential groupoid
(G, ·) has the standard form

x1x
k2
2 . . . xkn

n := (. . . (. . . ((. . . (x1 x2) . . . )x2︸ ︷︷ ︸
k2−times

) . . . )xn . . . )xn︸ ︷︷ ︸
kn−times

.

In particular, each ternary derived operation can be written as

x1x
k2
2 x

k3
3 .

Note also that together with the left reductive law, the Szendrei iden-
tities reduce in ternary differential modes to the following ones:

(2.6) ((x11X12x13)X21x31) = ((x11X21x13)X12x31),

(2.7) ((x11x12X13)x21X31) = ((x11x12X31)x21X13).

By the left normal law, they are equivalent.

Proposition 2.4. Let (G, ·) be a differential groupoid. Each ternary
derived operation (x1x2x3) := x1x

k2
2 x

k3
3 defines a ternary differential

mode. Moreover, (G, (x1x2x3)) satisfies the Szendrei identities.

Proof. The operation (x1x2x3) is obviously idempotent and entropic.
Let us check that it satisfies the (ternary) left reductive law. By the
reductive law for differential groupoids one obtains the following:

(x(y1z1z2)(y2t1t2)) = x(y1z
k2
1 z

k3
2 )k2(y2t

k2
1 t

k3
2 )k3 = xyk2

1 y
k3
2 = (xy1y2).

Since (G, ·) is a subreduct of a semimodule over a commutative semi-
ring, so is its ternary reduct (G, (x1x2x3)). Thus it satisfies the Szendrei
identities. �

Lemma 2.5. Each of the (equivalent) Szendrei identities (2.6) and
(2.7) is equivalent, in D3, to the identity

(2.8) (xyz) = ((xyx)xz)

Proof. The new identity is an obvious consequence of the Szendrei iden-
tity (2.6) and the idempotent law. To show the reverse implication, we
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use the new identity, the left reductivity (2.3) and the left normality
(2.1) to obtain the following:

((xyz)uv) = (((xyz)u(xyz))(xyz)v) (by (2.8))

= (((xyz)ux)xv) (by (2.3))

= ((((xyx)xz)ux)xv) (by (2.8))

= ((((xux)xz)yx)xv) (by (2.1))

= (((xuz)yx)xv) (by (2.8))

= (((xyx)xv)uz) (by (2.1))

= ((xyv)uz) (by (2.8))

= ((xuz)yv) (by (2.1))

The second equivalence is proved in a similar way. �

3. Constructing ternary differential modes

It is well known that the variety D2 of differential groupoids coin-
cides with the Mal’cev power LZ ◦LZ of the variety of left-zero bands
relative to the variety of groupoid modes. (See [12, Theorem 5.6.3].)
In particular, this means that each differential groupoid has a left-zero
semigroup as a homomorphic image with left-zero semigroups as blocks
of the corresponding kernel. This gives a good basis for some structure
theorems. We can expect that a similar situation will appear in the
case of ternary differential modes.

In what follows we will use the name of a differential mode to denote
a ternary differential mode, while reserving the name of differential
groupoids for binary differential modes.

First we will describe a certain construction of differential modes,
similar in spirit to a construction known for differential groupoids (see
[7]). Let I be a non-empty set, and let Ai, where i ∈ I, be a family of
non-empty sets. For each triple (i, j, k) ∈ I3, let hi,jk : Ai → Ai be a
mapping such that

(a) hi,ii is the identity mapping on Ai,
(b) hi,jkhi,mn = hi,mnhi,jk.

Define a ternary operation f on the disjoint union A :=
⋃

i∈I Ai by
(aibjck) := aihi,jk, where ai ∈ Ai, bj ∈ Aj, ck ∈ Ak. Here and fre-
quently later on, we follow a familiar convention of denoting elements
in a summand Ai of a sum A by small letters with the same index.
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It is easy to see that each Ai is a subalgebra of (A, f), and is a
left-zero algebra. Moreover, the mapping A → I; ai 7→ i is a ho-
momorphism onto the left-zero algebra (I, f). One routinely checks,
similarly as in the case of differential groupoids, that such a sum (A, f)
of left-zero algebras (Ai, f) over the left-zero algebra (I, f) or briefly,
an LZ ◦ LZ-sum of (Ai, f) is a differential mode.

Next we will show that each differential mode has a left-zero quotient
with corresponding left-zero congruence classes, such that it can be
reconstructed from this quotient and the congruence classes as an LZ ◦
LZ-sum. To provide appropriate decompositions of differential modes,
we will first introduce several congruence relations.

For each pair (b, c) of elements of a differential mode (A, f), consider
the right translation

Rbc : A→ A;x 7→ (xbc).

The set AR = {Rbc | b, c ∈ A} of right translations generates a sub-
monoid R(A) of the endomorphism monoid End(A, f) of the differ-
ential mode. This monoid is called the right mapping monoid of the
differential mode. By left normality, it is a commutative monoid. For
an element a of A, the set

aR(A) := {aϕ | ϕ ∈ R(A)}
is called the orbit of a in A.

Lemma 3.1. Let a be an element of a differential mode (A, f). Then
the orbit aR(A) of a is a subalgebra of (A, f) and is a left-zero algebra.

Proof. Let b, c, d ∈ aR(A). Then there are ϕ, χ, ψ ∈ R(A) such that
b = aϕ, c = aχ, d = aψ. It follows by the left reductive and then by the
left normal and idempotent laws that (bcd) = (aϕ aχ aψ) = (aϕ a a) =
aϕ = b. Hence indeed, the orbit aR(A) is a subalgebra and a left-zero
algebra. �

Two elements a and b of A are said to be in the relation β if the
intersection of their orbits is non-empty:

(3.1) a β b :⇔ ∃c ∈ aR(A) ∩ bR(A).

Note that for each a ∈ A and ϕ ∈ R(A)

(3.2) (a, aϕ) ∈ β,
whence the orbit of a is contained in the β-class of a.

The following theorem is modeled on [10, Theorem 2.6]. Its proof
shows typical similarities and differences between the binary and ternary
cases.
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Theorem 3.2. The relation β of (3.1) is a congruence relation on
(A, f). Moreover, it is the least congruence on (A, f) such that the
quotient (A/β, f) is a left-zero algebra.

Proof. It follows by the definition that β is reflexive and symmetric.
To show that it is transitive let x, y, z ∈ A and x β y β z. This means
that there are υ, ϕ, χ, ψ ∈ R(A) such that xυ = yϕ and yχ = zψ.
Then xυχ = yϕχ = yχϕ = zψϕ, so that x β z, and β is transitive.
Now (3.2) implies that for all a, b ∈ A, one has x β (xab). Thus for any
a, b, c, d ∈ A, and in particular for a β c and b β d, if x β y, then

(xab) β x β y β (ycd).

Hence (xab) β (ycd) by the transitivity, so that β is a congruence re-
lation on (A, f). Moreover, as (x/β a/β b/β) = (xab)/β = x/β, the
quotient (A/β, f) is a left-zero algebra. Finally, suppose that (A/α, f)
is a left-zero algebra. Recall that xυ = yϕ for some υ, ϕ ∈ R(A). Set
υ = Ra1b1 . . . Rambm and ϕ = Rc1d1 . . . Rcndn . Then

x/α = (x/α)R(a1/α) (b1/α) . . . R(am/α) (bm/α) = (xυ)/α

= (yϕ)/α = (y/α)R(c1/α) (d1/α) . . . R(cn/α) (dn/α) = y/α,

whence β ≤ α. �

Note that the largest left-zero quotient of (A, f) (obtained by the least
left-zero congruence) is the left-zero replica of (A, f). (See [12, Section
3.3].)

We will define two more relations γ and δ on a differential mode
(A, f). For a, b ∈ A set

(a, b) ∈ γ :⇔ ∀x, y ∈ A, (xya) = (xyb).

And similarly, for a, b ∈ A set

(a, b) ∈ δ :⇔ ∀x, y ∈ A, (xay) = (xby).

Lemma 3.3. The relations γ and δ are both congruence relations on
(A, f). Moreover the quotients (A/γ, f) and (A/δ, f) are left-zero al-
gebras.

Proof. We prove that γ satisfies the conditions of the lemma. The proof
for δ is similar. The relation γ is obviously an equivalence relation. To
show that it is a congruence relation, let ai, bi ∈ A and ai γ bi for
i = 1, 2, 3. This means that for all x, y ∈ A one has (xyai) = (xybi).
Hence by the left reductive law

(xy(a1a2a3)) = (xya1) = (xyb1) = (xy(b1b2b3)).
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It follows that γ is a congruence relation. Moreover (xy(abc)) = (xya)
for any x, y, a, b, c ∈ A, whence ((abc), a) ∈ γ, and the quotient (A/γ, f)
is a left-zero algebra. �

Now define α := δ ∩ γ.

Lemma 3.4. Both the quotient (A/α, f) and the corresponding con-
gruence classes are left-zero algebras.

Proof. By Lemma 3.3, the congruence β is contained both in γ and in
δ, and hence also in their intersection α. Thus the quotient (A/α) is a
left-zero algebra.

Now let a α b α c. As b γ c, the definition of γ implies that for x = a
and y = b, one has (abb) = (abc). Similarly, since a γ b, one obtains for
x = y = a that a = (aab). Finally, as a δ b, the definition of δ implies
that for x = a and y = b, one has (aab) = (abb). Together this shows
that a = (aab) = (abb) = (abc), whence the α-class of a is a left-zero
algebra. �

Let us note that since the relation β is the smallest congruence on
(A, f) with the left-zero quotient, it follows that β ≤ α, and since all
α-classes are left-zero algebras, also all β-classes have to be left-zero
algebras.

Theorem 3.5. Let θ be a congruence of a differential mode (A, f) such
that β ≤ θ ≤ α. Then θ provides a decomposition of (A, f) into an
LZ ◦LZ-sum of left-zero θ-classes over the left-zero quotient (A/θ, f).

Proof. Let I := A/θ and let Ai be the θ-classes of (A, f). Then
both the quotient and the corresponding congruence classes are left-
zero algebras. Let b θ b′ and c θ c′. Then obviously b (δ ∩ γ) b′ and
c (δ ∩ γ) c′. The definition of δ shows that for x = a and y = c, one
has (abc) = (ab′c). And then the definition of γ shows that for x = a
and y = b′, one has (ab′c) = (ab′c′). Hence (abc) = (ab′c′). Now for
each triple (i, j, k) ∈ I3, ai ∈ Ai and any bj ∈ Aj, ck ∈ Ak define

hi,jk : Ai → Ai; ai 7→ aihi,jk =: (aibjck).

Then clearly

hi,ii : Ai → Ai; ai 7→ aihi,ii = (aibici) = ai.

Moreover, the left normal law implies that for any dm ∈ Am and en ∈
An

aihi,jkhi,mn = ((aibjck)dmen) = ((aidmen)bjck) = aihi,mnhi,jk.

It follows that (A, f) is the LZ◦LZ-sum of the left-zero algebras (Ai, f)
over the left-zero algebra (I, f). �
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Theorem 3.5 shows that, similarly as in the binary case, a ternary
differential mode (A, f) may have many LZ ◦LZ-congruence relations
decomposing it into an LZ ◦LZ-sum. Let us note, that the congruence
α is the greatest such congruence relation. To show this, let θ be an
LZ ◦ LZ-congruence on (A, f) with I := A/θ and the θ-classes Ai, for
i ∈ I. Consider a, b ∈ A with (a, b) ∈ θ. Then a, b ∈ Ak for some θ-
class Ak, with k ∈ I. We verify that (a, b) ∈ γ. Let x ∈ Ai and y ∈ Aj.
Then (xya) = xhi,jk. Since b ∈ Ak, we obtain (xyb) = xhi,jk = (xya).
Similarly we verify that (a, b) ∈ δ. Hence, (a, b) ∈ γ ∩ δ = α. It follows
that all congruence relations of a differential mode (A, f) providing an
LZ ◦ LZ-sum decomposition contain β and are contained in α.

Example 3.6. The algebra (D, f) of Example 1.1 decomposes as the
LZ ◦ LZ-sum of two subalgebras D0 = {0, 2} and D1 = {1} with
xh0,11 = 2− x and otherwise xhi,jk = x.

Example 3.7. A differential mode may have a congruence with left-
zero quotient and left-zero congruence classes that do not provide a
decomposition into an LZ ◦ LZ-sum. Let A = {0, 1, 2, 3}. Define
a ternary operation f on A by (312) = 0, (012) = 3 and otherwise
(xyz) = x. It is easy to check that (A, f) is a differential mode, and
that the relations α and β coincide, and have three congruence classes
{0, 3}, {1}, {2}. The relation γ has two classes A3 = {0, 1, 3} and
A2 = {2} and the relation δ also has two classes A0 = {0, 2, 3} and
A1 = {1}. Both have left-zero quotients and left-zero classes. But
none of them provides an LZ ◦LZ-sum. Indeed, if say δ would provide
such a decomposition, then we should have x0h0,10 = (x0y1z0) for any
choice of z0 in A0. However (012) = 3 but (013) = 0.

Example 3.8. Though the orbit of each element of a differential mode
is always contained in one β-class, the relation between orbits and β-
classes may be quite complicated. Consider the following example. Let
A be the disjoint sum of the set R of real numbers and one element set
{∞}. Define the ternary operation f on A by setting

(abc) :=

{
a+ 1, if a ∈ R and (b = ∞ or c = ∞);

a, otherwise.

It is easy to check that (A, f) is a differential mode with two α-classes
R and {∞}. For any a ∈ R, the orbit aR(A) consists of all numbers
a+n for positive integers n. The relation β may be described as follows.
First ∞/β = {∞}. Then for any a, b ∈ R,

a β b ⇔ a− b ∈ Z.
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It follows that for each a ∈ R, one has a/β = {a + c | c ∈ Z} and
aR(A) ⊂ a/β. The quotient set R/β coincides with the underlying set
of the quotient group R/Z.

Example 3.9. A differential mode (A, f) is called k-cyclic if it satisfies
the k-cyclic law

(3.3) xRk
yz = x,

for some k ∈ N. For any two elements a and b of such a mode, the
orbits aR(A) and bR(A) either coincide or are disjoint, and the β-
classes coincide with the orbits of (A, f). An example of an k-cyclic
differential mode is given by the algebra (Zk2 , k), where

k(a, b, c) := a− bk + ck.

Example 3.10. A finite differential mode (A, f), with β-classes Ai for
i ∈ I, can be represented by a labeled directed graph with elements
of A as vertices, and edges labeled by pairs (j, k) ∈ I2. There is an
edge from bi ∈ Ai to ci ∈ Ai labeled by (j, k) if for any xj ∈ Aj and
any yk ∈ Ak, ci = (bixjyk) = bihi,jk. The β-classes provide connected
components of the graph. Each element of a β-class is an initial point of
precisely |I×I| edges. See [5] for a similar representation of differential
groupoids.

Let LZ3 be the variety of ternary left-zero algebras. Let LZ3 ◦ LZ3

be the Mal’cev product of LZ3 and LZ3 relative to the variety of all
modes with one ternary operation. (See [12, Section 3.7].)

Corollary 3.11. The variety D3 of differential modes coincides with
the Mal’cev power LZ3 ◦ LZ3.

Proof. By Theorem 3.5, D3 ⊆ LZ3 ◦ LZ3. Now assume that a mode
(A, f) is in LZ3 ◦ LZ3. There is a congruence θ of (A, f) such that
(A/θ, f) is in LZ3 and for each a ∈ A, the subalgebra (a/θ, f) is also
in LZ3. The first statement implies that (a/θ b/θ c/θ) = (abc)/θ =
a/θ for any a, b, c ∈ A, whence the elements a, (abc) and (ab′c′) are
in the class a/θ. As (a/θ, f) is a left-zero algebra, it follows that
(a(abc)(ab1c1)) = a. Hence the absorption law holds in (A, f), and
(A, f) is a differential mode. �

4. Free ternary differential modes

First we show that an identity satisfied in a non-trivial differential
mode must have the same leftmost variables.

Lemma 4.1. If a differential mode satisfies an identity with different
leftmost variables, then it is trivial.
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Proof. As each differential mode is an LZ ◦ LZ-sum of left-zero subal-
gebras, it follows that the variety LZ3 is the only non-trivial minimal
subvariety of the variety D3. Now an identity holds in the variety LZ3

precisely if its leftmost variables are equal. Hence an identity satisfied
by a differential mode must have leftmost variables equal and a dif-
ferential mode satisfying an identity with different leftmost variables
must be trivial. �

Let n := {1, . . . , n}. Consider the cartesian product n×n and denote
its elements just as strings ij without commas and parentheses. Let X
be a set of variables, and F (X) := FD3(X) be the free D3-algebra over
X. We will identify elements of F (X) with words (terms) representing
them.

For xi, xj ∈ X, denote the right translation Rxixj
: F (X) → F (X)

by Rij. We will frequently use the “right translation” notation when
writing words and identities. This allows us to reduce the number of
parentheses, and clearly shows the structure of words and of algebras
being constructed.

Theorem 4.2. If w = w(x1, . . . , xn) is an element of the free D3-
algebra F (X) over a set X, the set {x1, . . . , xn} is precisely the set of
variables in w and x1 is its leftmost variable, then w may be expressed
in the standard form

(4.1) x1R
k12
12 . . . Rk1n

1n Rk21
21 . . . Rk2n

2n . . . Rkn1
n1 . . . Rknn

nn ,

where the indices ij run over the set n × n and are ordered lexico-
graphically. The algebra F (X) is the LZ ◦ LZ-sum of the orbits of its
generators in X.

Note that kij = 0 is possible, and in this case yR
kij

ij = y.

Proof. We omit a standard inductive proof of the first part, showing
that w has the required form. It is similar to the binary case, and
follows directly by the defining identities of differential modes. By
Lemma 4.1, the orbits of any two generators are disjoint. The last
statement of the theorem follows by the fact that the decomposition of
F (X) into the union of orbits of generators in X provides an LZ ◦LZ
decomposition of F (X). The mappings hi,jk : Ai → Ai, where Ai is the
orbit of xi, defined by ai 7→ (aixjxk), satisfies the defining conditions
of the LZ ◦LZ-sum. Indeed, the operation f applied to three elements
of one orbit provides always the leftmost element. When applied to
elements wi, wj and wk of the orbits of xi, xj and xk, respectively, the
results is (wixjxk), and it may be easily reduced to the form of (4.1).
In particular, this shows the uniqueness of the standard form. �
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For a variety V of differential modes, let us call the subvariety Sz(V),
defined by any of the Szendrei identities (2.6) and (2.7), the Szendrei
subvariety of V , and its members Szendrei modes. In particular, Sz(D3)
is the subvariety of all Szendrei differential modes. Next theorem will
describe free Szendrei differential modes. First we present a technical
lemma that will help with subsequent calculations.

Lemma 4.3. In each differential mode, the Szendrei identities imply
the following

(a) xRk
yzR

k+i
zt = xRk

ytR
k
zzR

i
zt;

(b) xRk+i
yz Rk

zt = xRk
ytR

k
zzR

i
yz;

(c) x1R
k
12 . . . R

k
1nR

k
21 . . . R

k
2n . . . R

k
n1 . . . R

k
nn = x1R

kn
22 . . . R

kn
nn;

(d) xRk
12R

k
23 . . . R

k
n−1n = xRk

22 . . . R
k
n−1n−1R

k
1n,

for all positive integers k and natural i.

Proof. Applying the Szendrei identity of (2.6) and the left normal law,
one gets

xRk
yzR

k+i
zt = xRk

yzR
k
ztR

i
zt = xRk

ytR
k
zzR

i
zt.

This proves (a), and (b) is proved in a similar way. Easy inductive
proofs of (c) and (d) are left to the readers. �

Theorem 4.4. If w = w(x1, . . . , xn) is an element of the free Sz(D3)-
algebra FSz(X) over a set X, the set {x = x1, . . . , xn} is precisely the
set of variables in w and x is its leftmost variable, then w may be
expressed in the standard form

(4.2) xRk11
i1j1
Rk22

i2j2
. . . Rkss

isjs
,

where ip, jp ∈ {1, . . . , n}, for each p = 1, . . . , s,

i1 ≤ · · · ≤ is and j1 ≤ · · · ≤ js.

Moreover (xip , xjp) 6= (xiq , xjq) for p 6= q, and

x /∈ {xi1 , . . . , xis} ∩ {xj1 , . . . , xjs}.
The algebra FSz(X) is the LZ ◦ LZ-sum of the orbits of its generators
in X.

Proof. By Theorem 4.2, each element w of FSz(X), can be presented
in the form (4.1).

We show that in the variety of Szendrei modes, each such term can
be reduced to the form (4.2). First note that there is one term x in
the standard form with one variable x. Then, by Lemma 4.3, all terms
with two variables x1 and x2 can be reduced to one of the following:

xRk12
12 , xRk21

21 , xRk22
22 , xRk12

12 R
k22
22 and xRk21

21 R
k22
22 .
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(Note that xRk12
12 R

k21
21 equals xRk12−k21

12 Rk21
22 or xRk21−k12

21 Rk12
22 .) Then

consider a general term in the form (4.1). Using Szendrei identities, we
can reorder arbitrarily variables in the set {xi1 , . . . , xis+1} and in the set
{xj1 , . . . , xjs+1}. Finally, if x appears among both the {xi1 , . . . , xis+1}
and {xj1 , . . . , xjs+1}, then both occurrences are moved, using Szendrei
identities, to the leftmost x, and then disappear by idempotency. �

Let us call a differential mode (A, f) hemisemiprojection if it satisfies
the identities

(4.3) (xxy) = (xyx) = x.

We will show that almost all modes in the variety hs(D3) of hemisemipro-
jection differential modes are not Szendrei modes.

Proposition 4.5. The Szendrei subvariety of the variety hs(D3) coin-
cides with the variety LZ3 of the left-zero algebras.

Proof. By Lemma 2.5, the Szendrei identities are equivalent to the
identity (2.8). Hence in each hemisemiprojection Szendrei mode,

(xyz) = ((xyx)xz) = (xxz) = x.

Obviously, LZ3 ⊆ hs(D3). �

Proposition 4.5 allows us to find a new family of modes non-embeddable
into semimodules over commutative semirings.

Corollary 4.6. A hemisemiprojection mode embeds as a subreduct into
a semimodule over a commutative semiring if and only if it is a left-zero
algebra.

Example 4.7. It can be easily checked that the basic algebra (D, f)
of Example 1.1, not embeddable into a semimodule over a commuta-
tive semiring, is a hemisemiprojection mode, but satisfies also other
identities, as e.g. (xyz) = (xzy) and ((xyz)yz) = x.

Proposition 4.8. If w = w(x, x1, . . . , xn) is an element of the free
hs(D3)-algebra Fhs(X) over a set X, the set {x, x1, . . . , xn} is precisely
the set of variables in w and x is its left-most variable, then w may be
expressed in the standard form

(4.4) xRk12
12 . . . Rk1n

1n . . . Rkn1
n1 . . . R

knn−1

nn−1 ,

where the indices ij run over the set n × n and are ordered lexico-
graphically. The algebra Fhs(X) is the LZ ◦LZ-sum of the orbits of its
generators in X.

Note that, similarly as in the case of Theorem 4.2, kij = 0 is possible,

and in this case yR
kij

ij = y.
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Proof. The proof follows directly by Theorem 4.2, the hemisemiprojec-
tion laws and left-normal law. �

A hemisemiprojection mode satisfying the identity

(xyy) = x

is called semiprojection. The variety of semiprojection modes is de-
noted by sp(D3). As shown by I. Rosenberg [15] clones generated by an
n-ary semiprojection operation belong to five types of minimal clones.
In [3], K. Kearnes and A. Szendrei have shown that semiprojection
modes are always differential.

Free (ternary) semiprojection modes can be characterized in a similar
way as free hemisemiprojection modes.

Corollary 4.9. If w = w(x, x1, . . . , xn) is an element of the free sp(D3)-
algebra Fsp(X) over a set X, the set {x, x1, . . . , xn} is precisely the set
of variables in w and x is its left-most variable, then w may be expressed
in the standard form

(4.5) xRk12
12 . . . Rk1n

1n . . . Rkn1
n1 . . . R

knn−1

nn−1 ,

where the indices ij run over the set n× n− {22, 33, . . . , nn} and are
ordered lexicographically. The algebra Fsp(X) is the LZ ◦ LZ-sum of
the orbits of its generators in X.

Example 4.10. An example of a non-Szendrei semiprojection mode
is provided by the following Lz ◦ Lz-sum. Let A0 and C = {ci | i ∈ I}
be two disjoint non-empty sets and let Ai = {ci} for i ∈ I. Assume
that A0 has at least two elements. Let A =

⋃
i∈I Ai be the Lz ◦Lz-sum

of Ai by the mappings hi,jk, where all mappings hi,jk with i 6= 0, are
identity mappings, at least one of h0,ij is not the identity mapping,
and the ternary operation f is defined by (a0cicj) = a0h0,ij for a0 ∈ A0

and (xyz) = x otherwise. It is easy to check that the algebra (A, f) is
a non-Szendrei hemisemiprojection mode, and in the case all h0,ii are
also identity mappings, it is a semiprojection mode. In particular, the
differential mode of Example 3.7 belongs to this family.

5. Identities and varieties

The lattice of varieties of differential groupoids is well-known. (See
[7].) Each proper non-trivial subvariety of D2 is defined by the axioms
of D2 and additional unique identity of the form xyi+j = xyi for some
natural number i and positive integer j. These subvarieties form the
lattice L(D2)

− isomorphic with the direct product of two lattices of
natural numbers, one with the divisibility relation as an ordering re-
lation and the other one with the usual linear ordering. We will show
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that the lattice of varieties of differential modes is much more compli-
cated. Though proper non-trivial finitely based varieties can be defined
also by one more additional identity, the number of variables in such
identities grow rapidly, and there are varieties not having a finite basis
for their identities.

Note that by Lemma 4.1, if an identity t = w holds in a non-trivial
differential mode, then both t and w have the same leftmost variable.
Moreover, by Theorem 4.2, both t and w can be written in the standard
form described in this theorem.

Let X = {x1, . . . , xm} and Y = {y1, . . . , yn}. Denote a term

t = x1R
k11
11 R

k12
12 . . . Rk1m

1m . . . Rkm1
m1 . . . R

kmm
mm

over X by x1Rk(X), and similarly a term

w = y1R
i11
11 R

i12
12 . . . R

i1n
1n . . . R

in1
n1 . . . R

inn
nn

over Y by y1Ri(Y ), where k denotes the sequence (k11, . . . , kmm) and i
has a similar meaning.

Lemma 5.1. Let x1 = y1 =: x and X ∩ Y = {x}. Assume that
t1 := xRk(X), t2 := xRl(X), w1 := xRi(Y ), w2 := xRj(Y ). Then the
identities

t1 = xRk(X) = xRl(X) = t2 and w1 = xRi(Y ) = xRj(Y ) = w2

are satisfied in D3 if and only if the identity

xRk(X)Ri(Y ) = xRl(X)Rj(Y ).

holds in D3.

Proof. (⇒) Substitute xRk(X) for x in w1 and xRl(X) for x in w2. Left
reductivity shows that at any non-leftmost occurrence of x, the word
xRp(X) will then reduce to x, and finally we obtain xRk(X)Ri(Y ) =
xRl(X)Rj(Y ).

(⇐) Now consider xRk(X)Ri(Y ) = xRl(X)Rj(Y ), and first sub-
stitute x for all variables in Ri(Y ) and Rj(Y ). Then left normal-
ity and idempotency implies t1 = xRk(X) = xRl(X) = t2. Simi-
larly, substitute x for all variables in Rk(Y ) and Rl(Y ) and deduce
w1 = xRi(Y ) = xRj(Y ) = w2. �

Theorem 5.2. Every proper subvariety of the variety D3 either has
an equational basis consisting of the axioms of D3 and one additional
identity, or is non-finitely based.

Proof. This follows directly by Lemma 5.1, since without loss of gener-
ality we can always assume that in any two identities (like in Lemma
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5.1) satisfied in a subvariety in question, x1 = y1 =: x and X ∩ Y =
{x}. �

Example 5.3. The variety V(D), generated by the algebra D = (D, f)
of Examples 1.1 and 4.7, is relatively based by the identities (xxy) = x,
(xyz) = (xzy) and ((xyz)yz) = x of Example 4.7. This can be eas-
ily checked as follows. The identities above and Proposition 4.8 imply
that the free V(D)-algebra on two generators x and y consists of four
elements: x, y, (xyy) and (yxx), with two disjoint orbits {x, (xyy)} and
{y, (yxx)}. The two generated algebra D is obviously a homomorphic
image of the free V(D)-algebra on two generators, by the homomor-
phism defined as follows: x 7→ 0, (xyy) 7→ 2 and y, (yxx) 7→ 1. Now the
elements of the free V(D)-algebra on a set X = {x1, . . . xn}, for n > 1,
as in Proposition 4.8, may be expressed in the standard form

x1R
k22
22 . . . Rk2n

2n . . . R
kn−1n−1

n−1n−1R
kn−1n

n−1n R
knn
nn ,

where each kij is 0 or 1. Observe that each such element is determined
by the first variable and a set of unordered pairs of X−{x1}. It is easy
to check that different terms have different values in D. By Lemma 5.1
and Theorem 5.2, the variety V(D) can be defined by one additional
identity

x1R12R34R
2
56 = x1R43.

Let us note that when decreasing the number of identities defining
a subvariety of the variety D3, the number of variables grows quickly.

Next theorem shows that indeed there are varieties of differential
modes not having a finite basis for their identities. Before formulating
this theorem let us describe certain family of differential modes that
will play a crucial role in the proof.

Example 5.4. For a natural number n, let B := 2n+1, where 2 :=
{0, 1}, and let C0 := B ∪ {∞}. Assume that I = {0, 1, . . . , n+ 1} and
let Ci := {ci}, for i = 1, . . . , n + 1, be a family of one-element sets,
and C := {ci | i = 1, . . . , n + 1}. For each triple (i, j, k) ∈ I3, we will
define mappings hi,jk : Ci → Ci satisfying the defining conditions of
LZ ◦LZ-sums as follows. First define auxiliary functions pi : C0 → C0,
for i = 1, . . . , n+ 1, by

(b1, . . . , bi−1, 1, bi+1, . . . , bn+1) 7→ (b1, . . . , bi−1, 0, bi+1, . . . , bn+1),

(b1, . . . , bi−1, 0, bi+1, . . . , bn+1) 7→ ∞,

∞ 7→ ∞.

Then in the case n = 0, put h0,01 = p1, let h0,10 and h0,11 take C0 to ∞,
and let all the remaining maps be the identity mappings. For n > 0
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put
h0,01 = h0,10 = p1, h0,nn+1 = pn+1,

and for i = 1, . . . , n− 1,

h0,ii+1 = h0,i+1i = pi+1.

Define hi,ii and all mappings hi,jk for i 6= 0 to be identity mappings, and
all other mappings h0,jk to be constant mappings taking all elements
of C0 to ∞. It is easy to see that any two of these mappings commute.
Note also that h0,ij = h0,ji unless {i, j} = {n, n + 1}, and that pipi

is the constant mapping taking all elements of C0 to ∞. A ternary
operation f = (xyz) is defined on the disjoint union An :=

⋃
i∈I Ci of

all Ci by
(xiyjzk) = xihi,jk,

for xi ∈ Ci, yj ∈ Cj, zk ∈ Ck. Note in particular that for n > 0,

(x0y0ci) = (x0x0ci) = (x0cix0) = (x0ciy0),

(∞yjzk) = ∞,

and in the cases i = j = k or i 6= 0, j 6= 0 and k 6= 0,

(xiyjzk) = xi.

Then obviously, each algebra An := (An, f) is the Lz ◦ Lz-sum of left-
zero algebras (Ci, f) over the left-zero algebra (I, f), and hence is a
differential mode. Note also that C0 and C, as well as C ∪ {∞} are
subalgebras of An and are left-zero algebras, and that the set {1 :=
(1, . . . , 1), c1, . . . , cn+1} is the unique minimal set of generators of the
algebra An.

Theorem 5.5. Let V be the subvariety of the variety D3 defined by the
identity

(d2,3) xR3
yz = xR2

yz

and for natural numbers n all the identities

(en) xR01R12R23 . . . Rn−1nRnn+1 = xR01R12R23 . . . Rn−1nRn+1n,

where x = x0 and Rij is Rxixj
. The variety V is locally finite, but has

no finite basis for its identities.

Proof. First note, that by Theorem 4.2 and (d2,3), each term represent-
ing an element of a finitely generated free V-algebra, can be reduced
to the form of (4.1) with all kij not bigger than 2. It follows that such
free algebras are finite and hence V is locally finite.

Next observe that the identity (en+1) implies the identity (en). In-
deed, it is enough to substitute x for x1 in (en+1) to obtain (en). It
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follows that if a differential mode does not satisfy (en) for some n, then
it does not satisfy (em) for any m ≥ n.

We will prove that the variety V has no equational basis with a finite
number of variables. We will achieve this by first showing that for no
n, the algebra An satisfies the identity (en) (which has n+2 variables),
and then by showing that the proper subalgebras of each algebra An,
generated by n+ 1 elements, belong to V , i.e. each An satisfies all the
identities of V in n+ 1 variables. Note that all algebras An satisfy the
identity (d2,3).

We first show that the algebra An does not satisfy the identity (en).
Indeed,

((...((11c1)c1c2)...)cn−1cn) = 1h0,01h0,12...h0,n−1n = (0, . . . , 0, 1),

and hence

(((...((11c1)c1c2)...)cn−1cn)cncn+1) = (0, . . . , 0, 1)h0,nn+1 = (0, . . . , 0, 0),

while

(((...((11c1)c1c2)...)cn−1cn)cn+1cn) = (0, . . . , 0, 1)h0,n+1n = ∞.

Now we will prove that each algebra An satisfies all identities true
in V involving n + 1 variables, i.e. all identities (em) for m < n, and
all consequences of (em) for m ≥ n, with n+ 1 variables.

Note that each identity of V is satisfied by the subalgebras C0 and
C ∪∞ of An. We only need to check if the identities (em) are satisfied
in any (n+1)-generated subalgebra of An in the case x0 = a0 ∈ B and
at least one of xi, for i > 0, is ci. For any such choice of elements of
An, we obtain

(5.1) lm := a0h0,0i1h0,i1i2 . . . h0,imim+1 ,

where all ik are in I, on the left-hand side of (em) and

(5.2) rm := a0h0,0i1h0,i1i2 . . . h0,im+1im

on the right-hand side.
Note that (e0) is satisfied in all An for n > 0. And consider the

smallest m such that the identity (em) fails in An. If i1 = 0, we go
back to (em−1), which holds by our assumption. So assume that i1 ≥ 1.
If i1 > 1, then lm = rm = ∞, so assume that i1 = 1. If i2 = 0 or i2 6= 2,
then again lm = rm = ∞. So we may assume that i2 = 2. Continuing
in the same way, we end up with the following

(5.3) lm := a0h0,01h0,12 . . . h0,mm+1,

and

(5.4) rm := a0h0,01h0,12 . . . h0,m+1m,
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where any two indices i, i+ 1 are different.
First assume that m = n− 1. Then as in this case h0,n−1n = h0,nn−1,

it follows that lm = rm, and consequently (en−1) and all (em) for m < n
are satisfied, a contradiction with the assumption that (em) fails in An.

Now assume that m ≥ n. Left reductivity, (d2,3) and the fact that
x0pipi = ∞ in An, show that it is enough to consider all identities
in n + 1 variables resulting through identification of some variables in
(em). In particular, it means that some of ik in lm and rm must be
equal. However, this is not possible, since any two indices i, i+ 1 in lm
and rm are different and m ≥ n.

It follows that the consequences of (em) with n + 1 variables are
satisfied in An. �

Remark 5.6. Note that each of the subvarieties V(An) = HSP(An)
for n > 0 contains the variety V of Theorem 5.5. It is easy to check
that the algebras An, for n > 0, do not satisfy the identity (2.8).
Indeed, (1c1c2) = 1h0,12 = 1p2 = (1, 0, 1, . . . , 1), while ((1c11)1c2) =
1h0,10h0,02 = ∞. In particular, for n = 2, the subalgebra generated by
these three elements belongs to the variety V . It follows, that none of
the varieties V and V(An) are Szendrei varieties.

Let us call a set of identities defining a subvariety V of D3 (like e.g.
the set consisting of (d2,3) and all (en)) a relative basis of V .

Corollary 5.7. There is no upper bound on the number of variables
in relative bases of subvarieties of the variety D3.

Consequently, one cannot hope for any convenient description of the
whole lattice L(D3) of subvarieties of D3.

However, the lattice L(D3) contains sublattices isomorphic to the
lattice of subvarieties of the variety D2, that are not difficult to trace.

Example 5.8. By Proposition 2.3, each of the derived binary opera-
tions of differential modes is in fact a differential groupoid operation.
Consequently, each subvariety of D3 defined by one additional identity
of the form (xyz) = xRk

xyR
l
yxR

m
yy (see (2.5) and Proposition 2.3), is

equivalent to the variety of differential groupoids. (Similar reasoning
would apply to an operation depending on the variables x and z.) The
defining identities of the subvarieties of D2, when applied to the de-
rived operation x ◦ y := xRk

xyR
l
yxR

m
yy, define also subvarieties of the

variety D3, and provide a sublattice of the lattice L(D3) of varieties
of differential modes, isomorphic to the lattice L(D2) of subvarieties of
D2. For example the operation (xyz) = x ◦ y = ((xxy)yx) determines
the subvarieties defined by the identities

xRi+j
xy R

i+j
yx = xRi

xyR
i
yx.
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Remark 5.9. Similarly as in the case of (binary) differential groupoids,
a (non-trivial ternary) differential mode is never equivalent to an affine
semimodule over a commutative semiring (and in particular to an affine
space over a commutative ring). If (A, f) would be equivalent to an
affine semimodule, then one of the derived binary operations would be
a commutative semigroup operation. This is not possible in non-trivial
differential modes. In particular, a differential mode cannot have a
semilattice derived operation. It follows also, that a non-trivial variety
of differential modes is neither equivalent to a variety of affine spaces
over a commutative ring, nor to a variety of semilattice modes.
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