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Definitions and basic results
A lower bound of some critical point

An upper bound of some critical points

Semilattice
Regular rings
the dimension monoid of a lattice

The Conc functor

All our semilattices are (∨,0)-semilattices.

For any algebra A we denote by Conc A the set of compact
congruences of A.
Conc A is a semilattice for all algebra A.
For f : A→ B. We put:

Conc f : Conc A→ Conc B
α 7→ ΘB({(f (x), f (y)) | (x , y) ∈ α})

Conc is a functor from any variety of algebras to the variety
of semilattices.
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Critical point

A congruence lifting of a semilattice S is an algebra A such
that Conc A ∼= S.

We denote by Conc V the class of all semilattice with a
congruence lifting in V.
crit(V1;V2) = min{card S | S ∈ Conc V1 − Conc V2}.
crit(M3;D) = ℵ0.
crit(V;Vd ) =∞.
crit(N5;D) = 5.

crit(M0,1
n ;M0,1

m ) = ℵ2 for all n > m ≥ 3
(M. Ploščica, 2000)
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Von Neumann Regular rings

A ring R is a regular ring if for all x ∈ R there exists y ∈ R
such that x = xyx .

Mn(F ) the ring of n× n matrices with entries from a field F ,
is a regular ring.
Given a ring R, we denote by L(R) the set of all principal
left-ideals of R.
If R is unital, then L(R) is bounded.
L(Mk1(F )×Mk2(F )× · · · ×Mkn (F )) ∼=
Sub(F k1)× Sub(F k2)× · · · × Sub(F kn ).
We denote by Idc(R) the set of all finitely generated
two-sided ideals of R.
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The K0 functor

Given a unital ring R. We denote by V (R) the commutative
monoid of all isomorphism classes of finitely generated
projective right R-modules.

We denote by K0(R) the preordered universal group of
V (R).
[R] the class of R is an order unit of K0(R).
Let F be a field, set R = Mk1(F )×Mk2(F )× · · · ×Mkn (F ),
then K0(R) ∼= Zn, and it maps [R] to (ki)1≤i≤n.
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The dimension monoid of a lattice

Dim L is the commutative monoid defined by generators
∆(a,b), a ≤ b in L and relations
(D0) ∆(a,a) = 0, for all a ∈ L
(D1) ∆(a, c) = ∆(a,b) + ∆(b, c), for all a ≤ b ≤ c in L.
(D2) ∆(a,a ∨ b) = ∆(a ∧ b,b), for all a,b in L.
(introduced by F. Wehrung in 1998).

K `
0(L) is the preordered universal group of Dim(L).

If L is a bounded lattice, then ∆(0,1) is an order unit of
K `

0(L)

Let L be a finite modular lattice. Put X = M(Con L).
Then K `

0(L) ∼= ZX , and it maps ∆(0,1) to (lh(L/θ))θ∈X
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Categories

Let Λ be the category of lattices.

Let P be the category of preodered abelian groups.
Let S be the category of semilattices.
Let R be the category of regular rings with unit.
For G ∈P, put ∇(G) = G+/�, where G+ is the monoid of
positive elements of G and � is the smalest congruence of
M+ such that G+/� is a semilattice.
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Relations of those functors

K0, L, Idc, K `
0 , ∇ and Conc are all functor,

and the following
diagram is commutative (up to natural equivalences) :

Λ
K `

0 //

Conc

��@
@@

@@
@@

@@
@@

@@
@@

@ P

∇

��

R
K0oo

L

��

Idc

~~~~
~~

~~
~~

~~
~~

~~
~~

S Λ
Conc

oo
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An upper bound of some critical points

Statement
Proof

A lower bound of some critical point

Theorem
Let V be a variety of locally finite modular lattices. Let F be a
field, let n ∈ N such that lh(K ) ≤ n for all K simple lattices of V.
Then :

crit(V; Var(Sub F n)) ≥ ℵ2

If L ∈ V, such that card L ≤ ℵ1, then there exists R a regular
ring, such that Conc L ∼= Conc(L(R)) and L(R) ∈ Var(Sub F n).
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A diagram ofMn

For P ∈ In, we put
AP = {ak | k ∈ P} ∪ {0,1}
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An upper bound of some critical points

Statement
A diagram ofM0,1

n
Corollary

Norm-covering

A kernel of a poset U is a finite subset V of U, such that
{v ∈ V | v ≤ u} has a largest element for all u ∈ U.

We denote by V · u this element.
A poset U is supported if all finite subset can be extended
to a kernel of U.
(U, |·|) is a norm-covering of I if U is a supported poset
and |·| : U → I is isotone.
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n
Corollary

A Norm-covering of In

Put:
Un =

⋃
P⊆{1,...,n}

ℵP
2 .

We view the elements of Un as (partial) functions and “to
be greater" means “to extend".
Put:

|·| : Un → In

u 7→ |u| =

{
dom u if card(dom u) ≤ 2
{1, . . . ,n} otherwise.

(Un, |·|) is a norm-covering of In.
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n
Corollary

Condensate

Let ~D = (DP , φP,Q)P≤Q in In be a direct system of finite
semilattices.

For V support of Un, we put:

Cond(~D,V ) =

(αu)u∈Un ∈
∏

u∈Un

D|u| | αu = φ|V ·u|,|u|(α|V ·u|)


We have Cond(~D,V ) ∼=

∏
v∈V D|v |.

We put:

Cond(~D,Un) =
⋃
{Cond(~D,V ) | V support ofUn}

We have card Cond(~D,Un) = ℵ2.
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A lower bound of some critical point

An upper bound of some critical points

Statement
A diagram ofM0,1

n
Corollary

Congruence lifting lemma

Using an infinite combinatorial property proved by A. Hajnal
and A. Máté, we obtain a “nice" infinite combinatorial property
of (Un, |·|).

Theorem
Let V be a finitely generated variety of lattices. Let
~D = (DP , φP,Q)P≤Q in In be a direct system of finite semilattices.
Then the following conditions are equivalent:

1 ~D has a lifting in V.
2 Cond(~D,Un) has a lifting in V.
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A lower bound of some critical point

An upper bound of some critical points
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A diagram ofM0,1

n
Corollary

Proof idea

Theorem
Let V be a finitely generated variety of lattices such that Mn 6∈ V
and simple lattice of V are of length at most three, then:

crit(Mn;V) ≤ ℵ2

The diagram ~D = Conc ◦~A is not liftable in V. Thus
Cond(~D,Un) is not liftable in V.

The diagram ~D is liftable inMn. Thus Cond(~D,Un) is
liftable inMn.
Moreover card Cond(~D,Un) = ℵ2
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we denoteMn,m the variety generated by Mn,m
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n
Corollary

Critical points

Corollary
The following equalities hold

crit(Mn;Mm,m) = ℵ2;

crit(Mn;Mm) = ℵ2 for all n,m with 3 ≤ m < n ≤ ω.

Let F be a finite field, and n ≥ 4 such that card F < n − 1, then:

crit(Mn; Var(Sub F 3)) = ℵ2

The lattice Mn is neither inMm,m, nor inMm, nor in Sub F 3.
The lattice Sub F2

2
∼= M3 is inMm,m andMm and Sub F 3.
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Let K and F be finite fields such that card K > card F, then:

crit(Var(Sub K 3); Var(Sub F 3)) = ℵ2.
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Let V be a finitely generated variety of lattices such that
M3 ∈ V, then:

crit(Mω;V) = ℵ2.

P. Gillibert Further critical point between varieties of lattices



Definitions and basic results
A lower bound of some critical point

An upper bound of some critical points

Statement
A diagram ofM0,1

n
Corollary

Critical points

Corollary
Let K and F be finite fields such that card K > card F, then:

crit(Var(Sub K 3); Var(Sub F 3)) = ℵ2.

Corollary
Let V be a finitely generated variety of lattices such that
M3 ∈ V, then:

crit(Mω;V) = ℵ2.

P. Gillibert Further critical point between varieties of lattices



Definitions and basic results
A lower bound of some critical point

An upper bound of some critical points

Statement
A diagram ofM0,1

n
Corollary

That is all
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n
Corollary

Lifting with K0

Let L be a bounded lattice such that card L ≤ ℵ1.

Let I be a two ladder of cardinality ℵ1. Let ~L = (Li)i∈I be a direct
system of finite bounded sublattices of L such that L =

⋃
i∈I Li .

Set Xi = M(Con Li). Put:

Ri =
∏
α∈Xi

Mlh(Li/α)(F )

we have K0(Ri) ∼= K `
0(Li).

the order unit [Ri ] is mapped to ∆(0,1).

L(Ri) =
∏
α∈Xi

Sub(F lh(Li/α)) is in Var(Sub F n).
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Definitions and basic results
A lower bound of some critical point

An upper bound of some critical points

Statement
A diagram ofM0,1

n
Corollary

Lifting with K0

Using a result of Goodearl about lifting of morphism of ordered
group we obtain a direct system ~R = (Ri , fi,j)i≤j∈I ,

such that K0 ◦ ~R ∼= K `
0 ◦ ~L

hence ∇(K0(lim ~R)) = ∇(K `
0(L)),

thus Conc L(lim ~R) ∼= Conc L.
Moreover L(Ri) ∈ Var(Sub F n) for all i ∈ I, Therefore
L(lim ~R) ∈ Var(Sub F n).
This can be extended to the unbounded case.
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