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Stralka’s example

Stralka (1980) showed that there is a compact, totally
disconnected partial order that is not a Priestley space.
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We will generalise this result.



Graphs

Definition
A digraph G = 〈G;∼〉 is a set of vertices G with a binary
relation ∼ ⊆ G ×G corresponding to the set of edges.

Example

A graph is a symmetric digraph.
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Quasi-equations

Definition
A quasi-equation (or quasi-identity) in the language of digraphs
is a universally quantified (first order) sentence of the form:(

&
i∈I
αi

)
−→ β

where I is finite and possibly empty, and αi , β are expressions
of the form x ∼ y or x = y .

If G is a digraph, we write Thqe(G) to denote the set of
quasi-equations true in G.
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Examples
The class of graphs is axiomatised by the quasi-equation:

x ∼ y −→ y ∼ x .

The class of partial orders is axiomatised by:
1 x ∼ x
2 x ∼ y & y ∼ x −→ x = y
3 x ∼ y & y ∼ z −→ x ∼ z.

Other classes axiomatisable by quasi-equations
The class of pre-orders (also called quasi-orders).
The class of equivalence relations.
The class of k -colourable graphs. (This class is not finitely
axiomatisable, but this fact requires some proof.)
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Residual classes

Theorem (Malcev)
Let G be a finite digraph. Then

R(S(G)) = ISP(G) = Mod(Thqe(G)),

where R(S(G)) is the class of digraphs that are residually
subgraphs of G.

Subgraph in this talk means “induced subgraph".

H is residually a subgraph of G if
for each x , y ∈ H with x 6= y , there exists a homomorphism
φ : H→ G with φ(x) 6= φ(y); and
for each x , y ∈ H with x � y , there exists a homomorphism
φ : H→ G with φ(x) � φ(y)

R(S(G)) is also called the residual class of G.
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Boolean topological digraphs

H is topologically residually a subgraph of G if H is residually a
subgraph of G and the homomorphisms can be chosen to be
continuous.

Let Σ be a set of digraph quasi-equations. Then ModBt(Σ) is
the class of Boolean topological models of Σ, i.e. the class of
digraphs G with a topology T such that:

G satisfies Σ

T is compact and totally disconnected
the edge relation ∼ is topologically closed in G×G.



Boolean topological digraphs

H is topologically residually a subgraph of G if H is residually a
subgraph of G and the homomorphisms can be chosen to be
continuous.

Let Σ be a set of digraph quasi-equations. Then ModBt(Σ) is
the class of Boolean topological models of Σ, i.e. the class of
digraphs G with a topology T such that:

G satisfies Σ

T is compact and totally disconnected
the edge relation ∼ is topologically closed in G×G.



Qe-axiomatisability

Let G be a finite digraph with the discrete topology. Then

RCT(S(G)) = ISP(G) ⊆ ModBt(Thqe(G)),

where RCT(S(G)) is the topological residual class of G, that is,
the class of compact topological digraphs that are topologically
residually subgraphs of G.

Definition
We say that RCT(S(G)) is qe-axiomatisable if

RCT(S(G)) = ModBt(Thqe(G)).

This is equivalent to

RCT(S(G)) = ModBt(Thqe(Σ))

for some set of quasi-equations Σ.
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Stralka’s example: a non-qe-axiomatisable RCT(S(G))

Consider the graph 2:

Note that R(S(2)) = Mod(Thqe(2)) is the class of partial orders,
and RCT(S(2)) is the class of Priestley spaces.

Let X be the inverse limit of the following system:

X
1

X
2

X
3
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The inverse limit

The inverse limit, X:
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X is in ModBt(Thqe(2)) but not in RCT(S(2)). So RCT(S(2)) is not
qe-axiomatisable.

Stralka gave a direct construction of X, but by constructing it as
an inverse system we see how to generalise it.
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Extending Stralka’s example

We extend Stralka’s example to characterise qe-axiomatisability
for classes of reflexive anti-symmetric digraphs.

Theorem
Let G be a finite reflexive anti-symmetric digraph. Then
RCT(S(G)) is qe-axiomatisable if and only if 2 is not a subgraph
of G.



Proof

The inverse system used in the proof:
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Classifying the residual classes generated by finite
simple graphs

Caciedo (1995) gives the following theorem, relying on work of
Erdös, Nešetřil and Pultr, and others.

Theorem
Let G be a finite simple graph. Then exactly one of the following
holds:

1 G consists of isolated vertices and 2-element paths;
2 G contains a 3-element path and is a disjoint union of

complete bipartite graphs;
3 the following equivalent conditions hold:

G is not a disjoint union of complete bipartite graphs;
R(S(G)) contains ;
R(S(G)) contains all 2-colourable graphs;
R(S(G)) is not finitely qe-axiomatisable.
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Qe-axiomatisability for simple graphs

Theorem
If G is a finite simple graph, RCT(S(G)) is qe-axiomatisable if
and only if G consists of isolated vertices and 2-element paths.

By applying Erdös’ probabilistic method, Feder and Vardi
(1998) (and Hodkinson and Venema (2005)) construct an
inverse system of finite graphs which shows that if G is a finite
simple graph that is not a disjoint union of complete bipartite
graphs, then RCT(S(G)) is not qe-axiomatisable.

The inverse limit is a structure X such that:

X ∈ ModBt(Thqe(G)) (since X is 2-colourable)
X /∈ RCT(S(G))

Therefore RCT(S(G)) is not qe-axiomatisable.
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Some open problems

Let G be a finite anti-reflexive, anti-symmetric digraph.
When is RCT(S(G)) qe-axiomatisable?

Let G be a finite digraph. Is it true that if R(S(G)) is not
finitely axiomatisable by quasi-equations, then RCT(S(G))
is not qe-axiomatisable?
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