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THE HOWE DUALITY AND POLYNOMIAL SOLUTIONS FOR

THE SYMPLECTIC DIRAC OPERATOR

HENDRIK DE BIE, PETR SOMBERG, AND VLADIMIR SOUČEK

Abstract. We find the Fisher decomposition for the space of polynomials
valued in the Segal-Shale-Weil representation. As a consequence, this allows
to determine symplectic monogenics, i.e. the space of polynomial solutions of
the symplectic Dirac operator.

1. Introduction

The classical topic of separation of variables, often realized by a Howe dual pair
acting on the representation of interest, is one of the cornerstones in harmonic
analysis.

Some well-known examples are the Howe dual pair for the orthogonal Lie group
O(n) acting on the space of polynomials on Rn given by O(n) × sl2 and the dual
pair for the representation on spinor valued polynomials given by O(n)× osp(1|2).
Recently, there has been a lot of interest in deformations of these dual pairs where
the orthogonal group is replaced by a finite reflection group G < O(n). This leads
to the introduction of the so-called Dunkl operators (see e.g. [8, 9]). They allow to
construct a Dunkl Laplacian and it was proven in [13] that the relevant operators
again generate sl2 (see also [1]). In [17], a Dunkl Dirac operator has been introduced,
leading to a dual pair G × osp(1|2).

The Dunkl Laplacian can be seen as a spherical deformation of the classical
Laplacian. Very recently, also radial deformations have been obtained in this con-
text. We refer the reader to [3] for radial deformations of sl2 and to [6] for radial
deformations of osp(1|2).

A natural question to be posed now is whether similar things are also possible
for the symplectic group Sp(2n), namely do there exist dual pairs Sp(2n)× sl2 or
Sp(2n) × osp(1|2) and do there exist Dunkl analogs of these dual pairs. In other
words, can the operators realizing these dual pairs be deformed to be only invariant
under a (finite) subgroup of the symplectic group?

The answer is partly positive. In e.g. [7, 5] a theory of harmonic analysis
has been established for operators acting on Grassmann algebras (or superspaces),
leading to dual pairs Sp(2n)× sl2 and Sp(2n)× osp(1|2). However, although this
yields a satisfying framework, it is unclear how the operators obtained there can
be deformed to be only invariant under a subgroup of the symplectic group. The
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construction leading to the classical Dunkl operators (see [8]) cannot immediately
be transferred to this new framework, due to the different algebraic structure of
Grassmann algebras.

Fortunately, there seems to be an alternative way of obtaining symplectic analogs
of the orthogonal constructions. Many years ago B. Kostant introduced a symplectic
analog of the Dirac operator called symplectic Dirac operator. This symplectic
Dirac operator was mainly studied from the geometrical point of view, see [12]
and references therein, and also as an invariant differential operator in [15], but its
spectral properties are difficult to obtain.

In this article we aim to study the symplectic Dirac operator from the point of
view of special functions and harmonic analysis. We will establish the Howe duality
and the corresponding Fischer decomposition. As a consequence, we determine its
kernel on R

2n. It is important to note that the symplectic Dirac operator that we
will study does not have a Laplace counterpart.

The paper is organized as follows. In section 2 and 3 we repeat some well-
known facts on symplectic Lie algebras and their finite dimensional representations.
In section 4 we define the symplectic Dirac operator and show how it leads to a
realization of sl2. In section 5 we obtain the Fischer decomposition and construct
explicit projection operators on all summands. We end with some conclusions and
an outlook for further research.

2. Symplectic Lie algebra, symplectic Clifford algebra and simple

highest weight modules for sp(2n)

Let us consider a symplectic vector space (R2n, ω) and a symplectic basis

e1, . . . , en, f1, . . . , fn

with respect to the non-degenerate two-form ω on R2n. Let Ei,j be the 2n ×
2n matrix with 1 on the intersection of the i-th row and j-th column, and zero
otherwise. The symplectic Lie algebra sp(2n) is generated by (see e.g. [11])

Xij = Ei,j − En+i,n+j , Yij = Ei,n+j + Ej,n+i, Zij = En+i,j + En+j,i

for i, j ∈ {1, . . . , n}, and can be realized by the first order differential operators

Xij = xj∂i − xn+j∂n+i, Yij = xn+j∂i + xn+i∂j , Zij = xj∂n+i + xi∂n+j .

For example, in the case n = 1 the three vector fields {2x2∂1, 2x1∂2, x1∂1 − x2∂2}
generate sp(2).

Next, we introduce the symplectic Clifford algebra over (R2n, ω) (see [4]). This is
the associative algebra over R with unit element, which is multiplicatively generated
by the elements e1, . . . , en, f1, . . . , fn under the relations

eiej = ejei

fifj = fjfi

eifj − fjei = ω(ei, fj) = δij

for all i, j ∈ {1, . . . , n}.
The metaplectic Lie algebra mp(2n,R) is a Lie algebra attached to the twofold

covering ρ : Mp(2n,R) → Sp(2n,R) of the symplectic Lie group Sp(2n). It can be
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realized by homogeneity two elements in the symplectic Clifford algebra, where the
homomorphism ρ⋆ : mp(2n,R) → sp(2n,R) is given by

ρ⋆(eiej) = −Yij ,

ρ⋆(fifj) = Zij ,

ρ⋆(eifj + fjei) = 2Xij(2.1)

for i, j ∈ {1, . . . , n}. There is another useful realization of the symplectic Lie
algebra as a subalgebra of the Weyl algebra of rank n. Let xi, i ∈ {1, . . . , n} be
the generators of polynomial algebra. The Weyl algebra is the associative algebra
generated by {xi, ∂i}, i ∈ {1, . . . , n}, partial differentiation with respect to xi and
multiplication operators xi, acting on polynomials on Rn. The root spaces of sp(2n)
corresponding to positive simple roots αi are spanned by xi+1∂i, i ∈ {1, . . . , n− 1}
and αn is spanned by − 1

2
∂2
n.

The Segal-Shale-Weil representation L is the minimal highest weight representa-

tion of Sp(2n,R) on the vector space L2(Rn, dµ), where dµ = exp−||x||2 dxRn with
dxRn the Lebesgue measure on Rn. We take for the basis of this vector space poly-
nomials on the isotropic subspace Rn ⊂ R2n. The differential L⋆ : mp(2n,R) →
End(Pol(Rn)) of the Segal-Shale-Weil representation is

L⋆(eiej) = ixixj ,

L⋆(fifj) = −i∂i∂j ,

L⋆(eifj + fjei) = xi∂j + xj∂i(2.2)

for i, j ∈ {1, . . . , n}.

3. Decomposition of tensor products of finite dimensional

representations with the Segal-Shale-Weil representation

In this section, we will make explicit several results in [2] on the decomposition
of the tensor product of completely pointed highest weight modules (specifically,
we will consider two irreducible components of the Segal-Shale-Weil representation)
with a suitable class of finite dimensional representations (specifically, symmetric
powers of the fundamental vector representation R2n) of sp(2n,R). The property of
a module being completely pointed means that all of its weight spaces are uniformly
bounded by a constant, see [2], Lemma 2.1. Throughout the article, V (µ) denotes
the Verma module of highest weight µ and L(µ) denotes the simple module of
highest weight µ, i.e. the quotient of V (µ) by its unique maximal submodule
I(µ) ⊂ V (µ).

Let us introduce the set

τ i = {

n
∑

j=1

djLj | dj + δ1,iδn,j ∈ N,

n
∑

j=1

dj = 0mod 2}.

Here N means the set of natural numbers including 0, dj ∈ N and i = 0 resp. i = 1
for V (− 1

2
ωn) resp. V (ωn−1−

3
2
ωn). These sets are bijective with the set of weights

of two irreducible parts of the Segal-Shale-Weil representation.
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Let λ =
∑n

i=1 λiωi be a dominant integral weight, i.e. the highest weight of a
finite dimensional irreducible representation. Define the set of weights

τ iλ = {µ|λ− µ =

n
∑

j=1

djLj ∈ τ i,

0 ≤ dj ≤ λj(j = 0, . . . , n− 1), 0 ≤ dn + δ1,i ≤ 2λn + 1}.

The central result of [2] is

Theorem 3.1. Let L(− 1
2
ωn) resp. L(ωn−1 − 3

2
ωn) denote the Verma modules

corresponding to irreducible subrepresentations of the Segal-Shale-Weil representa-
tions. Then for any finite dimensional irreducible representation F (λ) with highest
weight λ we have

L(−
1

2
ωn)⊗ F (λ) ≃

⊕

µ∈τ0

λ

L(−
1

2
ωn + µ)(3.3)

(the same is true for L(ωn−1 − 3
2
ωn) with τ1λ instead of τ0λ .) In particular, the

decomposition is direct and so the tensor product is completely reducible.

Recall that the Verma modules V (µ) appearing in the previous decomposition
are irreducible, i.e. equal to L(µ). In particular, they have no other singular vector
than the highest weight one.

The consequence of this result is the decomposition of the tensor product of
L(− 1

2
ωn) resp. L(ωn−1 − 3

2
ωn) with symmetric powers Sk(C2n) (k ∈ N) of the

fundamental vector representation C
2n of sp(2n). Note that these are irreducible

representations (see [11]).

Corollary 3.2. We have for L(− 1
2
ωn)

(1) In the even case k = 2l (2l+ 1 terms on the right-hand side):

L(−
1

2
ωn)⊗ Sk(C2n) ≃ L(−

1

2
ωn)⊕ L(ω1 + ωn−1 −

3

2
ωn)

⊕L(2ω1 −
1

2
ωn)⊕ L(3ω1 + ωn−1 −

3

2
ωn)⊕ . . .

⊕L((2l− 1)ω1 + ωn−1 −
3

2
ωn)⊕ L(2lω1 −

1

2
ωn),

(2) In the odd case k = 2l + 1 (2l+ 2 terms on the right-hand side):

L(−
1

2
ωn)⊗ Sk(C2n) ≃ L(ωn−1 −

3

2
ωn)⊕ L(ω1 −

1

2
ωn)

⊕L(2ω1 + ωn−1 −
3

2
ωn)⊕ L(3ω1 −

1

2
ωn)⊕ . . .

⊕L(2lω1 + ωn−1 −
3

2
ωn)⊕ L((2l + 1)ω1 −

1

2
ωn).

We have for L(ωn−1 −
3
2
ωn)

(1) In the even case k = 2l (2l+ 1 terms on the right-hand side):

L(ωn−1 −
3

2
ωn)⊗ Sk(C2n) ≃ L(ωn−1 −

3

2
ωn)⊕ L(ω1 −

1

2
ωn)

⊕L(2ω1 + ωn−1 −
3

2
ωn)⊕ . . .

⊕L((2l− 1)ω1 −
1

2
ωn)⊕ L(2lω1 + ωn−1 −

3

2
ωn),
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(2) In the odd case k = 2l + 1 (2l+ 2 terms on the right-hand side):

L(ωn−1 −
3

2
ωn)⊗ Sk(C2n) ≃ L(−

1

2
ωn)⊕ L(ω1 + ωn−1 −

3

2
ωn)⊕ . . .

⊕L(2lω1 −
1

2
ωn)⊕ L((2l + 1)ω1 + ωn−1 −

3

2
ωn).

Reformulated in the language of differentials operators, this Corollary leads to
Theorem 5.3. We also introduce the notation C = L(− 1

2
ωn)⊕ L(ωn−1 −

3
2
ωn).

4. Symplectic structure and its Lie algebra sl2

Let (R2n, ω) be the symplectic vector space with coordinates x1, . . . , x2n, coordi-
nate vector fields ∂1, . . . , ∂2n and symplectic frame e1, f1, . . . , en, fn, i.e. ω(ei, ej) =
0, ω(fi, fj) = 0 and ω(ei, fj) = δij for all i, j = 1, . . . , n. It follows from the action
of sp(2n) on these vectors that

Xs :=

n
∑

j=1

(x2j−1fj + x2jej),

Ds :=

n
∑

j=1

(∂x2j−1
ej − ∂x2j

fj),

E :=
2n
∑

j=1

xj∂xj
(4.4)

are invariant and so will be used as linear maps intertwining the sp(2n) action on
the space P⊗C of symplectic spinor valued polynomials on R2n, with P = Pol(R2n).
The space of homogeneous polynomials of degree k will be denoted by Pk.

It is easy to verify that they fulfill sl2 commutation relations:

[E+ n,Ds] = −Ds,

[E+ n,Xs] = Xs,(4.5)

[Ds, Xs] = E+ n.

The action of sl2 × sp(2n) will generate the multiplicity free decomposition of the
representation of interest.

Further we introduce the operator

(4.6) Γs = XsDs −
1

2
E(2n− 1 + E),

which is the Casimir operator in sl2. Using the formulas (4.5) it is easy to check
that Γs commutes with both Xs and Ds.

5. Fischer decomposition and homomorphisms of sp(2n,R)-modules
appearing in the decomposition of polynomials valued in the

Segal-Shale-Weil representation

Before introducing the scheme in full generality, we start with a few explicit
remarks concerning homogeneity zero and one parts in the decomposition. The
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tensor product L(− 1
2
ωn)⊗C2n (analogously, one can consider L(ωn−1−

3
2
ωn)⊗C2n)

decomposes as the direct sum V1 ⊕ V2 of two invariant subspaces, given by

V1 := {

n
∑

i=1

eis⊗ ei +

n
∑

i=1

fis⊗ ei|s ∈ L(−
1

2
ωn)},

V2 := {

n
∑

i=1

si ⊗ ei +

n
∑

j=1

sj ⊗ fj; si, sj ∈ L(−
1

2
ωn)|

n
∑

i=1

eisi +

n
∑

j=1

fjsj = 0}.

The map i : L(ωn−1−
3
2
ωn) → L(− 1

2
ωn)⊗C2n (resp. L(− 1

2
ωn) → L(ωn−1−

3
2
ωn)⊗

C2n) is injective and onto V1. The reason is that injectivity i(s) = 0 is equivalent
to eis = 0 resp. fis = 0 for all i ∈ {1, . . . , n}, and so (eifj − fjei)s = 0. The
symplectic Clifford algebra relation eifj − fjei = δij implies s = 0 and the result
follows. In other words, the action of Xs induces an isomorphism between two
irreducible submodules in homogeneity zero and one.

Another remark is an application of tools in representation theory, in partic-
ular of infinitesimal character. The sum of fundamental weights (or half of the
sum of positive roots) for sp(2n) is δ = (n, n − 1, . . . , 2, 1). The highest weights
of irreducible simple sp(n)-modules, coming from the decomposition of the tensor
product, were determined for each homogeneity k ∈ N in Corollary 3.2. The mul-
tiplication by Xs gives an intertwining map between neighboring columns, say the
k-th and (k + 1)-th. Let us determine possible target modules when restricting
the action of Xs to a given simple irreducible sp(2n)-module L(aω1 −

1
2
ωn) with

highest weight aω1 −
1
2
ωn for some a ≤ k (the case of L(bω1 + ωn−1 −

3
2
ωn) being

analogous.) The comparison of infinitesimal characters of the collection of weights
{µa = aω1 −

1
2
ωn, νb = bω1 + ωn−1 −

3
2
ωn} (a, b ∈ N) yields ||µa + δ||2 = ||νb + δ||2

if and only if either

(1) 2a+ n− 1
2
= 2b+ n− 1

2
, which implies a = b, or

(2) 2a+ n− 1
2
= −(2b+ n− 1

2
), i.e. a + b = −n+ 1

2
and there is no solution

in this case.

It remains to prove that the image of Xs, when restricted to an irreducible simple
module in the k-th column, is nonzero (or, as follows from irreducibility, is the
irreducible simple module in the (k + 1)-th column with the same infinitesimal
character.)

To complete this line of reasoning, we employ the Lie algebra sl2 from Section
4. To illustrate it explicitly, we start in homogeneity zero with only one simple
module L(− 1

2
ωn) and assume that it is Ker(Xs). Because it is in Ker(Ds), it

is in the kernel of the commutator [Ds, Xs] = E + n. However, E + n acts in
homogeneity zero by n, which is the required contradiction and so Xs acts as an
isomorphism L(− 1

2
ωn) → L(ωn−1 −

3
2
ωn). Let us now consider the action of Xs

on L(ωn−1 −
3
2
ωn) sitting in the homogeneity one part and assume it acts trivially.

Then due to the previous isomorphism, this kernel is Ker(X2
s ) when X2

s is acting
on L(− 1

2
ωn) in homogeneity zero. As before, the commutator [X2

s , Ds] acts by zero.
Because it is equal to −Xs(E+n)−(E+n)Xs, it acts on homogeneity zero elements
by −(2n+ 1)Xs and due to the fact that Xs is an isomorphism, it is nonzero and
so yields the contradiction. In conclusion, Xs : L(ωn−1 −

3
2
ωn) → L(− 1

2
ωn) acting

between homogeneity one and two is an isomorphism. Clearly, one can iterate the
procedure further using the subsequent Lemmas 5.1 and 5.2 on sp(2n)-invariant
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intertwining operators acting on the direct sum of simple highest weight sp(2n)-
modules. An analogous induction procedure can be used to prove the isomorphic
action of Ds.

In what follows, we formulate the previous qualitative statements more quanti-
tatively. Denote by M+

l resp. M−
l the (irreducible) simple sp(2n)-module with

highest weight L(lω1 −
1
2
ωn) resp. L(lω1 +ωn−1 −

3
2
ωn)), and call them symplec-

tic monogenics of degree l (or l-homogeneous symplectic monogenics). We put
Ml := M+

l ⊕M−
l and we also have

Ml = kerDs ∩ (Pl ⊗ C).

We then obtain two auxiliary lemmas.

Lemma 5.1. Suppose Mℓ ∈ Mℓ is a symplectic monogenic of degree ℓ. Then

Ds(X
k
sMℓ) =

1

2
k(2n+ 2l+ k − 1)Xk−1

s Mℓ.

Proof. By induction. �

Lemma 5.2. Suppose Mℓ ∈ Mℓ is a symplectic monogenic of degree ℓ. Then

Dj
s(X

k
sMℓ) = cj,k,ℓX

k−j
s Mℓ

with

cj,k,l =







1

2j
k!

(k − j)!

(2n+ 2l+ k − 1)!

(2n+ 2l+ k − j − 1)!
j ≤ k

0 j > k.

Proof. The lemma follows from j iterations of Lemma 5.1. �

The previous considerations can be summarized in the symplectic analog of the
classical theorem on separation of variables in the orthogonal case, see e.g. [17] and
the references therein.

Theorem 5.3. The space P ⊗C decomposes under the action of sl2 into the direct
sum of simple highest weight sp(2n)-modules

∞
⊕

l=0

∞
⊕

j=0

Xj
sMl,(5.7)
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where we used the notation Ml := M+
l ⊕M−

l . The decomposition takes the form
of an infinite triangle

P0 ⊗ C P1 ⊗ C P2 ⊗ C P3 ⊗ C P4 ⊗ C P5 ⊗ C . . .

M0
// XsM0

// X2
sM0

// X3
sM0

⊕

// X4
sM0

// X5
sM0

. . .

M1
// XsM1

// X2
sM1

⊕

// X3
sM1

// X4
sM1

. . .

M2
// XsM2

⊕

// X2
sM2

// X3
sM2

. . .

M3
// XsM3

// X2
sM3

. . .

M4
// XsM4

. . .

M5
. . .

where all summands are simple highest weight sp(2n)-modules. The k-th column
gives the decomposition of homogeneous polynomials of degree k taking values in
C = L(− 1

2
ωn) ⊕ L(ωn−1 −

3
2
ωn). The l-th row forms a highest weight sl2-module

⊕∞
j=0X

j
sMl generated by the space of symplectic monogenics Ml.

One immediate Corollary is the structure of polynomial solutions of the sym-
plectic Dirac operator on R2n. The statement is given for both symplectic spin
modules L(− 1

2
ωn) and L(ωn−1 −

3
2
ωn) separately.

Corollary 5.4. The kernel of (half of) the symplectic Dirac operator Ds acting on
L(− 1

2
ωn)-valued polynomials is

Ker+(Ds) ≃
⊕

l∈N

(

L(2lω1 −
1

2
ωn)⊕ L((2l+ 1)ω1 −

1

2
ωn)

)

.

The kernel of (half of) the symplectic Dirac operator Ds acting on L(ωn−1−
3
2
ωn)-

valued polynomials is

Ker−(Ds) ≃
⊕

l∈N

(

L(2lω1 + ωn−1 −
3

2
ωn)⊕ L((2l + 1)ω1 + ωn−1 −

3

2
ωn)

)

.

Every homogeneous polynomial of degree k, taking values in C, can now be
decomposed in monogenic components as follows.

Theorem 5.5. Let p ∈ Pk ⊗ C. Then there exists a unique representation of p as

p =

k
∑

i=0

pi,(5.8)

where pi = Xk−i
s mi and mi ∈ Mi.

We now proceed to construct projection operators that allow to explicitly com-
pute the representation given in Theorem 5.5. They are given in the following
theorem.
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Theorem 5.6. The operators

(5.9) πk
i =

k−i
∑

j=0

a
i,k
j X i+j

s Di+j
s

with

a
i,k
j = (−1)j(2n+ 2k − 2i− 1)

2i+j

i!j!

(2n+ 2k − 2i− j − 2)!

(2n+ 2k − i− 1)

and i = 0, . . . , k satisfy

πk
i (X

j
sMk−j) = δijX

i
sMk−i.

Proof. Using lemma 5.2 it is easy to see that πk
i (X

j
sMk−j) = 0 for all j < i. The

coefficients a
i,k
j , for fixed i and k, can now be determined iteratively. First of all,

expressing πk
i (X

i
sMk−i) = X i

sMk−i yields

a
i,k
0 =

1

ci,i,k−i

=
2i

i!

(2n+ 2k − 2i− 1)!

(2n+ 2k − i− 1)!
.

Similarly, expressing πk
i (X

i+1
s Mk−i−1) = 0 then yields

a
i,k
1 = −

ci,i+1,k−i−1

ci+1,i+1,k−i−1

a
i,k
0 = −

1

n+ k − i− 1
a
i,k
0 .

Thus continuing we arrive at the hypothesis

a
i,k
j = (−1)j

2j

j!

(2n+ 2k − 2i− j − 2)!

(2n+ 2k − 2i− 2)!
a
i,k
0

which can be proven using induction. Indeed, suppose that the statement holds for

a
i,k
j , j ≤ l, then we prove that it also holds for a

i,k
l+1. This last coefficient has to

satisfy
l+1
∑

j=0

a
i,k
j ci+j,i+l+1,k−i−l−1 = 0.

Substituting the known expressions we obtain

a
i,k
l+1 = −

l
∑

j=0

a
i,k
j

ci+j,i+l+1,k−i−l−1

ci+l+1,i+l+1,k−i−l−1

= −

l
∑

j=0

a
i,k
j

2l+1−j

(l + 1− j)!

(α− 2l− 1)!

(α− l − j)

= −
2l+1

(l + 1)!

(α− 2l − 1)!

α!
a
i,k
0

l
∑

j=0

(−1)j
(

l + 1

j

)

(α− j)!

(α− l − j)!

where we have put α = 2n+ 2k− 2i− 2. The proof is now complete by remarking
that

l+1
∑

j=0

(−1)j
(

l + 1

j

)

(α− j)!

(α− l − j)!
= 0.

This can either be obtained directly (see e.g. Lemma 5 in [5]) or as a consequence
of Gauss’s hypergeometric theorem, expressing 2F1(a, b; c; 1) in terms of a product
of Gamma functions. �
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Note that there exists another way of computing the projection operators on
irreducible summands, namely using the Casimir operator of sl2. First observe
that

ΓsMk = −
1

2
k(2n− 1 + k)Mk.

It is then clear that the operators

P
k
i =

k
∏

j=0,j 6=i

2Γs + j(2n− 1 + j)

j(2n− 1 + j)− i(2n− 1 + i)
, i = 0, . . . , k

defined on the space Pk ⊗ C satisfy

P
k
i (X

k−j
s Mj) = δijX

k−i
s Mi.

6. Open questions and unresolved problems

In [15], the symplectic Dirac operator Ds on R2n was studied as an sp(2n+ 2)-
invariant differential operator in the context of contact parabolic geometry. As a
consequence, the kernel of Ds has the structure of an sp(2n+ 2)-module. Clearly,
Ker(Ds) is, as a vector space, isomorphic to Pol(R2n+2) (see Corollary 5.4) and
we leave the question of its representation theoretic content open.

In [17], the authors studied the specific deformation of Howe duality and Fischer
decomposition for the Dirac operator acting on spinor valued polynomials, coming
from the Dunkl deformation of the Dirac operator. It is an interesting question
to develop the Dunkl version of the symplectic Dirac operator in the context of
symplectic reflection algebras (see [10]).

Another interesting question is whether the reproducing kernel of the space of
sympletic monogenics Ml can again be expressed in terms of Gegenbauer polyno-
mials, as in the orthogonal and Dunkl case.
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