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III CONFERENZA

CAUCHY INTEGRAL FORMULA

v. Soufek

There is a lot of function theory developed for reguleaer func-
tions of a quaternionic varieble. A part of the theory is described
in the quaternionic setting in [Su] » together with further refe-
rences (there is described e.g. the Cauchy integral formula and the
Laurent series expansion). A lot of further results can be found as

a special case of more general theory of regular functions on Rn

with values in Clifford algebre {e.g. mean value theorem, maximum
modulus theorem, Morera theorem, Runge type theorems, Mittag-Leff-
ler theorem, Hilbert modules with reproducing kernel and a lot of
trensform analysis - see [BDS] ).

This lecture will be devoted to one special topic, namely to
Cauchy integral formula. It will be shown, how the analogue of the
classical Cauchy integral formula from the complex case, can be,
efter the complexification, transformed into quite different type

of integral formulas, used in matheratical physics.

(IIT.1) Cauchy integral formula.

Let us try to follow again the analogy with the complex case.
If £ 1is holomorphic in Q € C, if ¥y is a eycle in Q and

P ¢ <y> , theén

2niInd_ p.f(p) = JSf£(z)/(z-p)dz
U y

It is clear that the integration over a cycle Yy has to be sub-
stituted in quaternionic analysis by the integration over a 3-dimen-

sional cycle.

The use of differential forms and integration over chains is the
best language for the Cauchy integral formule in higher dirension.
We shall use here cubical differentieble singular chains (i.e.
differentiable maps of the unit interval in R4 into H), as de-
scrived in [M] . The integration of quaternionic valued forms is

done componentwise, hence the standard Stokes theoren holds for them.
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Now, the conmplex 1-form dg/q has to be substituted by a gquater-
nionic-velued 3-form. The suitable 3-form can be found by &nalogy.
In the complex case we have:

i) a(faz) = 0o irff 3f = 0 iff f is holomorphic

ii) 1/z = Z/lzl2 = B/Bz(loglzr), vhere loglzr is the fundamental

solution of the Laplace equation in the plane
It is easy to see that the 3-form
Dg = dxq1al8XxX2ad¥3 - 14d%x0~dx2.d%X3 - 12dxX0.dX2~dX1 - 1a3dxo~dxia.dxz

has the property

i) da(fpq) = 0 iff 3+f = 0 (f: H—H)

ané tecause 1/|ql2 is the fundamental solution of the Laplace ope-

rator in R, , it suggests to use its derivative

a(1/1al ?)

(-2)q+/lq\h = -2/0.‘1/Iql2

as the kernel.
To rewrite the complex formula, the notion of index is still mis-
sing. In the complex case, the cycle Y, =exp(it), t €<0,2n> is the

geperator of the first homology group of C ~{c} and k-IndY o]

tells us that Yy ~is homological to kv, -

The same situation can be met in quaternionic analysis, too.

(111.2) Definition.

Let T be a 3-cycle in H ~ {p}, then we shall define the index
of p with respect to T by

Ind p p = 1/21° I{Dq(q—p)”lq-ﬂh

The function 1/\g| 'beiﬁg harnmonic, it is clear that q+/|q]h
is regular, because 3+(q+/§ﬂh) = 3+3(1/\q\2) = A(1/|q|2)= 0.

Hence the 3-form Dq.q*/|q]h is closed and its integral depends
only on the class of homology of the corresponding cycle (in H s {o}).

(111.3) Theorem:

Let T be a 3-cyecle in H , p #<T'> . Then:
1) Indr p € & S
2) Indp p (as & function of p ) is constant on every connected

component of H ~ <I'>.
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Proof:
1) The sphere 53 is the deformational retract of H ~ {0}, hence

N = =
53(H {o}) H3(83) z .
It implies at the same time that 53 is the generator of HB(H‘N{O}),
so for every 3-cycle I there exists k € # such that T is ho-
mological to k.S in H \{O}.

3 A
Hence Ind, 0 = Ind 0=k€Z 5
T k.S3
2) The Tunction Indr P has to be constant on every connected compo-
nent of qH ~{r} because it is continuous and discrete valued.
Exemple:

Take the 3-sphere S3 (with the induced orientation) as & cycle

in H ~{0}, then we can compute Indg O . It can be checked by the
3

Dg = q/[q] . as,

direct computation that

where dS° is the standard surface element on the'sphere. Hence

Indg 0 = 1/27% 1 q+/|q|th = 1/2n? f 1/]q)3ds = 1/727% J ag = 1
3 S3 53 53
(XIT.4) Theorer (Cauchy):
if Bfg = faf =0in @ €¢ H =and if a 3-cycle T 1is homologically
tririal in Q , then

/fDgg = O
T

Proof:

It is sufficient to use the Stokes theorem, because the 3-form fDgg

is closed: a(fpag) = w [(faf).g . r.(3+g)] =0,

where w 1is the volume form.

(I11.5) Theorer (Cauchy integral formula):

Let f ©be a {(left) reguler function in Q < H anda let T te
a 3-cycle, homologically trivial in @

Then for every p € 8 ~ <I'> we have

Indp p.f(p) = 17212 ; (p-q)*/lp—qlh-qu(q) .
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Proof:

Denote k = Ind p and consider & sufficiently small 3-sphere 53

with the center p and a radius p . Then T is homological in O\{p}

with k.S It follows fror the Cauchy theorem that the integration

3¢
over T in the right hand side can be substituted by the integra-

tion over k.S3. The radius p can be taken arbitrarily small. Hence

the function f(g) can be {in the 1imit) substituted by f(p). But
then we have
2 + L 2
1727 1{(p-q) /|p-al .Daf(q) = 1/2m I(p—q).r/lp—q\h-qu(p) = £(p)Indpp.
a
"3

(II1.€) Elliptic and hvperbolic type integral formulas.

The character of the Cauchy integral formula, described above, is
quite similar to the complex case. It is a typical elliptic integral
formula. The contour of integration here is 3-dimensional, the values
of the function have to be known on the contour of integration and
values of the regular function are reconstructed 'inside' of the con-
tour of integration.

This integral formula is valid for solutions of Fueter equation,
i.e. for solutions of Weyl equation, considered on the complex Min-
kowski space and restricted after to the 'Euclidean slice' of it.

The Weyl equation, in its original setting in mathematical physics,
is considered on (real) Vinkowski space and it is a hyperbolic equa-
tion. There are integral formulas for solutions of Weyl equation, but
they have quite different - hyperbolic- character. The contour of
integration is 2-dimensional here and depends on the point P, where
the value is evaluated (it is the intersection of the initial value
3-surface with the null cone of P). Both velues of the field and
its derivatives on the contour of integration (derivatives in sui-
table directions) are needed in the formula. (We shall meet an exam-

ple of such formula in & while.)

These two types of formulas are so different in character, that it
is difficult to see any connection between them. But, as the Weyl
equation on Minkowski space and@ the Fueter equation on the Euclidean
slice are both restrictions of the Veyl equation on complex Minkow-
ski space, it is conceivable that there could be a form of a Cauchy
integral formula in complex quaternionic analysis, which interpolates
between these two, quite different, integral formulas. We want to

shov now that it is really the case.
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The basic principle of the procedure was invented by Imaeda ([I])
in the context of the classical electrodynamics, pThe procedure can
be generalized a lot.

In the (real) quaternionic analysis the value of ihe integral
does not change, when the contour of integration 23 is deforued
(without crossing the singularity of the expression under the sign
of integration). After the complexification, the freedom for the de-
formation of the contour is enlarged a lot - it can be deformed now
everywhere in complex ¥inkowski space (without crossing the singula-
rity, which is now the 'complex null cone' and has the complex dimen-
sion 3).

Now the contour of integration 23 can be deformed into a femily

of circles with centres in points of the contour of integration EE

of the hyperbolic integral formula. The circles are small enough and
g€o into complex Minkowski space, avoiding so the singularities.

If the circles are placed well (in complex l1-planes for example),
the integration over them can be computed with aid of the residue

formula. The residua are computed just in points of I_ . The poles

2
are of order 2, hence to compute residua we need values and first
derivatives in points of 22. So after 1-dimensional integration
being done, we are left just with hyperbolic type integral fornmula

in (real) Minkowski space.

We shall discuss now the trensition from elliptic to hyperbolic
integral forrulas in two ceses - for Penrose's integral formula for
solutions of the Weyl equation and for Riesz's integral formula for

solutions of the wave equation.

(ITII.7) Cauchy integrel formula for solutions of Weyl ecuation.

Theorem:

o
Denote CN, = {P+Q laecH ,101° = 0} . Suppose P €& Q c CH
and consider the ball Up={P+Q e et , |Q12 ra 02} and the sphere

33 = aup . . Suppose that 8+.F =0 in Q and that 23 is a 3-cycle

homological with S3 in 2~ CNP. Then

2 + L
F(P) = 1/2n° S (Q-P)'/1Q-P| . DR.F(Q) .
o
3

Proof:

It is sufficient to prove that the corresponding 3-form is closed.
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But the coefficients of the form are holomorphic, hence the same com-

putation as in the real case gives us the needed information.
Remark.

1. There are 3 other forms of the Cauchy integral formula for the ot-
her forms of Fueter equation. Ve shall use ancther one - for solutions

of the equation 23F = C 'we have

” +
r(P) = 1/2%° f; {(a-P)/|a-P|"}nq F(q)
"3

2. The spinor translation of this equeation is

2

_ 4/n L, AB!
¢A.(P) = 1/2n fzg(QAA.—PAA.)/lQ—Fl }Inq @B.(Q)

(I11.8) Penrose's integral formule.

It is an integrel formula giving values of & spinor field °A' u-
sing initial data on the null cone in Minkowski space. To describe it,
we have to use the spinor language. Let us recall that points on the

null cone XN of the origin in Minkowskil space can be expressed as

Xppr = cAZA" CA € SA' Teke a point P inside the forward null cone of

origin and denote 22 the intersection of the (backward) null cone NP

of the point P with the initial data null cone N . Take & typical

point Q' on I, . Suppose that g

2 € SA are homogeneous coordinates

A
for Fa( C) worth of null directions in ¥, eand suppose that the vec-
tor Q'P is described in the spinor language as rCAEA" r=r(CA) > 0.
Let us choose further a (smooth) spinor field £A=EA(Q') on the null
cone N such that the vector gAEA' is tengent to the generator of K.

Ve shall suppose the normalization condition EAEA = 1 on 22 . Then
o, (pP) =1/2ns. (g,/r){D6 - (2p+e)} as ,
k 22 A

ApA! A _BzB' A
where 8= %, £°, D =§ "y p = -E£°CE Vept€a » € = -5 D, and

AAY?

dS is the surface element of 22.

We want to show nov that the complexified Cauchy integral formula
reduces to Penrose's formula on M after one integration being done.

A PP B AA' 5 e
Suppose that the field ¢A satisfies the equation ¥ @A = 0 in a neigh-

bourhood U € CHM of the set {zAA,=PAA,-t;AEA.};Ae C,ste<o,r>} c K.

The comtour I, = {aye-r, T,0428,%,, ] ¢, €€y, 2 €Cys Izl= p}
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belongs to the same cless of homology es the smell sphere S3 around P
(it can be proved either by & direct homotopy argument (see(so3} ), or
by computing the index of 23 as in[BFMS]). Fence the Caucky integral

from complex quaternioniec analysis can be used for the contour 23

and it is only question of (a long) computation to see that the inte-
gration with respect to 2z can be carried out using the residue for-
mula and that the singularity of the expression under the integral
sign lies just on 22. At the end of computation the Penrose's inte-
gral formule is recovered. For deteils see [So3]}.

(III.9) An integral formula for complex Laplacian.

An integral formula for complex Laplacian in Cn wes described in

[B] . We shall descrite it shortly in the quaternionic case n=3. The
expression under the integral sign is a little bit more complicated,

the formula is another typical example of an elliptic type integral

formulas.
Theoremn:
Take P € 1 © CH and 23, 53 same as in (III.T).
If a mapping F : CH —— CH satisfies 33+F = 0, then

F(P)=1/hﬂ2fq {(Q-P)+/\Q-P\h)DQF(Q) + %D+Q3+F/\Q-P\2
°3

Remark.

The equetion and the formula are both 'reducibl®® in the-sense that
both are acting componentwise. Fence the attention can be restricted

to functions with values in C < CH.
Proof (main idea):

It is easy to compute that the form under the integral sign is clo-
sed. After the transition to the small sphere around P, the value
F(P) cen be substituted instead of F(Q) and the rest of the integ-

ral will be eqgual to one again.

(ITIT.10) Riesz's integral fornula.

An integral formula for the wave equation in 'Minkowski' space with
n spacial dirension was described by Riesz in [R] . We shal describe
it again for the case n=3.

Let N be the (backward) null cone of the origin and let 23 be

a 3-dimensional space-like surface in lMinkowskli space li. Denote 22
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the intersection of S, with N . We can suppose that the surface 22

3
has the parametrization b = b(A4,Az2)321, 2 being in a 2-dimensional

domain of paremeters. Consider & vector function c¢(A3,Az ) on 22 s

satisfying:

i) {¢,ec) = 0, i.e. the vector .c. .is null vector
ii) (e¢,dv) = 0, i.e. ¢ 1is normal to the tangent planes of Zé
iii) (e,b) = 1 .
Denote av° 3e° 3b° 3c®
po oo b7, Loc° b,  dc
7.t Taa, ax:” Tan,
bt c? 5 5
o(T1,X) = det b? 2 .
t3 c2 .
and
F(T,2) = D(Tt,2) .

D(0C,X)
Then we have

Theorem.

Let - u %be & solution of the wave equation in a neighbourhood
of the set {tb(As,%2) | te<0,1>; A;, Az as for 22}. Then

oF

du
37 U + F 51 )\T=O as g

w(0) = -1/nfy (3
2

(111.11) The trensition from (I1I1.9) to (III.10).

Tre 3-cycle ZI.= b({ra,A2)+1e(X1,22) Aq1,Xz as above, T = p, T c}.

satisfies the assumptions of Theorem (III.9), hence the correspon-
ding integral formula can be used and after the integration with res-
pect to +t Dbeing done, the formula (III.10) is recovered. More de-

tails can be found in [B] .

(T17.12) Remarks.

1. The complex quaternionic Cauchy integral formula (and its genera-
lizetion to complex Clifford case) is very useful and versatil tool.
The classical Kirchhoff formulas for the wave equation and for Max-
well field could be derived in a similar way. Moreover, there are

the integral formulas for the description of solutions of massless
field equation by homogeneous functions of & twistor variable (see
[ATT]). The complexified Cauchy integral formule can be used also for

the description of the inverse twistor correspondence (see [802]).
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2. Even if a consideradle anmount of results was created in the hyper-
complex analysis, there is clearly an outstanding problem to be sol-
ved, nemely to extené the theory to a suitable type of manifolds. The
principal difficulty lies in the fact that regular functions have so-
me peculiar properties, different from holomorphic functions. The pro-
duct and the composition of two regular functions need not be regular
again. So the standard definition of the complex manifold cannot be
generalized to the quaternionic case. A lot of work and some new ideas
are needed to solve this problem. A step in the right direction was
done in [n] .
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