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In the paper the complex-quaternionic analysis and its spinor version is used for the
study of integral formulas for spini massless fieids. The basic correspondence between
the compiexified Fueter equation and the massless field equation (spin .} 1s described
first. together with the corresponding Cauchy integral formulas. Tt is shown then how
the complexified Cauchy integral formula can be used to give the connection between
elliptic type (boundary value type) integral formulas on Euclidean spacetime and
Kirchhoff type (initual value type) integral formulas on Minkowsk: space (for spin!
massless fields). The explicit formulas showing such connection with the integral
formula described by Penrose are given.
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1. INTRODUCTION

Quaternionic analysis (H-analysis)—and more generally hypercom-
plex analysis—has made great progress in last decades (see. for
example, [1]-[6]) and many properties of solutions of corresponding
generalized Cauchv-Riemann equation are well understcod now.
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32§ \'. SOUCEK

There are namely integral formulas for such solutions which are
similar 1o the standard Cauchy integral formula in complex variable
theory. '

On the other hand. the explicit integral formula giving the solution
to the (null cone) initial value problem was found by Penrose ([7))
and was the starting point for the description of massless fields within
the twistor theory ([8)).

The main idea of the paper is to show that complex-quaternionic
analysis (CH-analvsis) can offer the integral formula which is a
generalization of both mentioned. at the first sight quite different.
integral formulas. Such approach was pioneered by Imaeda ([9)]) who
first pointed out the advantages of a complexification of quaternionic
analysis (he 1s using the name biquaternions instead of complex
quaternions) and who showed. how the quaternionic Cauchy integral
formula can be complexified and used in the context of classical
electrodvnamics. 1 would like to stress. however. another point of
view in this paper. namelyv that CH-analvsis can be used. perhaps
even more naturally. for the description of spini massless field on
complex Minkowski space CM. The complexified Cauchy integral
formula then clearly have to have some meaning for spin{ massless
fields on (real) Minkowski space. 100. It is really the case. it will be
shown that. after the integration with respect to a suitably chosen
variable being done. the complexified Cauchy 1integral formula re-
duces to Penrose’s integral formula.

The interest of such procedure lies in the fact that complexified
Cauchy integral formula interpolates between two integral formulas
quite different in character. The first one is the typical elliptic-type (or
boundary-value type) integral formula for Fueter’s regular function
on H:

F(P)=1/27[ F(0) DQ™-(Q~ P)-1/|Q - PI"

PEmtS,CH ()

(for details see §2). The contour of integration s 3-dimensional and
doesn’t change with P; only values of F on S, are needed.

On the other hand. the integral formula of Penrose for spin
massless field ¢, on Minkowski space is the typical hyperbolic-type
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COMPLEX-QUATERNIONIC ANALYSIS 329

(or initial value type) integral formula
(P)=1/27 [ (5,/){D(8:6" ) = 20+ )(6,8* )} dS  (2)

(for details see §5). The contour of integration =, 1s 2-dimensional
here and depends on the point P (it is just the intersection of the
initial value 3-surface with the null cone of the point P) and both
values of the field and the derivative in a suitable direction are needed
in the formula.

The procedure which converts the formula (1) into formula (2) is
based on the deformation of the contour S, through complex Min-
kowski space (without crossing the singularities of the integrand in
(1)) into the contour of the type =, X §,, where =, is from (2) and
S,’s are small circles around Z, (going into CM and avoiding so the
singularity of (1)). This is the generalisation of the procedure given in
[9]. The integration over S| can be carried over then using the
standard residue theorem. the singularity of the integrand being just
at the points of X,. The singularity can be shown to be the pole of the
order 2, hence the value of the field together with the first derivatives
are needed. If the contour Z, X S, is chosen properly. the formula (1)
reduces just to (2). The other choices of =, X S, can give another
integral formulas in Minkowski space. the Penrose’s one. however.
being the simplest one.

This paper is devoted only to spini case. but it is the reasonable
conjecture that similar correspondence between (extended) CH-
analysis and massless fields on complex Minkowski space can be
worked out for arbitrary spin. This possibility will be discussed in
another paper.

The complexified Cauchy integral formula, together with the facts
needed from CH-analysis, is described in §2. The corresponding
spinor version which is basically the translation of CH-version by the
representation of CH by 2 X 2 complex matrices. is presented in §3. It
is preferred here, for the convenience of physicists, to keep §3
self-contained (i.e. without using results from quaternionic analysis).
the effort needed to.do so being very small. The general procedure of
deformation of the contour of integration S, to the contour of the
type =, X S, is described in §4. In §5 the reduction of the elliptic-type
integral formula to a hyperbolic-type one is computed in the case of
Penrose’s integral formula.
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33U V. SOUCEK
2. CAUCHY INTEGRAL FORMULA IN CH

The CH-analvsis is simply the complexification of the standard
quaternionic analysis. described in [2]. One reason why quaternionic
analysis has to be complexified is the fact that the solutions of the
basic Fueter's equation are real-analviic maps from H to H. Hence a
lot can be gained. as usually. if the complexified situation. where
more complete information can be expected. is studied first and the
restriction to the real case is considered then. Another. perhaps more
imporiant reason. is the fact that the direct connection to the prob-
lems of mathematical phvsics on Minkowski space 1s thus possible.
We shall see. for example. that complexified Fueter equation is just
spin{ massless field equation (considered on complex Minkowski
space—see [8]). Only the facts necessary for sufficiently general
Cauchy integral formula for CH-functions will be described here.
even if many other properties of regular quaternionic functions can be
generalised to CH (see [9)) or even to complex Clifford algebra valued
functions ([10]). Some pieces of new informations are added to the
basically known facts (see [9]. [10]).

Basic Notation

The complex numbers C and quaternions H can be combined
logether to give the algebra CH of complex quaternions. The algebra
CH is defined by CH:= C ® ;H. The typical member of CH can be
written (after a choice of quaternionic units i)y 0y iy with [i, = iy: elc.)
as Q= Qo+ 1101+ 1:0:+ 15055 Qg Q). 0y, 05 € C. The quatern-
lonic conjugation + and the norm (squared) will be given by | Q!
=00 Q'i=Qy—i,Q, - i,0.~ i3Q;. Both C and H will be
supposed 10 be embedded into CH and we shall denote by iH the set
{Q €CH|Q = ig, ¢ €H)}. The symbol CN;p will be used for the
complex null cone { O+ P|| Q= 0).

Differential forms on CH with coefficients in CH have to be
introduced shortly. The CH-valued r-form on CH will be defined 1o
be an alternating C-multilinear mapping from CHX - -+ X CH to
CH. The exterior product of two such forms is defined by the
standard formula ([2}; p. 203). A CH-valued r-form w can be always
WIitlen as @ = wy + /jw, + iw, + iw,;; where wg, . - ., wy are the
standard C-valued r-forms. The exterior derivative 4 is defined 1o act
on the components w, separately. Let us define a few interesting
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COMPLEX-QUATERNIONIC ANALYSIS 331

forms:
dQ :=dQ, + i,dQ, + i,dQ, + i;dQ, .
dQ" :=dQ, - HdQ, — i,dQ, — i,dQ,.
DQ :=4dQ,.dQ,, dQ, - i,dQ,. dQ..dQ; ~ i,dQ,. dQ,. do,
—4,dQ,, dQ, . dQ,
1/3'dQ, dQ*, dQ

DQ" :=dQ,, dQ,, dQ, + i dQ,, dQ,. dQ; + i,dQ,. dQ. . dQ,
+0,dQ,, dQ, . dQ,
1/31dQ" .dQ . dQ" .

As in [2] we have

1

LEMMA 1 For P, Q.R € CH we have: (i) DQ[P. Q.R)=1(R- P
Q= Q- PR) (i) DQ'[P.Q.R]=L(Q"-P-R —R*-P. Q)=
(DQ[P. Q,R))

Proof Both left and right hand sides are—as maps from CH
X CH X CH to CH—the complexifications of the corresponding map-
pings H XH X H to H from [2]. Hence the part (i) follows from [2].
Prop. 1. p. 204. The part (ii) can be proved in the same way.

Differential forms will be integrated over chains in CH. The cubical
differential singular chains will be used here (i.e: differentiable maps
of the unit interval /" C R” into CH—see [11], p. 252). The integration
of a CH-valued differential form w = wo + @, + I,w, + iww;y is done
componentwise. Generalized Stokes theorem ([ 1. p. 256) can be
clearly used for CH-valued forms.

There are two basic differential operators and 4 different forms of
the complexified Fueter equation. Let us define

d:=09/8Q, + i,3/3Q, + i,0/8Q.+ i70/305 :

3t = 3/3Q, — 1d/9Q, — i,0/3Q, - i30/3Q5.
37



332 V. SOUCEK

Differential equations (acting on the mapping F( Q)= Fy( Q)+
HE(Q)+ isF( Q)+ iy Fo( Q) are:

(1) 8- F" =0 (it 1s the complexification of éLf= 0 of 2]
(i) " - F=0
(iii) F7-d = 0 (the derivatives are acting to the left)
(iv) F-3"=0

Note  We shall always suppose in the paper that all mappings are
holomorphic with respect t0 Q. Q,. 0-. Q-.

Example  The funcuon G(Q)= Q/|Q|* satisfies 8°-G= G- a°
=0and d-G'=G -3=0for | Q] =0.

LEMMA 2 We have (in Q C CH):
(1) 3-G"'=0. F-a=0=d(F'-DQ-G)=0:(2) 8 -G=0. F.a°
=0=d(F-DQ"-G)=0.

Proof In the case (1) we have
DQ - G'=G"dQ,. dQ,. d0. - i,G" dQ,, dQ-, dQ-
—1:67dQ,. dQ;. dQ, ~ i,G"dQ,. dQ, . dQ,.

hence

d(DQ - G')=13G"/3Q,+ i,8G" /80, + ,dG"/3Q, + 1'386*/8Q3J'

xdQ,, dQ,, dQ,, dQ,
=(3-G")dQ,, dQ,, dQ,, dQ,.
The same is true for F*- DQ, so we have

d(F'-DQ - G")=[(F'3)G" + F'(3G")]dQ,, d0,, dQ,, dQ; .

THEOREM 1 (Cauchy) Ler Q C CH be an open set, let =, and X be
compact chains, which belong 10 the same homology class in Q (i.e.
S5 — 2 = 0u for a 4-chain in Q). Then:

(i) F-3=0,3- G'=0=(;F'-DQ- G'= [« F"-DQ -G

(i) F- 9" =0, " G=0=[ F- DQ"-G= [y F-DQ'-G.
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Remarks 1. Some useful information is contained in the case
F=lorG = l 2. In the case of noncompact chains some integrabil-
ity conditions on F, G should be added.

Proof The Stokes theorem gives
ﬁ F'“DQ-G'= de* DQ -Gy =0.
-~y .-\

Let us consider now a point P € CH and 4-dimensional (positively
oriented) ball U(P)= (P + Q| Q €H. | Q|* < p*!. which lies in the
(real) quaternionic space H shifted to the point P. Let us denote by S,
the boundary U (P). Then we have

THEOREM 2 (Cauchy integral formula) Ler Q € CH be an open sel.
suppose that P € U (P)CQ and let =, be a cvcle. homological n
ONCN, with the sphere Sy. Then
(i) F1.9=0inQ=A\
F'(P)=1/2=*[{F'(Q)- DQ-(Q - P)'/|Q - P,
(i) F-3"=0in Q=A
F(PY=1/22"[c F(Q)- DO"(Q — P)/|Q = P*.
(1) 3"-G=0in QA=A
G(PY=1/27'[s {(Q = P)/|Q = P|"\- DO"-G( Q).
(iv) 9-G'=0in Q=X
GU(PY=1/27°[s( (@~ P)'/1Q~ P} DO - G'(Q).
Proof We can always shift the point P to the origin by Q' = Q —
P. DQ'= DQ and F(Q )= F(Q). hence we shall suppose P = 0.

Then §; CH and Cauchy integral formula for regular quaternionic
functions ([2], Th. 3) together with Theorem 1 gives the assertion.

COROLLARY  The Theorem 2 holds in the same form for S,CiH.ie. if
P eiH, U(P)— {P+QlQEIH —|Q) < '}andelsthebound-
ary of U A P). then the assertion of the Theorem 2 holds in the same
form for every cvcle =y, homological with S, in Q.

Proof 1t is sufficient to show that F(P)=1/2%"/ sF(Q)y- D Q-

(Q—P)/|Q— P|* For it we can useTheorcm2for F(S):= F(iS).
where §=(—i)Q. R=(—i)P together with i(S— R)/!S — R|*
=(P-Q)/|P~- Ql*and i*- DS*'= DQ".
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334 V. SOUCEK

THEOREM 3 Ler T, be q compact chain in CH . let us denote Q
= CH\{Upec CN, L. Suppose thai f is a continuous Junction on T,
with values in CH. Then the function F(P)= 1/272_[':’f( Q) DO -
(Q = P)/|Q ~ P saiisfies the equation F- 3" =0 in Q.

Remarks 1. The same is true. of course. for other 3 basic equa-
tions. 2. If =, is not compact. a suitable restriction on the behavior of
fat e has to be imposed.

Proof The standard theorem on the derivative of the integral
depending on parameters can be applied here. hence the theorem
follows from (Q — P)/|0 - PI* . 37 = 0.

3. THE SPINOR VERSION OF THE CH-CAUCHY INTEGRAL
FORMULA

To get a connection with problems in mathematical physics. let us
now translate the information contained in §2 1nto spinor language.
For this it is sufficient simply 1o use the basic representation of CH by
the algebra C(2) of 2 x 2 compliex matrices. The standard rules of the
spinor calculus will be used freely (see e.g. [12]. [13]). The basic
identification for the translation from CH to spinor language for
complex Minkowski space CM will be the correspondence

_-k=[;0_z]_;2,;3'{ eCM<—~>Q=z0+ iz + iz, + liyz; € CH

2otz z)- iz,
HZAA'=

JEC(2)

Zytizy zg— z4

Under this identification Q" corresponds to z* and to 2510 o
2,z* and to det(z,,.) = 3(z,427*). To translate the operators 9,97,
the quaternionic coefficients will be replaced by the corresponding
2 X 2 matrices and d/8Q, will be substituted by the corresponding
derivatives V,,.:=3/82z%*" (resp. 9,:=0/9z*). The formulas look
like

PR :=[V00. V,O.J=l[ao+83 a,—iaz} 3" pAr

Vor Vi 2 3, + i3, 80-—83 ’

A function F( Q)= F Q)+ L F(Q)+ i, Fy( Q)+ 1, F3( Q) will cor-
respond to the mapping 44-= ¢44{2pp) under the identification
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Fo+ i\F\+ i,F, + ,F;0¢,,, Q> 255 The translation of four ba-
sic differential equations now looks like:

4] VAA"PAB':O;
(i) Vg, =0;
(iii) V, 0% =0;
(iv) V¢, . =0.
All fields considered will be supposed to be holomorphic with respect
to z, on their domain of definition.

Let us note that the spinor form of the equations can be separated
into two independents parts. It is basically the consequence of the

properties of matrix multiplication:
¢Ol _ 0 1 0 1;
‘:) i 0 ] ]

Voo Vi
VO!' Vll'

.M“"]

a'F*=O<—>VM¢‘B=O<—>{ o
]

Hence the equation d - F' =0 consists from two independent copies
of the spini massless field equation V %" on CM. (Let us remark
that such property is not very unpleasant because of the fact that the
basic spinor fields in Nature often come in doublets—see [14].)

To translate differential forms on CH, it is sufficient to interpret
such an r-form as a mapping-from C(2) X - - - X C(2)—> C(2) instead
of CHX - -- X CH— CH, or—what is the same—as a 2 X 2 matrx
the elements of which are standard r-forms on CM.

With the abbreviations d, := dz,, d,, := dz,, let us define

Dr. . =1 [ dog doyr dyo s — oo n dyor dn'},

as ;

2 de(rA doyndyy i —dyy - dyo - dll’J
pzAt = 1 [ —doyadigadyidoy » dio it
2 ] = dog . dor A1y 3 doo - oy dro

Then we have

LEMMa 1’

1 =1 BB’ _ BB

() DzylresstecsSpp ) =3(par " tag = tgaT" Sagh
b AA AB BA’ AB’ B4’
(1) Dz**{rggtecSppl =3t rggs™ — s 5 rgpt ™),

Proof By direct computation, for example the upper left corner of
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336 V. SOUCEK
the left hand side of (1) looks like

1
31700 TorS0 t Lo SorTie F SeoTor 0

— — —_ 4
Soolorio ~ TooTorSi0 = ToaSord 1o |

while the same corner on the right is

1o — —
21500 l00 T SieTorlon — Seori0tor + Sioteolo)

“looTnSos F NoTorSor + Lo 0501 = HioTooSop |-

Remark It follows from Lemma |’ that Dz, , 1s really a transla-
uon of DQ 1n the sense of alternating mappings.

LEMMA 2" We have (in QC CM) VAite,=0. V¢, =0=
d(¢,y, D7) = 0.

Proof Using df=V*"f.4 , we get for example d(¢,D:"")
==V, — V06 =T — Ve g dy,-. d\, . d,, . Hence

VAte, =0. Y4y, =0in Q:f 60, Dz =f G, DA%

THEOREM 1’ (Cauchy) Ler @ C CM be an open set. let 2, and Z; be
compact chains. which belong 1o the same homology class in Q. Then -

VA.4'¢A =(, VAA"{M, =0in Q:‘;f ¢A4’A’DZAA'=I ¢A¢A,DZAA..
23 p

Proof It follows from Lemma 2’ and Stokes theorem.

Let us consider now the point P,,. in CM and the (positively
oriented) ball U (P)= (P, + Q,| 0, = [iyg, x,, Xy, X3}, yi + x2 +
x2 4+ x2 < p?) (ie. U,(P) is the ball in Euclidean spacetime shifted to
P). Let us denote by S, its boundary aUp(P). Then we have

THEOREM 2’ (Cauchy integral formula) Ler P € U(P)CQCCM,
42
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let = belongs to the same class of homology as S, (in Q\CN,). Then
VA%, =0in Q
=64(P)=1/27 [ 65(Q)DQ™ (Q,y = P,)/10= PI"
=3

where | Q — P|* =dei( Q,, — P, ).

Remark Both theorems have. of course. corresponding versions
for . 0",

Proof Let us give the proof which does not depend on quatern-
ionic analysis. Theorem 1’ gives the independence of the integral on
the representant of the homological class. The limit procedure p— 0
can be applied and we get for this limit the value

dg(P)- 1/277:L mDQBA‘( Qua— Pii)/I1Q— PlP=0,4(P)-kF.

3

where the matrix k; doesn’t depend on ¢,. Hence the only difficult
point in the proof is to compute k; and to show that it is just the unit
matnx. [t is done in Example in §5.

THEOREM 3 Ler I; be a compact chain in C,,. let us denote
=CM\{Upex,CNp). where CN, is the complex null cone of the
point P. Let 8, be continuous on X, then the field

$4(P)=1/27* [ 0,(Q)DQ™ (Quy ~ Pus)/|1 0= PI'  (3)

satisfies the equation V**'¢, =0 in Q.

Proof It is sufficient to use the standard theorems on deriva-
tives of the integral depending on parameters and the fact that

VM’{( Qus = Pug)/1Q — P|4} =0.

Remark Theorem 3’ can be used to get some information on the
analytic continuation of fields from Euclidean spacetime R, to Min-
kowski spacetime. For example. if a field ¢,. satisfving massless
field equation on a ball U= {[iry.x,.x5.x3){vg + x" < p~) CR, is
given. then the field ¢, can be extended to the whole domain
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ECM|CN, MR, C Q). by the formula (3). For a fixed P the cvcle
Z; has 10 be a sphere in U. sufficiently close to the boundary of L.
The rough e‘slimale gives. for example. that the domain {z = x + iy,
€ CMivirg+x7)+(x§ +¥) < p! is contained in U. From this it
follows. for example. that massiess fields $,. given on the whole F,.
can be extended to the whole CM.

4. THE DEFORMATION OF THE CONTOUR OF
INTEGRATION IN C M

Consider the complex null cone CA (with vertex at 0). Let us
denote

Z = 1 Zan = — ’§A§A‘/(l§0!2 + Ml'z) t 2t

§AEC3.:EC,iz|=p}. (4)

where r=r({,) >0 and v,, =t,,({;) are (smooth) funcuons on
P(C)= S, described by homogeneous coordinates §,. We want 10
show that under suitable assumptions on ¢, the cvcle =, belongs 10
the same homology class (in CM\CA') as the sphere S, in &,. To
prove this. it is sufficient to show that there is a homotopy in
CM\CN joining S, and =,. The explicit description of such homo-
topy will be given now.

The main idea is shown in Fig. 1 (two space dimensions are
suppressed):

Xg Xg

EX}
>}

Figure 1.
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The small circles, obtained by splitting of the original circle. are
rotated to the zy-plane (and possibly further to any other complex
I-dimensional subspace of CM, which can be different for different
points of Z,).

The full-dimensional case is rotationally svmmetric version of the
Fig. 1. The circle in §;. corresponding to a direction =n. n < S, will
be splitting into two small circles around the two opposite generators
of the null cone N (corresponding to the directions =*n). The best
possible illustration is the transformation of the sphere into an apple
and then to a torus.

The explicit formulas (in several steps) for such deformation look
like (the condition on v, ,. =~ v, will be discussed in a while):

Step 1 (from sphere to torus): Let r > p > 0. Define forr = 0. -
i ={:z, €CM|zy=ipsing — L. X =D(pCOSO — I):

nES,.¢E{—a,a],

where a satisfies 7 + pcosa =0 for 1 < p and a = 7 for ¢ > p. Clearly
Step 2 (the circles are turning to zy-plane): 1€ /0.1 we define

Zi(ny={z,€CM|zy=ipsine — r + 1pcos¢.
x=—nr+(l -1)pncoso:nE S, 06— 7.7, .
Then Z3(0) = Z4(r) and Z(1) can be written as
2Ny ={z,lzo=-r+z,x=—-nr;ne€S,, z€C |z|=p!.

Step 3 (independent rotating of circles): Let us define for ¢ €
0.1

S ={z, €CM|zo= —r+:z[(1 = 1)+ 1ty .

x=\—nr+::v:nESQ.:E‘C.i:}=p;.
45
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Then Z1(0) = Zi(1) and (1) looks in the spinor notation like
Zi(hy= - 1/(1§0| + {51:)! Lot i 8, €02 €C lzi=p.

The centers of the circles can be now shifted along generators of
the null cone arbitrarily. so r can be (by homotopy r(1 — 1) + r({ ).
1 € <0.1>) changed into any function r({).

The last point missing vet is the verification that the described
homotopy is really the homotopy in CM\CN. Some conditions on t,
have 1o be imposed 1o ensure this. Let us note first that all deforma-
uons are enclosed in the space iz, {z,€C: z,.2,.2, € R} But it is
easy to see that the complex null cone intersects this space in
Minkowski space null cone N. Hence only points in (real) Minkowski
space have to be checked. In step 1 and 2 it means sinoe = 0 and the
verification is easy. For the step 3 more care is needed. The question
is if the points ¢, = z[(1 + )7, + 1r,]. 1 €0.1). |z} = p small lie on
N.where 7, =[1:0:0:0]. g, = [—r. —nr] (see Fig. 2).

The condition which is sufficient to exclude such possibility is the
assumpuon that 7, and v, lie in the same component of M\ T A ve.
that g,7" and g,v* have lhe same sign. But g, 7" =g, <0. hence we

shall suppose (in the spinor language) that {,{, ¢4 > 0.

LEMMA 3 Suppose that the function ¢**({) satisfies the condition
$a$t™()>0,5,€C,. Let Ubea neighborhood of the set ;z,, =
I§A§A 1§, €C1€0,r(§))) in CM.
Then for p > 0 sufficiently small the contour S belongs in U\CN 10
the same homology class as S,.
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Proof The condition {,{,.c”* > 0 holds uniformly on the consid-
ered compact subset of N, hence. choosing p sufficiently small. the
step 3 can be checked. The radius p can be chosen so small that the
whole deformation is contained in U.

5. THE INTEGRAL FORMULA OF PENROSE

A generalized Kirchhoff integral formula giving the values of
massless fields by means of the initial value data on a null hypersur-
face ./ in CM was described in [7]. [15]. It can be described as
follows:

Figure 3.

Let X, be the intersection of the (backward) null cone N, of the
point P with the initial data null hypersurface . /" C M. Take a
typical point Q' on Z,. Suppose that {, € C, are homogeneous
coordinates for P (C) worth of null directions in N, and suppose that
the vector Q'P is described in the spinor language as r{,{,..r = r({,)
> 0. Let us choose further a (smooth) spinor field £, = £,( Q") on the
hypersurface .#” such that the vector £,{,. is tangent to the generator
of ¥ (i.e. that is orthogonal to TQJ/ ). We can suppose the
normalisation condition £§#{, =1 on =,. Then

¢4(P)=1/27 [ (8,/1(D8 = (20 + )8 1 S, 5)

where § = ¢, £ D =£487V . p= —¢"PE0PV 58, €= —{'DE,
and 4§ is the surface element of =,.
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We want to show now that the complexified Cauchy integral
formula reduces to Penrose’s formula on M after one integration
being done. Suppose that the field ¢, satisfies the equation V44 ¢,
=0 i a neighborhood U C CM of the set 12,1,1 =P, — 1,8, 1¢,
€C,. 1€<0,r>)} CN. The contour Z,={Q,, =P, —r,{, +
zE, 8, 1$4 €C.. 2 €C, |zl = pi satisfies (for p sufficiently small) the
conditions of Theorem 2' so that we have ¢,(P)=1/27¢ $5(Q)

DO ( Qa4 = Puy)/1Q = PV

Let us transform now the 3-form under the integral into variables
{e€C z€C, |z =p. where { is the corresponding inhomogeneous
coordinate. i.e. {, =[1.{]. Then

DOBY = DQBA’[BQCC_/E)LaQDD,/a;,aQEE,/af]dfﬁ dz, ds.

QAA'_PAA'=_r§A§A+Z£AEA" [Q—P|:=—zr.

Hence

¢, (P)= 1/272ff§f>¢>5( 0)
% [£°2 (= 0/03(5c ) e + 28/88 (k)

[( 8/08(r{*)EC + 28 /08 (87 )1

{(—B/BK-(rfc);B + Za/ag‘(gcze )}
X[ (=8/88 (6 ) + 28/08 6k ) [E45€ )

(=r8 8+ z&AEA.)/zzrz‘ dz , df d¢.

The integrand looks very complicated and there is even a lot of
derivatives and multiplications to be done yet (it represents the sum
of 64 different terms). But the miraculous cancellation will take place
and very simple formula will be obtained at the end. The basic tool
for cancellations is, of course, {,{* = ¢,£4 = 0, but it is not sufficient,
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the important information is contained in the formula 3/3¢(r{z)¢ %
= 0 (and its primed version). which expresses the fact that the vector
¢,&, is orthogonal to TpZ,. Moreover. only terms contamning 1/ will
contribute by residue theorem. Note that ¢,(Pp,, — r$p$p + 2£,€p)
has to be expanded to Taylor series at z = 0. Altogether we find

reso = — (D) ECc[8/85 () Y[ 8/08 (£ )81 |8/ 20

+ 1058 PEC[8/08(r5)3/08 (€ ) 81T 8 /o

+ 3958 PEC0/08 (8 S (3/85(rE1 )8 84/ 2

= 1{(Des)e %+ 0[8/85(r5c 13/38(£)]

_ 0r(gca/ag§(gc.))}§/,/_-r.

Further. the matrix £*{; — {*¢, is just the unit matrix (because of
§46" = 1), hence we have 3/3§(r{c) = —(3/35(r{,)§°)éc = réc and
WIItng ¢ = ¢ (2,.($)) where zp($) = Pep — r$sss

£0/08(5C ) = 0/08(— rép JXeVEE (£ Yo = rELEEET o8 = ~ 1.

From the properties of null hypersurfaces it follows that ¢DEC=0
and p = p (see [7], p. 237). The first relation gives moreover ( D¢p)¢ 8
= D8 — ¢,(£% - — $B¢)DEC = DB — €b. The proper choice of ¢, on
¥ can give € = 0 ([7]). So we have finally

¢A(P)=(2’#1'/4172)J‘f[{D9—(2p+ )0 )8, /r]rdS . ds.
eC

The formula (5) was hence recovered with dS ——-_ir2 d{ . d¢ (to have the
positive orientation for =, the orientation id{,d{ has to be taken
in Q).

Remarks

1. If only £, C N, is given (without ./ ) and if £, at Q EX, is
defined to represent the vector orthogonal to T,X, with the same
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normalisation £*, = 1. we can have the formula

0(P)=1/2% [ [(Do)¢" = 20(0,6*)|(5,/rdS  (6)

|
-k

without defining ¢, outside of =, at all. The proof of such formula is
the same because the most important relation 0/38(r¢ )¢ =0 still
holds. Another possibility is to relax this condition and to consider
arbitrary (smooth) function ¢, on =.. In this case another integral
formula can be obtain (if wanted) which. of course. will be more
complicated and where both components of ¢, and Do, will be
generally needed on =,.

2. More generally. any directions ¢, . v, ,.{*¢* > 0 can be taken
in the formula (4) for =,. After the same procedure being done. we
could obtain a lot of another integral formulas. the described proce-
dure being the machine producing integral formulas with respect to
the form of initial data hyper-surface under the consideration and
with respect to the direction of derivatives chosen at corresponding
points. For example. the analogue of the original Kirchhoff integral
formulas, where the hypersurface is : = 0 and the derivatives of the
field 1n the direction ¢,, ~[1.0.0.0] are considered. can be writier
for the field ¢,

3. Up to now all fields were considered on Minkowski space.
There are good reasons to believe that the procedure described above
can be generalised in future to conformally flat spacetimes (Penrose's
integral formula remains valid in such situation ({15], [16)). On the
other hand, on conformally curved spacetimes the situation is ex-
pected to be quite different.

4. Note that the results of §3, together with the reduction to
Minkowski space and next Example, gives the alternative proof of the
formula (5). A special form of the Stokes theorem is used in [15], [16]
for the proof of the formula (5) which gives the independence of the
integral in (5) on the deformation of =, inside /. 1t 1s just the same
procedure as in Theorem 1’ on the different level (after one integra-
tion being done).

Example Let us calculate the matrix k? from the proof of Theo-
rem 2'. Taking P=0, {, =[1,{), & =[-5/(0 + ¢, 1/0 + L),
r=1/Q+[5P) we get p= —(1/r)t8/35(¢ ) = —=1/(1 + ¢ ) and
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(using (4) for ¢,(P) = 8%) we have
kB = 1/2[[2[(1 + 18P €% ir & .

The cycle §; has the positive orientation if the orientation dv . du is
used for C (where { = u + it), so we have finally

-

u+ i u3+r'

kf=(z/-,,-)ff(1+u2+c3)“3[ ! ““""’}dudu.

which gives the unit matrix by a simple calculus.
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