Boundary value type & initial value tvpe integral formulas for wassless fie

Even if the standard twistor integral formulas are well-designed to describe
solutions of massless field cquations, they are not integral formulas giving a
solution to initial value (resp. boundary value) problem. Such formulas were de-
seribed in {]] for real Minkowski space MI. It will be sheown here that there are
two possible types of formulas in ‘NI - elther &n initial value type one, which
is an 'analytic continuation' of Penrose's one from MI, or a boundary value type
one, which is an 'analytic continuation' of Cauchy-type integral formula from
Euclidean space-time. )

To have a picture of the situation, take I,c &MI such
that Iy intersects each a-plane in the unique point. The
value of a massless field in a point P can be reconstruc-

ted from (a suitable combination of) values and first deri-

vatives of the field on the intersection I, of the complex
null cone NP (with the vertex at P) with £, ( an initial
value type formula). This formula can be also used to describe the inverse Pen-
rose transform, it reduces for Iy= I ( a negative definite real slice of M+)

to formulas in [2]. On the other hand, given values of the field on L3c Iy, there
is an integral formula expressing the value of the field at P for every P, for
which the corresponding intersection I, lies 'inside' of I3 (a boundary value
type formula). The transition from boundary to initial value type formulas is
done by the integration with respect to a (suitably chosen) variable using the

residue theorem, the singularity being just on the null cone.

The boundary value type formula.
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1
point PAA'é (MI, the 4-dimensional ball Up(P), lying in the Euclidean slice of

cMIthrough P and its boundary S3= SUD(P) . Then we have

Theorem 1 (Cauchy integral formula):
E'
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Let 9V, ,v At =0 in Q¢ {MI Pe Q. Let Z3v S3 (i.e. belongs to the same
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class of homology) in QNCN_. Then (spin n/2 case)
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For spin O case ( Q=0 in © ) we have
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Proof: 1Tt is possible to use the induction on n . For n=1 (and n=0) the asser-
tion is the consequence of the standard Stokes theorem (the integrand is a closed

3-form) and of the fact that 1/2n? j DQAA' (Q—P)AB'/IQ—P|q = €A,B' (see [3}).
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The contours of intepration.

Some c¢xamples of I3 homolegical to Sz are nceeded.
Ex.l: 1f S3' is a sphere in an Nuclidean slice Ey and if (NPF\EN 15 contai-
. . . . . . [
ned in the interior of S3', then S3'~ S3 in (M \&NP.

]
Ex.2: Let LA be a (-1)~hcwmogencous function of nAe a, ~{2} and define
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= {P - gAnA InA ¢ € ~{}] ) . For the purposes of integration it is suf-
1 t
ficient to consider nA := (1,7}, 7 e¢€.Let us choose further spinor fields oA,1A on
A A’ . e
such that EAO = Tt = 1 and that the orthogonality conditions
A A' = A AT -
B/Bn(EAﬂA,)o \ = D/UH(EAnA,) o = 0 hold on £;. Let us denote further
AA! A AT A A' Al . '

Iy ={P - o+ zo | nedin e, ze€, |z]= €}, € > O fixed.

. I . .
Then I3 ~S3 in €M™~ CNP ( 1t can be shown by a simple homotopy argument that

I3v £3''(1) from (3} ).

The initial value type formula. ;

) il
Theorem 2: Let wA - E (n20) satisfy the massless field equation in MI.
Then {Anble Awtadkow s (w Em.?—) ;
A'..E" +1 Fr.Lu F'..u 5
(x) ¥ (r) = (-" /Zﬂf[(:bw )\F..-lu,..a1+(n+1)(w IF"IH')'BZJ :
T 1
.ﬂA ..ﬂE Liduad® ..
A A’ — A’ -
where D= o™ VAA" a1=£A8/aﬂ€A, az=1 a/an\A, .
Proof; ;
Taking I3 as in Ex.2, the formula (#) is obtained b& using Theorem 1 and
the residue formula in the variable 2z . The confitation is similar as in (31 . ;
H
Further information nceded is: !

- the orthogonality conditions imply the relation
A 9/7(, ) = 3/an(g,)a/07(o") = a/a7(E,)0/on(o"),

~ with this we have i

DQBB' = %(al + 2za; ) optyr dz dn.d7

This information is sufficient for the case n=o and n=1, but for higher spins

another formula is needed. Such formula can be used also for the inductive proof

of (#) (starting with n=o0 case), which can be of an independent interest. Let

us show it on the case (spin O — spin }).
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Suppose that (%) holds for n=0. 1f ¢ is oa ospin 1 rnesless field,
! . Al Al .
then vsing n=0 formula we have wA = —]/er(z‘, Lacte T Lal)id-LdT
. A’ A’ Al
Inserting €& B = Tl T T we have
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Now adding the integral of an exact form
B! A’ B’ Al B' Al B’
('*) "d(w “BVI d“) :{31(3‘1‘ )"'Bvl + 321."' T'Bvl + 2

we immediately obtain the formula (%) for n=1 . The same schewe works also

AT
v Jdradi

for the inductien step from n to n+l . For the relation (%) we have need
R . . Al . .
of the property that the massless field equatien for ¢ 1is equivalent with

the property VAA'wB' = VA(A'*B') (see []) ).

Remarks:
A

1. In the case §A= T =1, OA=1/r.TA; r>0, r=r(w,%) , the formula (#*

T,
> A
reduces to the (primed version of) Penrose's formula from [1] . In this case
) C'-EE'_ , c 2 e 7B B

we have a;=-r"; az;=-1 17 VEE,(mc.).r; irdn.di = d¥ , and $=1/ri VEE
b Al . ~ Al ~
%_ The term (Y )\A, can be written as (Y 1A,) with Q)equal to D minus a
% spin coefficient (as in [3X ), for this case of course the field Ty has to

be extended to a neighbourhood of L2 in a suitable way.

2. The explicite formula from [2] for the inverse Penrose transform can be

Ab'S g% (as in [2])

1
obtained (with notations from [2) ) taking Ao 1/t. t Ty

A’ . cs . . .
depends on T in such a way that L, 1is just the intersection of N, with the

. P . + 2 E - EEE
negative definite slice I of M . Then ap=-1/t° , -a;0 d".dn=dr IE'"an

and the formula (%) reduces to formulas (12) and (29) from [2] .

3. To have a locdl version of Theorem 2, we have to suppose that the massless
field equation is satisfied in a neighbourhood of (a suitable part of) complex

null cone CNP.
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