Boundary value type & initial value type integral formulas for massless fields.

Even if the standard twistor integral formulas are well-designed to describe solutions of massless field equations, they are not integral formulas giving a solution to initial value (resp. boundary value) problem. Such formulas were described in [1] for real Minkowski space MI. It will be shown here that there are two possible types of formulas in $\mathbf{c}_{\mathsf{M}}^{\mathsf{I}}$ - either an initial value type one, which is an 'analytic continuation' of Penrose's one from M^I, or a boundary value type one, which is an 'analytic continuation' of Cauchy-type integral formula from Euclidean space-time.

To have a picture of the situation, take $\Sigma_4 \subset \mathbb{CM}^{\mathrm{I}}$ such that Σ_4 intersects each α -plane in the unique point. The value of a massless field in a point P can be reconstructed from (a suitable combination of) values and first derivatives of the field on the intersection Σ_2 of the complex null cone $N_{_{\rm D}}$ (with the vertex at P) with Σ_4 (an initial

value type formula). This formula can be also used to describe the inverse Penrose transform, it reduces for $\Sigma_4 = \Sigma$ (a negative definite real slice of M⁺) to formulas in [2]. On the other hand, given values of the field on $\Sigma_3 \subset \Sigma_4$, there is an integral formula expressing the value of the field at P for every P, for which the corresponding intersection Σ_2 lies 'inside' of Σ_3 (a boundary value type formula). The transition from boundary to initial value type formulas is done by the integration with respect to a (suitably chosen) variable using the residue theorem, the singularity being just on the null cone.

The boundary value type formula.

Let us denote DQ_{AA} , := $\frac{1}{2} \begin{bmatrix} dQ_{00}, \neg dQ_{01}, \neg dQ_{10}, \neg dQ_{10}, \neg dQ_{10}, \neg dQ_{11}, \\ dQ_{00}, \neg dQ_{01}, \neg dQ_{11}, \neg dQ_{11}, \neg dQ_{10}, \neg dQ_{11}, \end{bmatrix}$. Consider a

point $P^{AA}' \in CM^{I}$, the 4-dimensional ball $U_{\rho}(P)$, lying in the Euclidean slice of $\mathbf{C}^{\mathbf{M}}$ through P and its boundary $S_3 = \partial U_{\Omega}(P)$. Then we have

Theorem 1 (Cauchy integral formula): Let ∇_{AA} , $\psi^{A'...E'}$ =0 in $\Omega c \in \mathbb{C}^M$, $P \in \Omega$. Let $\Sigma_3 \sim S_3$ (i.e. belongs to the same class of homology) in $\Omega \searrow C N_p$. Then (spin n/2 case)

$$\psi^{A'...E'}(P) = 1/2\pi^2 \int_{\Sigma_3} \psi^{F'..H'} DQ_{(F(F', (Q-P)_{GG'}...(Q-P)_{H})H')} \frac{(Q-P)^{FA'...(Q-P)_{HE'}}}{|Q-P|^{2n+2}}$$

For spin 0 case ($\square \psi = 0$ in Ω) we have

$$\psi(P) = 1/4\pi^2 \int_{\Sigma_3} \left[\psi(Q) \stackrel{\leftrightarrow}{\nabla}^{AA} \right] \frac{1}{[Q-P]^4} DQ_{AA},$$

Proof: It is possible to use the induction on $\,n$. For $\,n$ =1 (and $\,n$ =0) the assertion is the consequence of the standard Stokes theorem (the integrand is a closed 3-form) and of the fact that $1/2\pi^2\int DQ_{AA}$, $(Q-P)^{AB}/|Q-P|^4=\epsilon_A^{B}$ (see [3]).

$$\int_{\mathcal{Z}_{3}^{+}} ^{C'D'} DQ_{(C(C'(Q-P)_{D)D'})} (Q-P)^{CA'} (Q-P)^{DB'} / |Q-P|^{G} =$$

$$= \frac{1}{2} \int_{\mathcal{Z}_{3}^{+}} \psi^{C'B'} DQ_{CC} (Q-P)^{CA'} / |Q-P|^{G} + \psi^{A'D'} DQ_{DD} (Q-P)^{DB'} / |Q-P|^{G}$$

The contours of integration.

Some examples of Σ_3 homological to S_3 are needed.

<u>Ex.1:</u> If S_3 ' is a sphere in an Euclidean slice E_4 and if $CN_p \cap E_4$ is contained in the interior of S_3 ', then S_3 ' S_3 in $CM^{I_1}CN_p$.

Ex.2: Let ξ^A be a (-1)-homogeneous function of $\pi^A \in \mathbb{C}_2 \setminus \{z\}$ and define

$$\begin{split} & \Sigma_2 = \{P^{AA'} - \xi^A \pi^{A'} \big| \pi^{A!} \in \mathcal{C}_{L^{\infty}}(\circ) \} \; . \; \text{For the purposes of integration it is sufficient to consider} \; \; \pi^{A'} := \{1,\pi\}, \; \pi \in \mathcal{C}. \text{Let us choose further spinor fields o}^A, \chi^{A'} \text{ on } \Sigma_2 \text{ such that} \; \; \xi_A \circ^A = \pi_A, \chi^{A'} = 1 \; \text{and that the orthogonality conditions} \\ & \partial/\partial \pi (\xi_A \pi_{A'}) \circ^A \chi^{A'} = \partial/\partial \overline{\pi} (\xi_A \pi_{A'}) \circ^A \chi^{A'} = 0 \; \text{hold on } \Sigma_2. \; \text{Let us denote further} \\ & \Sigma_3 = \{P^{AA'} - \xi^A \pi^{A'} + z \circ^A \chi^{A'} \big| \; \pi^{A'} \mathcal{C}_{\Lambda} \setminus \{0\}, \; z \in \mathcal{C}, \; |z| = \varepsilon\}, \; \varepsilon > 0 \; \text{ fixed.} \\ & \text{Then } \Sigma_3 \sim \Sigma_3 \; \text{in } \; \text{CM}^I \subset \mathbb{N}_p \; (\text{ it can be shown by a simple homotopy argument that} \\ & \Sigma_3 \sim \Sigma_3''(1) \; \text{ from } \{3\} \;) \; . \end{split}$$

The initial value type formula.

where
$$\mathfrak{D} = o^{A_1}^{A'} \nabla_{AA'}$$
, $a_1 = \xi^{A} \partial / \partial \overline{\pi} \xi_{A}$, $a_2 = i^{A'} \partial / \partial \overline{\pi} i_{A'}$.

Proof:

Taking Σ_3 as in Ex.2, the formula (*) is obtained by using Theorem 1 and the residue formula in the variable z. The confutation is similar as in [3]. Further information needed is:

- the orthogonality conditions imply the relation

$$\iota^{A'} \partial / \partial \overline{\pi} (\iota_{A'}) \; = \; \partial / \partial \pi (\xi_{A}) \, \partial / \partial \overline{\pi} (o^A) \; - \; \partial / \partial \overline{\pi} (\xi_{A}) \, \partial / \partial \pi (o^A) \; ,$$

- with this we have

$$DQ_{BB}^{\prime} = \frac{1}{2}(a_1 + 2za_2) o_{R}^{\prime} e_{R}^{\prime} dz_{n} d\pi_{n} d\bar{\pi}$$
.

This information is sufficient for the case n=0 and n=1, but for higher spins another formula is needed. Such formula can be used also for the inductive proof of (*) (starting with n=0 case), which can be of an independent interest. Let us show it on the case (spin $0 \rightarrow \text{spin } \frac{1}{2}$).

Suppose that (*) holds for n=0. If $\psi^{A'}$ is a spin $\frac{1}{2}$ massless field, then using n=0 formula we have $\psi^{A'} = -1/2\pi \int (2\pi^{A'}, a_1 + \pi^{A'}, a_2) id - .d\pi$.

Inserting $\in B' = \pi_B, \Lambda' - \chi_B, \pi^{A'}$ we have

$$\psi^{A'} = 1/2\pi \int \{ \left[(\mathfrak{Z}\psi^{B'})_{1_{B'}, a_1 + \psi^{B'}}_{1_{B'}, a_2} \right] \pi^{A'} = \left[(\mathfrak{Z}\psi^{B'})_{\pi_{B'}, a_1 + \psi^{B'}}_{\pi_{B'}, a_2} \right] \tau^{A'} \} i \, \mathrm{d}\pi_* \, \mathrm{d}\pi \ .$$

Now adding the integral of an exact form $(\star\star) - \mathrm{d}(\psi^B^{}{}^{}{}_{B}, \iota^{A^{}}{}^{}\mathrm{d}\pi) = [a_1(\mathcal{Z}\psi^B^{}{}^{})_{T_B}, \iota^{A^{}} + a_2\psi^B^{}{}^{}{}_{B}, \iota^{A^{}} + a_2\psi^B^{}{}_{B}, \iota^{A^{}}]_{d\pi_A}d\pi \,.$ we instediately obtain the formula (*) for n=1. The same scheme works also for the induction step from n to n+1. For the relation (**) we have need of the property that the massless field equation for $\psi^A^{}$ is equivalent with the property $\nabla_{AA}, \psi_B, = \nabla_{A(A}, \psi_B)$ (see [1]).

Remarks:

1. In the case $\xi^A = r \pi^A$, π_A , π_A^A ,

The term $(\mathfrak{Z}\psi^{A'})_{1_A}$, can be written as $\widetilde{\mathfrak{Z}}(\psi^{A'}_{1_A})$ with $\widetilde{\mathfrak{Z}}$ equal to \mathfrak{Z} minus a spin coefficient (as in $[\mathfrak{Z}]$), for this case of course the field \mathfrak{L}_A , has to be extended to a neighbourhood of \mathfrak{L}_2 in a suitable way.

- 2. The explicite formula from [2] for the inverse Penrose transform can be obtained (with notations from [2]) taking $\iota^{A'}=1/t$. $t^{AA'}\overline{\pi}_A$, ξ^A (as in [2]) depends on $\pi^{A'}$ in such a way that Σ_2 is just the intersection of N_p with the negative definite slice Σ of M^+ . Then $a_2=-1/t^2$, $-a_1o^Ed\overline{\pi}_{\sim}d\pi=dr^{EE'}\iota_{E'}^{\sim}d\pi$ and the formula (*) reduces to formulas (12) and (29) from [2].
- 3. To have a local version of Theorem 2, we have to suppose that the massless field equation is satisfied in a neighbourhood of (a suitable part of) complex null cone $\mathcal{L}N_p$.

References:

- [1] R.Penrose: Null hypersurface initial data for classical fields..., GRG 12 (1980), 225-264
- [2] N.M.J.Woodhouse: Twistor cohomology without sheaves, Adv.Twistor Th. (2.3.)
- [3] V. Souček: Complex-quaternionic analysis applied to spin-½ massless fields to be published in Complex variables, theory and applications