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1 Introduction

The name of Jaroslav Kurzweil is connected especially with the nonabsolutely
convergent Henstock-Kurzweil integral, which generalizes the integrals of Rie-
mann, Lebesgue, and Newton. The roots of this integral lie in the theory of
generalized ordinary differential equations, which can be traced back to 1957
(see the paper [8]). Consider an interval I ⊂ R, a set B ⊂ Rn, and a function
F : B × I → Rn. A function x : I → B is called a solution of the generalized
ordinary differential equation

dx

dτ
= DF (x, t),

whenever

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t)

for each pair of values s1, s2 ∈ I, where the integral on the right-hand side is
the generalized Kurzweil integral (see the next section).

Although generalized ordinary differential equations are not as widely known
as the Kurzweil integral, they have turned out to be quite a powerful concept,
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which includes not only ordinary differential equations, but also differential
equations with impulses, measure differential equations and other concepts. For
example, the recent papers [3] and [4] demonstrate the possibility of convert-
ing retarded functional differential equations to generalized ordinary differential
equations for functions with values in a Banach space.

Štefan Schwabik has suggested a different research direction in his work [10],
which shows that discrete systems of the form

xk+1 = f(xk), k ∈ N,

might be also rewritten as generalized differential equations. The present paper
can be considered as a continuation of his work; we concentrate on dynamic
equations on time scales of the form

x∆(t) = f(x(t), t), t ∈ T,

and show a procedure which allows us to convert this dynamic equation into
a generalized differential equation. Finally, to illustrate the usefulness of this
procedure, we obtain some new results concerning stability and continuous de-
pendence on parameters for dynamic equations on time scales as corollaries of
known results for generalized differential equations.

Although we do not presuppose a knowledge of generalized differential equa-
tions, some familiarity with the subject might be helpful; the monograph [9] is
recommended as a good starting point. On the other hand, we assume a basic
knowledge of dynamic equations on time scales as presented in [1] and [2].

2 Integrals and their properties

We start with a short summary of the generalized Kurzweil integral, also known
as the generalized Perron integral.

Consider a function δ : [a, b] → R+. A partition D of interval [a, b] with
division points a = α0 ≤ α1 ≤ · · · ≤ αk = b and tags τi ∈ [αi−1, αi], i = 1, . . . , k,
is called δ-fine if

[αi−1, αi] ⊂ [τi − δ(τi), τi + δ(τi)], i = 1, . . . , k.

A function F : [a, b] × [a, b] → Rn is called Kurzweil integrable over [a, b] if
there exists a vector I ∈ Rn such that given an ε > 0, there is a function
δ : [a, b]→ R+ such that∥∥∥∥∥∥

k∑
j=1

(
F (τj , αj)− F (τj , αj−1)

)
− I

∥∥∥∥∥∥ < ε

for every δ–fine partition D. The vector I ∈ Rn is called the generalized

Kurzweil integral of F over [a, b] and will be denoted by
∫ b
a
DF (τ, t).

An important special case is the Kurzweil-Stieltjes integral
∫ b
a
f(s) dg(s),

which is obtained from a pair of functions f : [a, b] → Rn and g : [a, b] → R
by setting F (τ, t) = f(τ)g(t). Note also that the choice g(t) = t leads to

the Henstock-Kurzweil integral
∫ b
a
f(s) ds mentioned in the introduction; this

justifies the name “generalized Kurzweil integral”.
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If a < b, we let
∫ a
b
DF (τ, t) = −

∫ b
a
DF (τ, t) provided the right-hand side

exists; we also set
∫ b
a
DF (τ, t) = 0 when a = b.

The following results will be needed later in our development; see Chapter 1
of [9] for more information about the generalized Kurzweil integral.

Theorem 1. If f : [a, b] → Rn is a regulated function and g : [a, b] → R is a

nondecreasing function, then the integral
∫ b
a
f(s) dg(s) exists. Moreover, when

‖f(s)‖ ≤ C for every s ∈ [a, b], then∥∥∥∥∥
∫ b

a

f(s) dg(s)

∥∥∥∥∥ ≤ C(g(b)− g(a)).

Proof. See Corollary 1.34 in [9]; the inequality follows easily from the definition
of the integral.

Theorem 2. Let f : [a, b] → Rn and g : [a, b] → R be a pair of functions such

that g is regulated and
∫ b
a
f(s) dg(s) exists. Then the function

h(t) =

∫ t

a

f(s) dg(s), t ∈ [a, b],

is regulated and satisfies

h(t+) = h(t) + f(t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f(t)∆−g(t), t ∈ (a, b],

where ∆+g(t) = g(t+)− g(t) and ∆−g(t) = g(t)− g(t−).

Proof. The statement is a special case of Theorem 1.16 in [9].

Theorem 3. Let g : [a, b] → R be a nondecreasing function. Consider a se-

quence of functions fk : [a, b] → Rn, k ∈ N, such that
∫ b
a
fk(t) dg(t) exists for

every k ∈ N. Assume there exists a function m : [a, b]→ R such that the integral∫ b
a
m(t) dg(t) exists, and such that

‖fk(t)‖ ≤ m(t), t ∈ [a, b], k ∈ N.

If lim
k→∞

fk(t) = f(t) for every t ∈ [a, b], then
∫ b
a
f(t) dg(t) exists and

∫ b

a

f(t) dg(t) = lim
k→∞

∫ b

a

fk(t) dg(t).

Proof. The statement follows easily from Corollary 1.32 in [9].

Our next goal in this section is to show that the Riemann ∆-integral, which
represents a time scale version of the classical Riemann integral, is in fact a
special case of the Kurzweil-Stieltjes integral. We assume that the reader is
familiar with the Riemann ∆-integral as described in Chapter 5 of [2].

Given a time scale T and a pair of numbers a, b ∈ T, the symbol [a, b]T will
be used throughout this paper to denote a compact interval in T, i.e. [a, b]T =
{t ∈ T; a ≤ t ≤ b}. The open and half-open intervals are defined in an similar
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way. On the other hand, [a, b] will be used to denote intervals on the real line,
i.e. [a, b] = {t ∈ R; a ≤ t ≤ b}. This notational convention should help the
reader to distinguish between ordinary and time scale intervals.

Given a real number t ≤ supT, we define

t∗ = inf{s ∈ T; s ≥ t}.

Since T is a closed set, we have t ∈ T. Further, let

T∗ =

{
(−∞, supT] if supT <∞,
(−∞,∞) otherwise.

Given a function f : T→ Rn, we define a function f∗ : T∗ → Rn by

f∗(t) = f(t∗), t ∈ T∗.

Similarly, given a set B ⊂ Rn and a function f : B × T→ Rn, we define

f∗(x, t) = f(x, t∗), x ∈ B, t ∈ T∗.

Lemma 4. If f : T → Rn is a regulated function, then f∗ : T∗ → Rn is also
regulated. If f is left-continuous on T, then f∗ is left-continuous on T∗. If f is
right-continuous on T, then f∗ is right-continuous at right-dense points of T.

Proof. Let us calculate limt→t0− f
∗(t), where t0 ∈ T∗. If t0 ∈ T and it is

left-dense, then
lim
t→t0−

f∗(t) = lim
t→t0−

f(t).

If t0 ∈ T and it is left-scattered, then

lim
t→t0−

f∗(t) = f(t0) = f∗(t0).

Finally, if t0 /∈ T, then

lim
t→t0−

f∗(t) = f(t∗0) = f∗(t0).

Now consider limt→t0+ f
∗(t), where t0 ∈ T∗ and t0 < supT∗. If t0 ∈ T and it is

right-dense, then
lim
t→t0+

f∗(t) = lim
t→t0+

f(t).

If t0 ∈ T and it is right-scattered, then

lim
t→t0+

f∗(t) = f(σ(t0)).

Finally, if t0 /∈ T, then

lim
t→t0+

f∗(t) = f(t∗0) = f∗(t0).

Theorem 5. Let f : T→ Rn be an rd-continuous function. Choose an arbitrary
a ∈ T and define

F1(t) =

∫ t

a

f(s) ∆s, t ∈ T,

F2(t) =

∫ t

a

f∗(s) dg(s), t ∈ T∗,

where g(s) = s∗ for every s ∈ T∗. Then F2 = F ∗1 .
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Proof. Note that the functions F1 and F2 are well-defined; indeed, the Riemann
∆-integral in the definition of F1 exists because f is rd-continuous, and the
Kurzweil-Stieltjes integral in the definition of F2 exists because f∗ is regulated
(use Lemma 4 and the fact that every rd-continuous function is regulated) and
g is nondecreasing. To complete the proof, it is sufficient to prove the following
two statements:

(1) F1(t) = F2(t) for every t ∈ T.

(2) If t ∈ T and s = sup{u ∈ T; u < t}, then F2 is constant on (s, t].

We start with the second statement, which is easy to prove: If u, v ∈ (s, t] and
u < v, then

F2(v)− F2(u) =

∫ v

u

f∗(s) dg(s) = 0,

where the last equality follows from the definition of the Kurzweil-Stieltjes in-
tegral and the fact that g is constant on [u, v].

To prove the first statement, we note that F1(a) = F2(a) = 0 and it is thus
sufficient to show that F∆

1 (t) = F∆
2 (t) for every t ∈ T (any two functions with

the same ∆-derivative differ only by a constant). It follows from the properties
of the Riemann ∆-integral that F∆

1 (t) = f(t), and it remains to calculate F∆
2 .

When t is a right-dense point, then f is continuous at t and

lim
s→t

f∗(s) = f∗(t) = f(t)

(see Lemma 4). Therefore, given an arbitrary ε > 0, there is a δ > 0 such that
‖f∗(s) − f(t)‖ < ε whenever |s − t| < δ. Now, consider a sequence of time
scale points {tk}∞k=1 such that limk→∞ tk = t. We can find a k0 ∈ N such that
|tk − t| < δ whenever k ≥ k0. Thus for every k ≥ k0 we have∥∥∥∥F2(tk)− F2(t)

tk − t
− f(t)

∥∥∥∥ =

∥∥∥∥ 1

tk − t

∫ tk

t

f∗(s) dg(s)− f(t)

∥∥∥∥
=

∥∥∥∥ 1

tk − t

∫ tk

t

(f∗(s)− f(t)) dg(s)

∥∥∥∥ ≤ ε g(tk)− g(t)

tk − t
= ε,

since g(tk) = tk and g(t) = t. It follows that

lim
k→∞

F2(tk)− F2(t)

tk − t
= f(t),

i.e. F∆
2 (t) = f(t).

On the contrary, when t is a right-scattered point, we have

F2(σ(t)) = F2(t+) = F2(t) + f(t)∆+g(t),

where the first equality follows from the fact that F2 is constant on (t, σ(t)] and
the second equality is a consequence of Theorem 2. But ∆+g(t) = g(t+)−g(t) =
σ(t)− t = µ(t), and it follows that

F∆
2 (t) =

F2(σ(t))− F2(t)

µ(t)
= f(t).
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Note that the integral
∫ t
a
f∗(s) dg(s) in the definition of F2 also exists as

the Lebesgue-Stieltjes integral. We have chosen the Kurzweil-Stieltjes inte-
gral simply because it seems to be more natural in the context of generalized
differential equations. On the other hand, the integral need not exist as the
Riemann-Stieltjes integral, because there might be points where both f∗ and g
are discontinuous (this is in fact a typical behavior at right-scattered points).

3 Main result

This section describes the correspondence between dynamic equations on time
scales and generalized ordinary differential equations. To obtain a reasonable
theory, we restrict ourselves to differential and dynamic equations whose right-
hand sides are functions satisfying the conditions given below.

Assume that G = B × I, where I ⊂ R is an interval and B ⊂ Rn. Given
a function F : G → Rn, we introduce the following conditions, which play an
important role in the theory of generalized ordinary differential equations:

(F1) There exists a nondecreasing function h : I → R such that

‖F (x, t2)− F (x, t1)‖ ≤ |h(t2)− h(t1)|

for every x ∈ B and t1, t2 ∈ I.

(F2) There exists a continuous increasing function ω : [0,∞)→ R with ω(0) = 0
such that

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖ ≤ ω(‖x− y‖)|h(t2)− h(t1)|

for every x, y ∈ B and t1, t2 ∈ I.

Now, consider a set B ⊂ Rn and a function f : B×T→ Rn. Let us introduce
the following three conditions:

(C1) f is rd-continuous, i.e. the function t 7→ f(x(t), t) is rd-continuous when-
ever x : T→ B is a continuous function.

(C2) There exists a regulated function m : T → R such that ‖f(x, t)‖ ≤ m(t)
for every x ∈ B and t ∈ T.

(C3) There exists a continuous increasing function ω : [0,∞)→ R with ω(0) = 0
and a regulated function l : T→ R such that

‖f(x, t)− f(y, t)‖ ≤ l(t)ω(‖x− y‖)

for every x, y ∈ B and t ∈ T.

The following lemma describes the relation between the two sets of condi-
tions.

Lemma 6. Consider a set B ⊂ Rn. Assume that f : B × T → Rn satisfies
conditions (C1)–(C3). Define g(s) = s∗ for every s ∈ T∗. Then for arbitrary
t0 ∈ T, the function

F (x, t) =

∫ t

t0

f∗(x, s) dg(s), x ∈ B, t ∈ T∗,
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satisfies conditions (F1)–(F2) on the set G = B × T∗ with

h(t) =

∫ t

t0

(l∗(s) +m∗(s)) dg(s).

Proof. For a fixed x ∈ B, condition (C1) implies that the function t 7→ f(x, t)
is rd-continuous on T, and therefore t 7→ f∗(x, t) is regulated on T∗. The
function g is nondecreasing, and thus the Kurzweil-Stieltjes integral exists and
F is well defined. Similarly, the functions l∗ and m∗ are regulated, and thus the
integral in the definition of h exists. When t1 ≤ t2, we have

‖F (x, t2)− F (x, t1)‖ =

∥∥∥∥∫ t2

t1

f∗(x, s) dg(s)

∥∥∥∥
≤
∫ t2

t1

‖f∗(x, s)‖ dg(s) ≤
∫ t2

t1

m∗(s) dg(s) ≤ h(t2)− h(t1)

and
‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖

=

∥∥∥∥∫ t2

t1

f∗(x, s) dg(s)−
∫ t2

t1

f∗(y, s) dg(s)

∥∥∥∥ =

∥∥∥∥∫ t2

t1

(f∗(x, s)− f∗(y, s)) dg(s)

∥∥∥∥
≤
∫ t2

t1

‖f∗(x, s)− f∗(y, s)‖ dg(s) ≤ ω(‖x− y‖)
∫ t2

t1

l∗(s) dg(s)

≤ ω(‖x− y‖)(h(t2)− h(t1)).

The case t1 > t2 is similar and is left to the reader.

Before proceeding to the main result, we need the following auxiliary lemmas.

Lemma 7. Let G = B×[α, β], where B ⊂ Rn. Consider a function F : G→ Rn
such that t 7→ F (x, t) is regulated on I for every x ∈ B. If x : [α, β] → B is a
step function, i.e. if there exists a partition

α = s0 < s1 < · · · < sk = β

and vectors c1, . . . , ck ∈ Rn such that

x(s) = ci for every s ∈ (si−1, si),

then ∫ β

α

DF (x(τ), t) =

k∑
j=1

(
F (cj , sj−)− F (cj , sj−1+)

+F (x(sj−1), sj−1+)− F (x(sj−1), sj−1) + F (x(sj), sj)− F (x(sj), sj−)

)
.

Proof. See the proof of Corollary 3.15 in [9].
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Lemma 8. Consider a set B ⊂ Rn and a function f : B × T → Rn such that
t 7→ f(x, t) is regulated on T for every x ∈ B. Define g(t) = t∗ for every t ∈ T∗,
choose an arbitrary t0 ∈ T and let

F (x, t) =

∫ t

t0

f∗(x, s) dg(s), x ∈ B, t ∈ T∗.

If [α, β] ⊂ T∗ and x : [α, β]→ B is a step function, then∫ β

α

DF (x(τ), t) =

∫ β

α

f∗(x(t), t) dg(t).

Proof. By Lemma 4, the function t 7→ f∗(x, t) is regulated on T∗ for every
x ∈ B, and thus the integral in the definition of F exists. Given a step function
x : [α, β]→ B, there exists a partition

α = s0 < s1 < · · · < sk = β

and vectors c1, . . . , ck ∈ Rn such that

x(s) = ci for every s ∈ (si−1, si).

The function t 7→ F (x, t) is regulated by Theorem 2 and we may use Lemma 7
to obtain∫ β

α

DF (x(τ), t) = lim
ε→0+

k∑
j=1

(
F (cj , sj − ε)− F (cj , sj−1 + ε)

)
(1)

+ lim
ε→0+

k∑
j=1

(
F (x(sj−1), sj−1 + ε)− F (x(sj−1), sj−1)

)
(2)

+ lim
ε→0+

k∑
j=1

(
F (x(sj), sj)− F (x(sj), sj − ε)

)
. (3)

Now, since x is a step function, it is not difficult to see that t 7→ f∗(x(t), t)

is regulated, and thus the integral
∫ β
α
f∗(x(t), t) dg(t) exists. In this case, we

obtain ∫ β

α

f∗(x(t), t) dg(t) =

k∑
j=1

∫ sj

sj−1

f∗(x(s), s) dg(s)

= lim
ε→0+

k∑
j=1

∫ sj−1+ε

sj−1

f∗(x(s), s) dg(s) (4)

+ lim
ε→0+

k∑
j=1

∫ sj−ε

sj−1+ε

f∗(x(s), s) dg(s) (5)

+ lim
ε→0+

k∑
j=1

∫ sj

sj−ε
f∗(x(s), s) dg(s). (6)
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Obviously, for every i ∈ {1, . . . , k} we have

F (cj , sj − ε)− F (cj , sj−1 + ε) =

∫ sj−ε

sj−1+ε

f∗(x(t), t) dg(t),

and thus (1) equals (5). Theorem 2 gives

lim
ε→0+

F (x(sj−1), sj−1 + ε)− F (x(sj−1), sj−1)

= lim
ε→0+

∫ sj−1+ε

sj−1

f∗(x(sj−1), s) dg(s) = f∗(x(sj−1), sj−1)∆+g(sj−1)

and

lim
ε→0+

∫ sj−1+ε

sj−1

f∗(x(s), s) dg(s) = f∗(x(sj−1), sj−1)∆+g(sj−1)

and thus (2) equals (4). Finally,

lim
ε→0+

F (x(sj), sj)− F (x(sj), sj − ε)

= lim
ε→0+

∫ sj

sj−ε
f∗(x(sj), s) dg(s) = f∗(x(sj), sj)∆

−g(sj)

and

lim
ε→0+

∫ sj

sj−ε
f∗(x(s), s) dg(s) = f∗(x(sj), sj)∆

−g(sj)

and thus (3) equals (6).

Lemma 9. Let G = B × [α, β], where B ⊂ Rn. Assume that F : G → Rn
satisfies conditions (F1)–(F2) for some h and ω. If x : [α, β]→ B is a pointwise
limit of step functions xk : [α, β]→ B, then∫ β

α

DF (x(τ), t) = lim
k→∞

∫ β

α

DF (xk(τ), t)

Proof. See Corollary 3.15 in [9].

It is a known fact that given a regulated function x : [α, β] → Rn and a
number ε > 0, there is a step function ϕ : [α, β]→ Rn such that ‖x(t)−ϕ(t)‖ < ε
for every t ∈ [α, β]. In other words, every regulated function is a uniform limit
of step functions. Now suppose there is a set B ⊂ Rn such that x(t) ∈ B for
every t ∈ [α, β]; we wish to show that x can be uniformly approximated by step
functions with values in B. Assume that the above mentioned step function ϕ is
constant on intervals (si−1, si), where α = s0 < s1 < · · · < sk = β is a partition
of [α, β]. Now, choose a ti ∈ (si−1, si) for every i ∈ {1, . . . , k} and construct a
function ψ : [α, β]→ B as follows:

ψ(s) =

{
x(si) for s = si,
x(ti) for s ∈ (si−1, si).

It is clear that ψ is a step function. Moreover, when s ∈ (si−1, si), then

‖x(s)−ψ(s)‖ ≤ ‖x(s)−ϕ(s)‖+‖ϕ(s)−ψ(s)‖=‖x(s)−ϕ(s)‖+‖ϕ(ti)−x(ti)‖< 2ε.

It follows that ‖x(t)−ψ(t)‖ < 2ε for every t ∈ [α, β]. This means that x can be
uniformly approximated by step functions with values in B.
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Lemma 10. Let B ⊂ Rn and assume that f : B × T→ Rn satisfies conditions
(C1)–(C3). Define g(t) = t∗ for every t ∈ T∗, choose an arbitrary t0 ∈ T and
let

F (x, t) =

∫ t

t0

f∗(x, s) dg(s), x ∈ B, t ∈ T∗.

If [α, β] ⊂ T∗ and x : [α, β]→ B is a regulated function, then∫ β

α

DF (x(τ), t) =

∫ β

α

f∗(x(t), t) dg(t).

Proof. Given a regulated function x : [α, β] → B, there is a sequence of step
functions xk : [α, β] → B which converge uniformly to x on [α, β]. Condition
(C3) implies

‖f∗(xk(t), t)− f∗(x(t), t)‖ ≤ l(t∗)ω(‖xk(t)− x(t)‖), k ∈ N, t ∈ [α, β],

and thus limk→∞ f∗(xk(t), t) = f∗(x(t), t) for every t ∈ [α, β]. Using first
Lemma 9 (the assumptions are satisfied by Lemma 6) and then Lemma 8, we
obtain ∫ β

α

DF (x(τ), t) = lim
k→∞

∫ β

α

DF (xk(τ), t)

= lim
k→∞

∫ β

α

f∗(xk(t), t) dg(t) =

∫ β

α

f∗(x(t), t) dg(t),

where the last equality follows from Theorem 3 (note that ‖f∗(x(t), t)‖ ≤ m∗(t),
m∗ is regulated, and thus the assumptions are satisfied).

Lemma 11. If x : [α, β]→ Rn is a solution of the generalized ordinary differ-
ential equation

dx

dτ
= DF (x, t),

then
lim
u→t

(x(u)− F (x(t), u) + F (x(t), t)) = x(t)

for every t ∈ [α, β].

Proof. See Proposition 3.6 in [9].

Now we have all prerequisites necessary for the proof of the main result.

Theorem 12. Let X ⊂ Rn and assume that f : X × T → Rn is such that
conditions (C1)–(C3) are satisfied on every set G = B × [α, β]T, where B ⊂ X
is bounded. If x : T→ X is a solution of

x∆(t) = f(x(t), t), t ∈ T, (7)

then x∗ : T∗ → X is a solution of

dx

dτ
= DF (x, t), t ∈ T∗, (8)

where

F (x, t) =

∫ t

t0

f∗(x, s) dg(s), x ∈ X, t ∈ T∗,

t0 ∈ T, and g(s) = s∗ for every s ∈ T∗. Moreover, every solution y : T∗ → X
of (8) has the form y = x∗, where x : T→ X is a solution of (7).

10



Proof. Choose an arbitrary a ∈ T. If x : T→ Rn is a solution of (7), then

x(s) = x(a) +

∫ s

a

f(x(t), t)∆t, s ∈ T.

It follows that

x(s∗) = x(a) +

∫ s∗

a

f(x(t), t)∆t, s ∈ T∗.

Using Theorem 5, we rewrite the last equation as

x∗(s) = x∗(a) +

∫ s

a

f∗(x∗(t), t) dg(t), s ∈ T∗. (9)

Let I be a compact interval in T containing both a and s∗. Since x is continuous,
it is bounded on I. Therefore it is possible to find a bounded set B ⊂ X such
that x(t) ∈ B for every t ∈ I. The function f satisfies conditions (C1)–(C3) on
B × I and we may use Lemma 10 to replace the last equality by

x∗(s) = x∗(a) +

∫ s

a

DF (x∗(τ), t), s ∈ T∗,

which means that x∗ is a solution of the generalized equation (8).
To prove the second assertion, let y : T∗ → X be a solution of (8). Then

y(s) = y(a) +

∫ s

a

DF (y(τ), t), s ∈ T∗.

Fix an arbitrary s ∈ T∗ and let [α, β]T be a time scale interval such that a, s ∈
[α, β]. For every τ ∈ [α, β), Lemma 11 implies that

y(τ) = lim
u→τ+

(y(u)− F (y(τ), u) + F (y(τ), τ)) =

= lim
u→τ+

(
y(u)−

∫ u

τ

f∗(y(τ), s) dg(s)

)
= lim
u→τ+

(
y(u)− f∗(y(τ), τ)∆+g(τ)

)
,

and therefore limu→τ+ y(u) exists. Similarly, for every τ ∈ (α, β], we have

y(τ) = lim
u→τ−

(y(u)− F (y(τ), u) + F (y(τ), τ)) =

= lim
u→τ−

(
y(u)−

∫ u

τ

f∗(y(τ), s) dg(s)

)
=

= lim
u→τ−

(
y(u) + f∗(y(τ), τ)∆−g(τ)

)
= lim
u→τ−

y(u),

because g is a left-continuous function. Since y is regulated and therefore
bounded on [α, β], it is possible to find a bounded set B ⊂ X such that y(t) ∈ B
for every t ∈ [α, β]. The function f satisfies conditions (C1)–(C3) on B× [α, β]T
and Lemma 6 guarantees that the function F satisfies conditions (F1)–(F2) on
B × [α, β]. Using Lemma 10 again, we obtain

y(s) = y(a) +

∫ s

a

f∗(y(t), t) dg(t), s ∈ T∗.

But the right-hand side is constant on every interval (s, t], where t ∈ T and
s = sup{u ∈ T; u < t} (see the argument in the proof of Theorem 5). Thus
y = x∗, where x : T → B is the restriction of y to T. This implies (9), and
consequently also (7) (note that, according to Theorem 2, x is a rd-continuous
function).
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From now on, the letter g will always denote the function g(s) = s∗.

Let us pause for a moment to discuss conditions (C1)–(C3). Condition (C1)
is fairly common in the theory of dynamic equations; its purpose is to ensure
that the integral equation

x(s) = x(a) +

∫ s

a

f(x(t), t)∆t

can be differentiated to obtain x∆(t) = f(x(t), t). In a more general setting, we
could focus our interest on the integral equation only; in this case, it would be
sufficient to assume that t 7→ f(x(t), t) is regulated whenever x : T → X is a
regulated function.

Conditions (C2)–(C3) were used to prove that the function

F (x, t) =

∫ t

t0

f∗(x, s) dg(s), x ∈ B, t ∈ T∗,

satisfies conditions (F1)–(F2). Condition (C3) represents a generalization of
Lipschitz-continuity with respect to x, which corresponds to the special case
ω(r) = r and l(t) = L. Again, this is a fairly standard condition. In many
cases, the function f is defined on Rn×T and has continuous partial derivatives
with respect to x1, . . . , xn. Since we require the conditions to be satisfied only
for sets of the form G = B× [α, β]T with B ⊂ X bounded, it is easy to see that
both (C2) and (C3) are satisfied.

Moreover, if B = {x ∈ Rn; ‖x‖ ≤ r}, condition (C3) can be weakened; in
this case, it is sufficient to assume that x 7→ f(x, t) is continuous for every t ∈ T
(see Chapter 5 of [9], which describes the case T = R, but the same reasoning
can be used for a general time scale).

4 Linear equations

To illustrate Theorem 12 on a simple example, consider the linear dynamic
equation

x∆(t) = a(t)x(t) + h(t), t ∈ T, (10)

where a : T → Rn×n and h : T → Rn are rd-continuous functions (we use the
symbol Rn×n to denote the set of all n × n matrices). It is easy to see that
the function f(x, t) = a(t)x + h(t) satisfies conditions (C1)–(C3) on every set
G = B × [α, β]T, where B ⊂ X is bounded.

To obtain the corresponding generalized differential equation, we choose an
arbitrary τ0 ∈ T and let

F (x, t) =

∫ t

τ0

(a∗(s)x+ h∗(s)) dg(s) = A(t)x+H(t),

where A(t) =
∫ t
τ0
a∗(s) dg(s) and H(t) =

∫ t
τ0
h∗(s) dg(s). Now, Theorem 12 says

that if x : T→ X is a solution of (10), then the function x∗ is a solution of the
linear generalized differential equation

dx

dτ
= D

(
A(t)x+H(t)

)
, t ∈ T∗. (11)

12



Conversely, every solution of this generalized equation has the form x∗, where
x : T→ Rn is a solution of the dynamic equation (10).

The monograph [9] contains a fairly complete theory of linear generalized
equations. For example, the equation (11) is known to have a unique solution
satisfying x(t0) = x0, whenever

I − (A(t)−A(t−)) and I +A(t+)−A(t) are regular for every t. (12)

Let us rephrase this condition in the language of equation (10); Theorem 2 gives

A(t+) = A(t) + a∗(t)∆+g(t),

A(t−) = A(t)− a∗(t)∆−g(t).

First, if t ∈ T∗\T, then ∆+g(t) = ∆−g(t) = 0 and (12) is satisfied. Next, assume
t ∈ T. Since g is a left-continuous function, we always have ∆−g(t) = 0 and
therefore I − (A(t)− A(t−)) = I is regular. Finally, if t is a right-dense point,
then ∆+g(t) = 0 and I + A(t+) − A(t) = I is regular; if t is right-scattered,
then ∆+g(t) = µ(t) and I +A(t+)−A(t) is regular if and only if I + a(t)µ(t) is
regular. The last condition is called regressivity and is well known in the theory
of linear dynamic equations.

Let us mention one more result: Under assumption (12), there exists a
function U : T∗×T∗ → Rn×n such that the function x(t) = U(t, t0)x0 represents
the unique solution of the homogeneous equation

dx

dτ
= D(A(t)x), t ∈ T∗, x(t0) = x0.

The function U has the following properties:

(i) U(t, t) = I for every t ∈ T∗,

(ii) U(t, s) = U(t, r)U(r, s) for every r, s, t ∈ T∗,

(iii) U(t+, s) = (I +A(t+)−A(t))U(t, s) for every s, t ∈ T∗,

(iv) U(t, s) is always a regular matrix and U(t, s)−1 = U(s, t).

We already know that for t ∈ T, the third condition might be written as
U(t+, s) = (I + a(t)µ(t))U(t, s). It is easy to recognize that the restriction
of U to T× T is the matrix exponential function, which is denoted by ea(t, t0)
in the book [1].

In his paper [11], Š. Schwabik presents the following interesting construction

of the function U : He defines the Perron product integral
∏b
a(I + dA(s)) as a

matrix P ∈ Rn×n such that for every ε > 0, there is a function δ : [a, b] → R+

which satisfies ∥∥∥∥∥∥
1∏
j=k

(
I +A(αj)−A(αj−1)

)
− P

∥∥∥∥∥∥ < ε

for every δ–fine partition with division points a = α0 ≤ α1 ≤ · · · ≤ αk = b and
tags τi ∈ [αi−1, αi], i = 1, . . . , k. Now, the function U is obtained by considering
the product integral as a function of its upper bound, i.e.

U(t, t0) =

t∏
t0

(I + dA(s)).
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A similar result for linear systems on time scales is given in the paper [12],
which shows that the matrix exponential function ea(t, t0) corresponding to an
rd-continuous function a : T→ Rn×n can be written in the form

ea(t, t0) =

t∏
t0

(I + a(s)∆s),

where the symbol on the right-hand side stands for the product ∆-integral.
Thus our considerations imply that

t∏
t0

(I + a(s)∆s) =

t∏
t0

(I + dA(s)), t0, t ∈ T

for every rd-continuous function a : T→ Rn×n and A(t) =
∫ t
τ0
a∗(s) dg(s).

5 Continuous dependence on a parameter

In this section, we use two known results concerning continuous dependence of
generalized equations on parameters to obtain new theorems about dynamic
equations on time scales. The symbol Br will be used to denote the open ball
{x ∈ Rn; ‖x‖ < r} and Br stands for the corresponding closed ball.

Theorem 13. Let c > 0, G = Bc× [α, β], and consider a sequence of functions
Fk : G→ Rn, k ∈ N0, such that

lim
k→∞

Fk(x, t) = F0(x, t), x ∈ Bc, t ∈ [α, β].

Assume there exist functions h and ω such that Fk satisfies conditions (F1)–
(F2) for every k ∈ N0. Finally, suppose there exist a function x : [α, β] → Bc
and a sequence of functions xk : [α, β]→ Bc such that

dxk
dτ

= DFk(xk, t), t ∈ [α, β], k ∈ N,

lim
k→∞

xk(s) = x(s), s ∈ [α, β].

Then
dx

dτ
= DF0(x, t), t ∈ [α, β].

Proof. See Theorem 8.2 in [9].

Theorem 14. Consider a sequence of functions fk : Bc× [α, β]T → Rn, k ∈ N0.
Assume there exist functions l, m and ω such that each function fk, k ∈ N0,
satisfies conditions (C1)–(C3). Suppose that

lim
k→∞

∫ t

α

fk(x, s)∆s =

∫ t

α

f0(x, s)∆s (13)

for every x ∈ Bc and t ∈ [α, β]T. Finally, suppose there exist a function x :
[α, β]T → Bc and a sequence of functions xk : [α, β]T → Bc, k ∈ N, such that

x∆
k (t) = fk(xk(t), t), t ∈ [α, β]T,
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lim
k→∞

xk(s) = x(s), s ∈ [α, β]T.

Then
x∆(t) = f0(x(t), t), t ∈ [α, β]T.

Proof. Let G = Bc × [α, β] and

Fk(x, t) =

∫ t

α

f∗k (x, s) dg(s), x ∈ Bc, t ∈ [α, β], k ∈ N0.

Equation (13) together with Theorem 5 imply

lim
k→∞

Fk(x, t) = F0(x, t), x ∈ Bc, t ∈ [α, β].

It follows from Lemma 6 that Fk satisfies conditions (F1)–(F2) for every k ∈ N0.
It is clear that

lim
k→∞

x∗k(s) = x∗(s), s ∈ [α, β].

Theorem 12 implies

dx∗k
dτ

= DFk(x∗k, t), t ∈ [α, β], k ∈ N.

Thus the assumptions of Theorem 13 are satisfied and

dx∗

dτ
= DF0(x∗, t), t ∈ [α, β].

The function x∗ is bounded and it follows from Theorem 12 that

x∆(t) = f0(x(t), t), t ∈ [α, β]T.

Given a function F : B × I → Rn and an interval [α, β] ⊂ I, a solution
x : [α, β]→ B of the generalized differential equation

dx

dτ
= DF (x, t) (14)

is said to be unique if every other solution y : [α, γ] → B of (14) such that
x(α) = y(α) satisfies x(t) = y(t) for every t ∈ [α, γ] ∩ [α, β].

Theorem 15. Let c > 0, G = Bc× [α, β], and consider a sequence of functions
Fk : G→ Rn, k ∈ N0, such that

lim
k→∞

Fk(x, t) = F0(x, t), x ∈ Bc, t ∈ [α, β].

Assume there exist a left-continuous function h and a function ω such that Fk
satisfies conditions (F1)–(F2) for every k ∈ N0. Let x : [α, β]→ Bc be a unique
solution of

dx

dτ
= DF0(x, t).

Finally, assume there exists a ρ > 0 such that ‖y − x(s)‖ < ρ implies y ∈ Bc
whenever s ∈ [α, β] (i.e., a ρ-neighborhood of x is contained in Bc). Then, given
an arbitrary sequence of n-dimensional vectors {yk}∞k=1 such that limk→∞ yk =
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x(α), there is a k0 ∈ N and a sequence of functions xk : [α, β] → Bc, k ≥ k0,
which satisfy

dxk
dτ

= DFk(xk, t), t ∈ [α, β], xk(α) = yk,

lim
k→∞

xk(s) = x(s), s ∈ [α, β].

Proof. See Theorem 8.6 in [9].

In analogy with the previous case, we say that a solution x : [α, β]T → B
of the dynamic equation x∆(t) = f(x(t), t) is unique if every other solution y :
[α, γ]→ B such that x(α) = y(α) satisfies x(t) = y(t) for every t ∈ [α, γ]∩ [α, β].

Theorem 16. Consider a sequence of functions fk : Bc× [α, β]T → Rn, k ∈ N0.
Assume there exist functions l, m, ω such that each function fk, k ∈ N0, satisfies
conditions (C1)–(C3). Suppose that

lim
k→∞

∫ t

α

fk(x, s)∆s =

∫ t

α

f0(x, s)∆s (15)

for every x ∈ Bc and t ∈ [α, β]T. Let x : [α, β]T → Bc be a unique solution of

x∆(t) = f0(x(t), t).

Finally, assume there exists a ρ > 0 such that ‖y − x(s)‖ < ρ implies y ∈
Bc whenever s ∈ [α, β]T. Then, given an arbitrary sequence of n-dimensional
vectors {yk}∞k=1 such that limk→∞ yk = x(α), there is a k0 ∈ N and a sequence
of functions xk : [α, β]T → Bc, k ≥ k0, which satisfy

x∆
k (t) = fk(xk(t), t), t ∈ [α, β]T, xk(α) = yk,

lim
k→∞

xk(s) = x(s), s ∈ [α, β]T.

Proof. Using the same reasoning as in the proof of Theorem 14, we construct a
sequence of functions {Fk}∞k=0 defined on G = Bc × [α, β]. All these functions

satisfy conditions (F1)–(F2) with h(t) =
∫ t
t0

(l∗(s) + m∗(s)) dg(s); note that

g(t) = t∗ is a left-continuous function, and thus h is left-continuous according
to Theorem 2. It follows from Theorem 12 that x∗ is a unique solution of

dx∗

dτ
= DF0(x∗, t), t ∈ [α, β].

The proof is finished by applying Theorem 15.

Let us note that Theorem 4.11 in [9] states that if the function F satisfies
conditions (F1)–(F2) with ω such that

lim
v→0+

∫ u

v

dr

ω(r)
=∞ (16)

for every u > 0, then every solution x : [α, β]→ Bc of the generalized equation

dx

dτ
= DF (x, t)

is unique. Now, it is often the case that the function f is Lipschitz-continuous
with respect to x on Bc × [α, β], and thus f satisfies conditions (C1)–(C3) with
l(t) = L and ω(r) = r. In this case, we see that (16) is true and therefore every
solution is unique.
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6 Stability

The dynamic equation
x∆(t) = f(x(t), t)

has the trivial solution x ≡ 0 if and only if f(0, t) = 0 for every t ∈ T. The
present section is devoted to the investigation of stability of this trivial solution.
The problem of stability has already been considered in a number of papers, see
e.g. [5], [6], [7]. However, the theorem which will be obtained in this section
describes two slightly different types of stability.

Consider a set I ⊂ R and a function f : I → Rn. Given a finite set of points

D = {t0, t1, . . . , tk} ⊂ I

such that t0 ≤ t1 ≤ · · · ≤ tk, let

v(f,D) =

k∑
i=1

‖f(ti)− f(ti−1)‖.

The variation of f over I is defined as

var
t∈I

f(t) = sup
D
v(f,D),

where the supremum ranges over all finite subsets D of I.
Note that when I is an interval on the real line, then we obtain the usual

variation of a function over an interval, but our slightly more general definition
permits us to calculate the variation of a function defined on a time scale interval
[a, b]T.

Lemma 17. Given an arbitrary function f : [a, b]T → Rn, we have

var
t∈[a,b]T

f(t) = var
t∈[a,b]

f∗(t).

Proof. The statement follows from the fact that if D = {t0, t1, . . . , tk} ⊂ [a, b],
then D∗ = {t∗0, t∗1, . . . , t∗k} ⊂ [a, b]T and v(f,D) = v(f∗, D∗).

We start with a Lyapunov-type theorem for the generalized equation

dx

dτ
= DF (x, t).

Note that this equation has the trivial solution x ≡ 0 on an interval I ⊂ R if
and only if F (0, t1) = F (0, t2) for each pair t1, t2 ∈ I.

Theorem 18. Let c > 0, t0 ∈ R and G = Bc × [t0,∞). Consider a function
F : G → Rn which satisfies conditions (F1)–(F2) and F (0, t1) = F (0, t2) for
every t1, t2 ≥ t0. Assume there exists a number a ∈ (0, c) and a function
V : [t0,∞)×Ba → R with the following properties:

(V1) t 7→ V (t, x) is left-continuous for every x ∈ Ba.

(V2) There exists a continuous increasing function b : [0,∞) → R such that
b(ρ) = 0 if and only if ρ = 0 and V (t, x) ≥ b(‖x‖) for every t ∈ [t0,∞)
and x ∈ Ba.
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(V3) V (t, 0) = 0 for every t ∈ [t0,∞).

(V4) There exists a constant K > 0 such that ‖V (t, x) − V (t, y)‖ ≤ K‖x − y‖
for every t ∈ [t0,∞) and x, y ∈ Ba.

(V5) t 7→ V (t, x(t)) is nonincreasing along every solution x of the generalized
equation

dx

dτ
= DF (x, t).

Then the following statements are true:

(1) For every ε > 0, there is a δ > 0 such that if α ≥ t0 and y : [α, β]→ Bc is a
left-continuous function with bounded variation which satisfies ‖y(α)‖ < δ
and

var
s∈[α,β]

(
y(s)−

∫ s

α

DF (y(τ), t)

)
< δ,

then ‖y(t)‖ < ε for every t ∈ [α, β].

(2) For every ε > 0, there is a δ > 0 such that if P : [α, β] → Bc is a
left-continuous function with

var
s∈[α,β]

P (s) < δ,

then an arbitrary function y : [α, β]→ Bc which is a solution of

dx

dτ
= D

(
F (x, t) + P (t)

)
and ‖y(α)‖ < δ satisfies ‖y(t)‖ < ε for every t ∈ [α, β].

Proof. See Theorem 10.8 and Theorem 10.13 in [9].

The statement (1) is called variational stability; it says that functions which
are initially small, and which are “almost solutions” of the given generalized
equation, are close to zero in the whole interval. The statement (2) is called
stability with respect to perturbations; it says that functions which are initially
small, and which are solutions of a generalized equation with a small perturba-
tion term, are again close to zero in the whole interval.

We now proceed to a similar theorem concerning dynamic equations on time
scales.

Theorem 19. Let c > 0 and t0 ∈ T. Consider a function f : Bc×[t0,∞)T → Rn
which satisfies conditions (C1)–(C3) and f(0, t) = 0 for every t ∈ [t0,∞)T.
Assume there exists a number a ∈ (0, c) and function V : [t0,∞)T × Ba → R
with the following properties:

(V1) t 7→ V (t, x) is left-continuous for every x ∈ Ba.

(V2) There exists a continuous increasing function b : [0,∞) → R such that
b(ρ) = 0 if and only if ρ = 0 and V (t, x) ≥ b(‖x‖) for every t ∈ [t0,∞)T
and x ∈ Ba.

(V3) V (t, 0) = 0 for every t ∈ [t0,∞)T.
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(V4) There exists a constant K > 0 such that ‖V (t, x) − V (t, y)‖ ≤ K‖x − y‖
for every t ∈ [t0,∞)T and x, y ∈ Ba.

(V5) t 7→ V (t, x(t)) is nonincreasing along every solution x of the dynamic
equation

x∆(t) = f(x(t), t).

Then the following statements are true:

(1) For every ε > 0, there is a δ > 0 such that if α ≥ t0 and y : [α, β]T → Bc is
a left-continuous function with bounded variation which satisfies ‖y(α)‖ <
δ and

var
s∈[α,β]T

(
y(s)−

∫ s

α

f(y(t), t) ∆t

)
< δ,

then ‖y(t)‖ < ε for every t ∈ [α, β]T.

(2) For every ε > 0, there is a δ > 0 such that if p : [α, β]T → Bc is an
rd-continuous function and ∫ β

α

‖p(t)‖∆t < δ,

then every function y : [α, β]T → Bc such that ‖y(α)‖ < δ and

y∆(t) = f(y(t), t) + p(t), t ∈ [α, β]T

satisfies ‖y(t)‖ < ε for every t ∈ [α, β]T.

Proof. It is sufficient to apply Theorem 18 to the functions

F (x, t) =

∫ t

t0

f∗(x, s) dg(s),

V ∗(t, x) = V (t∗, x).

To prove (1), note that

var
s∈[α,β]T

(
y(s)−

∫ s

α

f(y(t), t) ∆t

)
< δ

implies

var
s∈[α,β]

(
y∗(s)−

∫ s

α

DF (y∗(τ), t)

)
< δ

(this follows from Lemma 17, Theorem 5, and Lemma 10). To prove (2), note
that

y∆(t) = f(y(t), t) + p(t), t ∈ [α, β]T

implies
dx

dτ
= D

(
F (x, t) + P (t)

)
with P (t) =

∫ t
α
p∗(s) dg(s), and that∫ β

α

‖p(t)‖∆t < δ
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implies

var
s∈[α,β]T

(∫ s

α

p(t) ∆t

)
< δ

(this is easy to see from the definition of variation) and consequently

var
s∈[α,β]

P (s) = var
s∈[α,β]

(∫ s

α

p∗(t) dg(s)

)
< δ

(this follows from Lemma 17 and Theorem 5).

7 Conclusion

We have outlined a method which enables us to translate existing results con-
cerning generalized ordinary differential equations into the language of dynamic
equations on time scales.

The readers are invited to examine existing sources on generalized differential
equations to find theorems which might be interesting in the time scale setting;
the amount of literature devoted to generalized equations is still growing.

Acknowledgment. The author thanks the anonymous referee whose sug-
gestions helped to improve this paper.
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