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Abstract

We present new Massera-type theorems for various types of equations with periodic right-
hand sides. We deal with generalized ordinary differential equations, measure differential
equations, impulsive equations (all of which might have discontinuous solutions), as well
as dynamic equations on time scales. For scalar nonlinear equations, we find sufficient
conditions guaranteeing that each bounded solution is asymptotic to a periodic solution. For
linear systems, we show that the existence of a bounded solution implies the existence of
a periodic solution. We include some examples to illustrate our results.
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1 Introduction

In 1950, J. L. Massera published a remarkable paper [14] on the existence of periodic solutions
to ordinary differential equations with periodic right-hand sides. He considered n-dimensional
systems of the form x′(t) = f(x(t), t), where f is 1-periodic in the second variable and smooth,
and investigated the existence of periodic solutions of period 1. Let us mention three of his
conclusions: 1) For scalar equations (i.e., n = 1), the existence of a bounded solution implies
the existence of a 1-periodic solution. 2) In general, the previous theorem no longer holds for
systems of equations (i.e., n > 1). 3) For linear systems, the existence of a bounded solution again
implies the existence of a 1-periodic solution. In fact, assertion 1) could be strengthened: For
a scalar equation, each bounded solution is asymptotic to a 1-periodic solution. This version is
no longer true for linear systems: For example, the right-hand sides of the system x′(t) = −y(t),
y′(t) = x(t) are 1-periodic with respect to t (since they do not depend explicitly on t), but all
nonzero solutions of the system have the form (x(t), y(t)) = (x0 cos t− y0 sin t, x0 sin t+ y0 cos t).
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Thus, they are 2π-periodic, and not asymptotic to a 1-periodic solution. A good elementary
overview of Massera-type theorems can be found in [4].

Since the publication of Massera’s paper, numerous authors have investigated the validity
of similar results for other types of equations. For example, the paper [5] deals with functional
differential equations, [8] is concerned with systems of Volterra equations, [12] is devoted to
partial differential equations, and [1, 13] discuss dynamic equations on time scales.

In the present paper, we obtain new Massera-type results for generalized ordinary differential
equations in the sense of J. Kurzweil (see [10, 11, 24] for an overview of this concept). A char-
acteristic feature of generalized ODEs is that their solutions are in general discontinuous. As
a consequence, it turns out that a bounded solution of a T -periodic scalar generalized ODE need
not be asymptotic to a T -periodic solution (see Example 3.3). However, in Section 3, we present
a simple condition that guarantees the monotonicity of the flow at all discontinuity points, as
well as the fact that bounded solutions of scalar nonlinear generalized ODEs are asymptotic to
periodic solutions. In Section 4, we provide a direct analogue of Massera’s theorem for systems
of linear generalized ODEs.

One reason why generalized ODEs are attractive stems from the fact that they encompass
other types of equations – classical ODEs, impulsive ODEs, measure differential equations, or
dynamic equations on time scales. Thus, once we have Massera-type theorems for generalized
ODEs, it is an easy task to obtain their counterparts for measure differential equations (Sec-
tion 5), dynamic equations on time scales (Section 6), and impulsive ODEs (Section 7). As
far as we are aware, the results for generalized ODEs, measure DEs, and impulsive ODEs are
completely new, and the results for dynamic equations improve those from the existing literature
(more details are given in Section 6). In particular, we do not require the right-hand side to
be continuous in the time variable, and consider all equations in the integral form. Hence, even
in the case of ODEs, the assumptions are weaker when compared to [4] or [14]. Finally, let us
note that the results from Section 5 are also applicable to Stieltjes differential equations and
distributional differential equations, both of which are closely related to measure differential
equations; see [16].

2 Preliminaries

In this section, we recall some basic concepts from the theory of generalized ordinary differential
equations. For more details, see [10, 11, 24].

Generalized ODEs are integral equations involving the Kurzweil integral, which was intro-
duced in [10] and is based on the concept of δ-fine partitions: Given a function δ : [a, b]→ R+,
a tagged partition of [a, b] with division points a = s0 ≤ s1 ≤ · · · ≤ sk = b and tags τi ∈ [si−1, si],
i ∈ {1, . . . , k}, is called δ-fine if [si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)) for each i ∈ {1, . . . , k}.

Definition 2.1. A function U : [a, b] × [a, b] → Rn is called Kurzweil integrable if there is an
element I ∈ Rn having the following property: For every ε > 0, there is a function δ : [a, b]→ R+

such that the inequality ∥∥∥∥∥
k∑
i=1

[U(τi, si)− U(τi, si−1)]− I

∥∥∥∥∥ < ε
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holds for every δ-fine tagged partition of [a, b]. In this case, I is called the Kurzweil integral of U

over [a, b] and is denoted by
∫ b
a DtU(τ, t). Moreover, we define

∫ a
b DtU(τ, t) = −

∫ b
a DtU(τ, t).

The Kurzweil integral has the usual properties of linearity, additivity with respect to adjacent
intervals, integrability on subintervals, etc. More information can be found in [11, 24].

A function f : [a, b] → Rn is called regulated if the limit f(t−) = lims 7→t− f(s) exists for
every t ∈ (a, b], and the limit f(t+) = lims 7→t+ f(s) exists for every t ∈ [a, b).

For the following statement, see [11, Corollary 14.18] or [24, Theorem 1.16].

Theorem 2.2. Assume that U : [a, b]× [a, b]→ Rn is Kurzweil integrable and u : [a, b]→ Rn is
given by

u(s) = u(a) +

∫ s

a
DtU(τ, t), s ∈ [a, b].

If U is regulated in the second variable, then u is regulated and satisfies

u(t+) = u(t) + U(t, t+)− U(t, t), t ∈ [a, b)

u(t−) = u(t) + U(t, t−)− U(t, t), t ∈ (a, b].

Given a pair of functions f : [a, b] → Rn, g : [a, b] → R, let U(τ, t) = f(τ)g(t) for all

τ, t ∈ [a, b]. Then the integral
∫ b
a DtU(τ, t) is usually denoted by

∫ b
a f(t) dg(t), and is called

the Perron-Stieltjes or Kurzweil-Stieltjes integral of f with respect to g. This integral appears
in the next result, which is a Bihari-type inequality (i.e., a nonlinear version of the Gronwall
inequality); its proof can be found in [24, Theorem 1.40].

Theorem 2.3. Let h : [a, b] → R be left-continuous and nondecreasing, ω : [0,∞) → R contin-
uous and increasing with ω(0) = 0, ψ : [a, b]→ [0,∞) bounded, and k > 0 such that

ψ(t) ≤ k +

∫ t

a
ω(ψ(s)) dh(s), t ∈ [a, b].

Given an arbitrary u0 > 0, let

Ω(u) =

∫ u

u0

dr

ω(r)
, u ∈ (0,∞),

α = limu→0+ Ω(u) ≥ −∞, and β = limu→∞Ω(u) ≤ ∞. Also, let Ω−1 : (α, β)→ R be the inverse
function to Ω. If Ω(k) + h(b)− h(a) < β, then

ψ(t) ≤ Ω−1(Ω(k) + h(t)− h(a)), t ∈ [a, b].

Definition 2.4. Consider an interval I ⊂ R and a function F : Rn × I → Rn. A function
x : I → Rn is called a solution of the generalized ordinary differential equation

d

dt
x = DtF (x, t), (2.1)

if the relation

x(v) = x(u) +

∫ v

u
DtF (x(τ), t) (2.2)

holds for all u, v ∈ I.
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If x is a solution of Eq. (2.1) and F is regulated in the second variable, then it follows from
Theorem 2.2 that the one-sided limits of x at an arbitrary point t are

x(t+) = x(t) + F (x(t), t+)− F (x(t), t),

x(t−) = x(t) + F (x(t), t−)− F (x(t), t).
(2.3)

This observation is used in the proof of the next lemma.

Lemma 2.5. Assume that F : Rn × [a, b] → Rn is regulated in the second variable, and x :
[a, b]→ Rn, y : [a, b]→ Rn are solutions of Eq. (2.1).

1. If t0 ∈ [a, b) and x(t0+) = y(t0+), then the function z : [a, b]→ Rn given by

z(t) =

{
y(t) if t ∈ [a, t0],

x(t) if t ∈ (t0, b],

is a solution of Eq. (2.1).

2. If t0 ∈ (a, b] and x(t0−) = y(t0−), then the function w : [a, b]→ Rn given by

w(t) =

{
y(t) if t ∈ [a, t0),

x(t) if t ∈ [t0, b],

is a solution of Eq. (2.1).

Proof. We prove only the first statement; the second one is demonstrated in a similar way.
Obviously, the relation

z(v)− z(u) =

∫ v

u
DtF (z(τ), t)

holds for u, v ∈ [a, t0] as well as for u, v ∈ (t0, b]; the only nontrivial case is when one of
the points u, v lies in [a, t0] and the other in (t0, b]. Without loss of generality, suppose that
a ≤ u ≤ t0 < v ≤ b. By Theorem 2.2, the limit lims→t0+

∫ v
s DtF (x(τ), t) exists. Hence, by

Hake’s theorem for the Kurzweil integral (see [24, Remark 1.15]), the integral
∫ v
t0

DtF (z(τ), t)
exists, and ∫ v

t0

DtF (z(τ), t) = F (z(t0), t0+)− F (z(t0), t0) + lim
s→t0+

∫ v

s
DtF (x(τ), t).

Consequently, we get∫ v

u
DtF (z(τ), t) =

∫ t0

u
DtF (y(τ), t) + F (z(t0), t0+)− F (z(t0), t0) + lim

s→t0+

∫ v

s
DtF (x(τ), t)

= y(t0)− y(u) + F (y(t0), t0+)− F (y(t0), t0) + x(v)− x(t0+)

= y(t0)− z(u) + F (y(t0), t0+)− F (y(t0), t0) + z(v)− y(t0+)

= y(t0)− z(u) + z(v)− y(t0) = z(v)− z(u),

where the first inequality on the previous line follows from Theorem 2.2. This confirms that z
is a solution of Eq. (2.1).
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Let us introduce the following conditions:

(N1) For every bounded set O ⊂ Rn, there exists a nondecreasing left-continuous function
h : R→ R such that

‖F (x, s2)− F (x, s1)‖ ≤ |h(s2)− h(s1)|

for all x ∈ O, s1, s2 ∈ R.

(N2) For every bounded set O ⊂ Rn, there exist a nondecreasing left-continuous function
h : R → R and a continuous increasing function ω : [0,∞) → R such that ω(0) = 0,
limu→0+

∫ v
u

dr
ω(r) =∞ for a certain v > 0, and

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖ ≤ |h(s2)− h(s1)|ω(‖x− y‖)

for all x, y ∈ O, s1, s2 ∈ R.

(N3) There exist a number T > 0 and a function M : Rn → Rn such that

F (x, t+ T )− F (x, t) = M(x)

for all t ∈ R and x ∈ Rn.

Without loss of generality, we may assume that the functions h in (N1) and (N2) coincide.
(If (N1) holds with h = h1 and (N2) holds with h = h2, then both (N1) and (N2) hold with
h = h1 + h2.) Conditions (N1) and (N2) are standard assumptions in the theory of generalized
ODEs (cf. [22, 24]). Since the function h in (N1) is nondecreasing, it is also regulated, and
(N1) implies that F is regulated in the second variable. Moreover, left-continuity of h implies
left-continuity of F in the second variable. Consequently, the relations (2.3) imply that each
solution of Eq. (2.1) is regulated and left-continuous.

(N2) is an Osgood-type condition; we can often choose ω(r) = Lr for all r ≥ 0, which
corresponds to a Lipschitz-type condition. For our purposes, it is important that (N1) and (N2)
imply that forward solutions of initial-value problems are unique; this result is presented in [24,
Theorem 4.8].

Condition (N3) was already utilized in the earlier paper [15], and its role is the same as
the role of the condition f(x, t + T ) = f(x, t) for a classical differential equation of the form
x′(t) = f(x(t), t). Indeed, the next lemma shows that if (N3) holds, then each solution of
Eq. (2.1) can be shifted backward or forward in time by the period T .

Lemma 2.6. Condition (N3) implies the following assertions:

(i) A function x : [a + T, b + T ] → Rn is a solution of Eq. (2.1) if and only if the function
y : [a, b]→ Rn given by y(t) = x(t+ T ) is a solution of Eq. (2.1).

(ii) Eq. (2.1) has a T -periodic solution if and only if there is a solution x : [t0, t0 + T ] → Rn
such that x(t0 + T ) = x(t0).
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Proof. We start by proving (i). Note that if U : [u+T, v+T ]×[u+T, v+T ]→ Rn is an arbitrary

function, then the integral
∫ v+T
u+T DtU(τ, t) exists if and only if the integral

∫ v
u DtU(τ + T, t+ T )

exists; in this case, they have the same value. This follows immediately from the definition
of the integral, since a δ-fine partition of [u, v] is easily transformed into a δ-fine partition of
[u+ T, v + T ].

Hence, taking U(τ, t) = F (x(τ), t), we see that if x : [a + T, b + T ] → Rn is a solution of
Eq. (2.1), then y : [a, b]→ Rn given by y(t) = x(t+ T ) satisfies

y(v)− y(u) = x(v + T )− x(u+ T ) =

∫ v+T

u+T
DtF (x(τ), t) =

∫ v

u
DtF (x(τ + T ), t+ T ).

The last integral is defined using sums of the form

k∑
i=1

[F (x(τi + T ), si + T )− F (x(τi + T ), si−1 + T )],

and condition (N3) implies they coincide with

k∑
i=1

[F (x(τi + T ), si)− F (x(τi + T ), si−1)].

Consequently, the integral
∫ v
u DtF (x(τ+T ), t) exists if and only if

∫ v
u DtF (x(τ+T ), t+T ) exists,

and they have the same value. Therefore, if x is a solution of Eq. (2.1), we conclude that

y(v)− y(u) =

∫ v

u
DtF (x(τ + T ), t) =

∫ v

u
DtF (y(τ), t),

proving that y is a solution of Eq. (2.1). Conversely, if y : [a, b]→ Rn is a solution of Eq. (2.1),
a similar calculation shows that x : [a+ T, b+ T ]→ Rn given by x(t) = y(t− T ) is a solution of
Eq. (2.1).

Now, let us prove (ii). Clearly, if x : R→ Rn is T -periodic, then x(t0 + T ) = x(t0) for each
t0 ∈ R. Conversely, suppose there is a solution x : [t0, t0 +T ]→ Rn such that x(t0 +T ) = x(t0).
Then we can extend x to a T -periodic function defined on the whole real line. Statement (i)
guarantees that x will be a solution of Eq. (2.1) on each interval of the form [t0+nT, t0+(n+1)T ]
with n ∈ Z, and therefore a solution on the whole real line.

Lemma 2.7. If (N1)–(N3) hold, then the function h in (N1) and (N2) can be chosen in such a
way that t 7→ h(t+ T )− h(t) is a constant function on R.

Proof. Suppose that (N1)–(N3) hold, choose a bounded set O ⊂ Rn, and let h, ω be the functions
from (N1) and (N2). Denote C = h(T )− h(0), and let h̃ : R→ R be given by

h̃(t) =

{
h(t) if t ∈ [0, T ),

h(t− nT ) + nC if t ∈ [nT, (n+ 1)T ) and n ∈ Z \ {0}.
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Obviously, h̃ is nondecreasing and left-continuous on each interval [nT, (n + 1)T ) with n ∈ Z.
Since

lim
t→(n+1)T−

h̃(t) = h(T−) + nC = h(T ) + nC = h(0) + (n+ 1)C = h̃((n+ 1)T ),

it follows that h̃ is nondecreasing and left-continuous on the whole real line. It is also clear that
h̃(t+ T )− h̃(t) = C for each t ∈ R. To finish the proof, let us show that (N1) and (N2) hold if
h is replaced by h̃. To verify these conditions, it is enough to consider the case when s1 < s2.

For each pair of real numbers s1 < s2, there exist unique integers k ≤ l such that kT ≤ s1 <
(k + 1)T and lT ≤ s2 < (l + 1)T .

Note that (N3) implies F (x, t + kT ) = F (x, t) + kM(x) for each x ∈ Rn and t ∈ R. Hence,
if k = l, then for all x, y ∈ O we get

‖F (x, s2)− F (x, s1)‖ = ‖F (x, s2 − kT )− F (x, s1 − kT )‖
≤ h(s2 − kT )− h(s1 − kT ) = h(s2 − kT ) + kC − h(s1 − kT )− kC = h̃(s2)− h̃(s1),

and

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖
= ‖F (x, s2 − kT )− F (x, s1 − kT )− F (y, s2 − kT ) + F (y, s1 − kT )‖
≤ ω(‖x− y‖)(h(s2 − kT )− h(s1 − kT )) = ω(‖x− y‖)(h̃(s2)− h̃(s1)).

It remains to consider the case k < l. Note that for every x ∈ O, we have ‖M(x)‖ = ‖F (x, T )−
F (x, 0)‖ ≤ h(T ) − h(0) = C and for every x, y ∈ O and τ ∈ R, we have ‖M(x) −M(y)‖ =
‖F (x, T )− F (x, 0)− F (y, T ) + F (y, 0)‖ ≤ ω(‖x− y‖)(h(T )− h(0)) = ω(‖x− y‖)C. Therefore,

‖F (x, s2)− F (x, s1)‖ ≤ ‖F (x, s2)− F (x, lT )‖
+‖F (x, lT )− F (x, (k + 1)T )‖+ ‖F (x, (k + 1)T )− F (x, s1)‖

≤ ‖F (x, s2 − lT )− F (x, 0)‖+ (l − (k + 1))‖M(x)‖+ ‖F (x, T )− F (x, s1 − kT )‖
≤ h(s2 − lT )− h(0) + (l − (k + 1))C + h(T )− h(s1 − kT )

= h(s2 − lT ) + lC − h(s1 − kT )− kC = h̃(s2)− h̃(s1),

and

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖
≤ ‖F (x, s2)− F (x, lT )− F (y, s2) + F (y, lT )‖

+‖F (x, lT )− F (x, (k + 1)T )− F (y, lT ) + F (y, (k + 1)T )‖
+‖F (x, (k + 1)T )− F (x, s1)− F (y, (k + 1)T ) + F (y, s1)‖

= ‖F (x, s2 − lT )− F (x, 0)− F (y, s2 − lT ) + F (y, 0)‖
+‖(l − (k + 1))M(x)− (l − (k + 1))M(y)‖

+‖F (x, T )− F (x, s1 − kT )− F (y, T ) + F (y, s1 − kT )‖
≤ ω(‖x− y‖)(h(s2 − lT )− h(0)) + ω(‖x− y‖)(h(T )− h(s1 − kT )) + (l − (k + 1))ω(‖x− y‖)C
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= ω(‖x− y‖)(h(s2 − lT )− h(s1 − kT ) + C + lC − (k + 1)C)

= ω(‖x− y‖)(h(s2 − lT ) + lC − h(s1 − kT )− kC) = ω(‖x− y‖)(h̃(s2)− h̃(s1)).

This proves that (N1) and (N2) hold with h replaced by h̃.

3 Massera’s theorem for nonlinear generalized ODEs

In this section, we prove a Massera-type theorem for the scalar generalized ODE

d

dt
x = DtF (x, t), (3.1)

where F : R× R→ R. We need the following additional condition:

(N4) If u, v ∈ R are such that u < v, then

u+ F (u, t+)− F (u, t) ≤ v + F (v, t+)− F (v, t)

for all t ∈ R.

Condition (N4) can be expressed in an equivalent way by requiring that for every t ∈ R,
the mapping u 7→ u + F (u, t+) − F (u, t) is nondecreasing on R. If (N4) holds and x, y is a
pair of solutions such that x(t) ≤ y(t), it follows from the relations (2.3) that x(t+) ≤ y(t+).
(N4) generalizes a condition introduced in [17] in the context of measure differential equations,
and later used in [20, 21] in the study of Stieltjes differential equations.

The next lemma shows that (N4) together with uniqueness of forward solutions implies that
the flow generated by Eq. (3.1) is monotonic.

Lemma 3.1. If (N1), (N2) and (N4) hold and x, y : [a, b] → R are solutions of Eq. (3.1)
satisfying x(a) ≤ y(a), then x(t) ≤ y(t) for all t ∈ (a, b].

Proof. For contradiction, assume there exists a t ∈ (a, b] with x(t) > y(t). Let

t0 = inf{s ∈ (a, b] : x(s) > y(s)}.

By the definition of infimum, we have either t0 = a, or t0 > a and x(t0−) ≤ y(t0−); in both
cases, we can conclude (using left–continuity of solutions) that x(t0) ≤ y(t0) and t0 < b.

Recall that (N1) and (N2) imply uniqueness of forward solutions. If x(t0) = y(t0), then the
restrictions of x and y to [t0, b] are two different solutions of Eq. (3.1) with the same initial
condition, which is a contradiction.

If x(t0) < y(t0), then condition (N4) implies x(t0+) ≤ y(t0+). If x(t0+) < y(t0+), then
x < y on a right neighborhood of t0, which is impossible by the definition of infimum. Thus, we
necessarily have x(t0+) = y(t0+). By Lemma 2.5, the function z : [a, b]→ R given by

z(t) =

{
y(t) if t ∈ [a, t0],

x(t) if t ∈ (t0, b],

is a solution of Eq. (3.1). Thus, y and z are two distinct solutions with y(a) = z(a), a contra-
diction with the uniqueness of forward solutions.
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The next result is a version of Massera’s theorem for scalar nonlinear generalized ODEs. The
first part of the proof (the existence of a T -periodic solution) is similar to the classical proof
presented in [14, Theorem 1] or [4, Theorem 4.1.10]. We say that a solution x of Eq. (3.1) is
asymptotic to another solution y whenever limt→∞(x(t)− y(t)) = 0.

Theorem 3.2 (Massera’s Theorem for Nonlinear Generalized ODEs). Let F : R × R → R be
such that conditions (N1)–(N4) hold. Then each bounded solution x : [t0,∞) → R of Eq. (3.1)
is asymptotic to a T -periodic solution. In particular, the existence of a bounded solution implies
the existence of a T -periodic solution.

Proof. Let x : [t0,∞) → R be a bounded solution and choose M > 0 such that |x(t)| ≤ M for
all t ∈ [t0,∞). For each n ∈ N, let xn : [t0,∞)→ R be given by

xn(t) = x(t+ nT ), t ∈ [t0,∞).

By Lemma 2.6, xn is a solution of Eq. (3.1), and satisfies |xn(t)| ≤M for every t ∈ [t0,∞).
Assume that x(t0) ≤ x1(t0); the case x(t0) ≥ x1(t0) can be handled in a similar way. Using

Lemma 3.1 and the definition of xn, we see that xn(t) = x(t+ nT ) ≤ x1(t+ nT ) = xn+1(t) for
every n ∈ N and t ≥ t0. Hence, {xn}∞n=1 is a bounded nondecreasing sequence of functions on
[t0,∞); let y : [t0,∞)→ R be the pointwise limit of this sequence. We claim that y is a solution
of Eq. (3.1). Recalling that

xn(t) = xn(t0) +

∫ t

t0

DsF (xn(τ), s), t ∈ [t0,∞),

it suffices to check that limn→∞
∫ t
t0

DsF (xn(τ), s) =
∫ t
t0

DsF (y(τ), s) for every t ∈ [t0,∞). This
fact follows from a convergence theorem for the Kurzweil integral presented in [24, Theorem
1.29]), whose assumptions are satisfied thanks to conditions (N1) and (N2), in which we choose
O = [−M,M ].

Observe that
y(t0 + T ) = lim

n→∞
xn(t0 + T ) = lim

n→∞
xn+1(t0) = y(t0). (3.2)

By Lemma 2.6 and its proof, Eq. (3.1) has a T -periodic solution, which coincides with y on
[t0,∞). Let us show that x is asymptotic to y.

By Lemma 2.7, we can assume that the function h in (N1) and (N2) is such that t 7→
h(t+ T )− h(t) is a constant function.

According to (N2), there exists a v > 0 such that the function

Ω(u) =

∫ v

u

dr

ω(r)
, u ∈ (0,∞),

is continuous, increasing, limu→0+ Ω(u) = −∞, and β = limu→+∞Ω(u) ≤ ∞. Hence, the inverse
function Ω−1 is increasing on its domain (−∞, β).

Given an arbitrary ε > 0, find an η > 0 such that Ω(η) + h(t0 + T ) − h(t0) < β and
Ω−1(Ω(η) + h(t0 + T )− h(t0)) < ε.

Since
lim
m→∞

x(t0 +mT ) = lim
m→∞

xm(t0) = y(t0) = y(t0 +mT ),
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there exists an m0 ∈ N such that |x(t0 +mT )− y(t0 +mT )| < η for all m ≥ m0.
Denote ψ(t) = |x(t) − y(t)|, t ∈ [t0,∞). For each t ≥ t0 + m0T , there is a unique integer

m ≥ m0 such that t0 +mT ≤ t < t0 + (m+ 1)T . Using the definition of a solution, we get

ψ(t) =

∣∣∣∣x(t0 +mT ) +

∫ t

t0+mT
DsF (x(τ), s)− y(t0 +mT )−

∫ t

t0+mT
DsF (y(τ), s)

∣∣∣∣
≤ |x(t0 +mT )− y(t0 +mT )|+

∣∣∣∣∫ t

t0+mT
Ds[F (x(τ), s)− F (y(τ), s)]

∣∣∣∣
≤ η +

∫ t

t0+mT
ω(|x(s)− y(s)|) dh(s),

where the last inequality is a consequence of (N2) and the definition of the integral.
The Bihari-type inequality from Theorem 2.3 gives the estimate

ψ(t) ≤ Ω−1(Ω(η) + h(t)− h(t0 +mT )) ≤ Ω−1(Ω(η) + h(t0 + (m+ 1)T )− h(t0 +mT ))

= Ω−1(Ω(η) + h(t0 + T )− h(t0)) < ε,

which holds for each t ≥ t0 +m0T . This proves that limt→∞ ψ(t) = 0.

The next example shows that condition (N4) cannot be omitted.

Example 3.3. Consider the generalized ODE

d

dt
x = DtF (x, t), (3.3)

where F : R×R→ R is given by F (x, t) = −2nx for all t ∈ (n, n+ 1] and n ∈ Z. This function
F obviously satisfies (N3) with T = 1, since

F (x, t+ 1)− F (x, t) = −2x

for all x, t ∈ R. To see that F satisfies also (N1) and (N2), choose a bounded set O ⊂ R, and
find a K ≥ 1 such that O ⊂ [−K,K]. Let h(t) = 2nK for all t ∈ (n, n + 1] and n ∈ Z, and
ω(r) = r for each r ∈ [0,∞). Take an arbitrary x ∈ O and s1, s2 ∈ R. There exist unique
integers k, l such that s1 ∈ (k, k + 1] and s2 ∈ (l, l + 1]. Then we have the estimates

|F (x, s2)− F (x, s1)| = | − 2kx+ 2lx| = 2|l − k| · |x| ≤ 2K|l − k| = |h(s2)− h(s1)|,

and

|F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)| = | − 2kx+ 2lx+ 2ky − 2ly|
= 2|l − k| · |x− y| ≤ 2K|l − k| · |x− y| = |h(s2)− h(s1)|ω(|x− y|).

Each solution of Eq. (3.3) is regulated, left-continuous, and has to be constant on each
interval (n− 1, n] with n ∈ Z, because h has the same property. For each n ∈ Z, (2.3) implies

x(n+) = x(n) + F (x(n), n+)− F (x(n), n) = x(n)− 2nx(n) + 2(n− 1)x(n) = −x(n),
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i.e., x changes sign at each integer.
Thus, we see that the unique solution of Eq. (3.3) corresponding to the initial condition

x(0) = x0 satisfies x(t) = x0 for all t ∈ (n − 1, n] with n ∈ Z being even, and x(t) = −x0 for
all t ∈ (n − 1, n] with n ∈ Z being odd. Hence, there is a unique 1-periodic solution (the zero
solution), all remaining solutions are 2-periodic, and they are not asymptotic to the 1-periodic
solution.

The reason why Theorem 3.2 does not apply is that condition (N4) is violated, and the flow
is not monotonic. To see why (N4) fails, observe that for every n ∈ Z we have u+ F (u, n+)−
F (u, n) = −u, so u < v does not imply u+ F (u, n+)− F (u, n) ≤ v + F (v, n+)− F (v, n).

Let us now present an example of a generalized ODE with discontinuous solutions where
Theorem 3.2 is applicable.

Example 3.4. Consider the generalized ODE

d

dt
x = DtF (x, t),

where F : R × R → R is given by F (x, t) = (n + 1 − t)x for all t ∈ (n, n + 1], n ∈ Z. Since
F (x, t+ 1) = F (x, t) for all x, t ∈ R, condition (N3) is satisfied with T = 1.

To check that conditions (N1) and (N2) also hold, consider a bounded set O ⊂ [−K,K] ⊂ R
with K ≥ 1. Define ω : [0,∞) → R by ω(r) = r, and h : R → R by h(s) = K(s + n) for all
s ∈ (n, n+ 1], n ∈ Z. Choose arbitrary s1, s2 ∈ R with s1 ≤ s2. There exist unique k, l ∈ Z such
that k ≤ l and s1 ∈ (k, k + 1], s2 ∈ (l, l + 1]. For all x, y ∈ O, we have

|F (x, s2)− F (x, s1)| = |(l + 1− s2)x− (k + 1− s1)x| ≤ K|(l − k)− (s2 − s1)|
≤ K|(l − k) + (s2 − s1)| = |h(s2)− h(s1)|,

and also

|F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)|
= |(l + 1− s2)x− (k + 1− s1)x− (l + 1− s2)y + (k + 1− s1)y|

= |(l − k)− (s2 − s1)| · |x− y| ≤ K|(l − k) + (s2 − s1)| · |x− y| = |h(s2)− h(s1)|ω(|x− y|).

Lastly, condition (N4) is always true at each t where the map t 7→ F (x, t) is continuous. So,
we only need to check (N4) when t ∈ Z and in this case, we have

v + F (v, t+)− F (v, t)− (u+ F (u, t+)− F (u, t)) = 2v − 2u ≥ 0,

whenever v > u. Thus, according to Theorem 3.2, each bounded solution is asymptotic to a
1-periodic solution. We can verify this fact by the following explicit calculation:

Notice first that F (x(τ), t) = x(τ)g(t), where g(t) = n + 1 − t for t ∈ (n, n + 1] and

n ∈ Z. Thus, for each x : [a, b] → R, the integral
∫ b
a DsF (x(τ), s) reduces to

∫ b
a x(s) dg(s).

Moreover, if [a, b] ⊂ (n, n + 1] with n ∈ Z, then g(t2)− g(t1) = t1 − t2 for all t1, t2 ∈ [a, b], and

therefore
∫ b
a x(s) dg(s) = −

∫ b
a x(s) ds. Hence, in each interval (n, n + 1], the generalized ODE

reduces to the ODE x′(t) = −x(t). If we know the value x(n+), we get the explicit solution
x(t) = x(n+)e−(t−n) for all t ∈ (n, n+ 1].

11
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Figure 1: Solutions with x(0) = 2 (positive) and x(0) = −2 (negative)

It remains to determine what happens to the solution at an arbitrary integer n. From
Theorem 2.2, we deduce that

x(n+) = x(n) + F (x(n), n+)− F (x(n), n) = 2x(n).

Combining the previous information, we get x(t) = 2x(n)e−(t−n) for all t ∈ (n, n+ 1]. Thus,
given an arbitrary x0 ∈ R, it is easy to construct the corresponding solution x : [0,∞) → R
satisfying x(0) = x0; Figure 1 illustrates the solutions with x(0) = 2 and x(0) = −2.

Now, notice that for each n ∈ N, we have x(n + 1) = 2x(n)e−1 < x(n), because 2/e < 1.
Consequently, it is easy to see that the only 1-periodic solution is the zero solution, any other
solution is bounded, and converges to the zero solution, as predicted by Theorem 3.2.

4 Massera’s theorem for linear generalized ODEs

In the previous section, we proved a version of Massera’s theorem for scalar nonlinear generalized
ODEs. Here we consider n-dimensional systems of linear generalized ODEs of the form

d

dt
x = Dt[A(t)x+ f(t)], (4.1)

where x and f take values in Rn, and A takes values in L(Rn), the space of all real n × n
matrices. Eq. (4.1) is a special case of Eq. (2.1) with

F (x, t) = A(t)x+ f(t), (4.2)

and is equivalent to the integral equation

x(t) = x(t0) +

∫ t

t0

d[A(s)]x(s) + f(t)− f(t0).
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We introduce the following conditions:

(L1) A : R→ L(Rn) has locally bounded variation and I −∆−A(t) is invertible for each t ∈ R.

(L2) f : R→ Rn is regulated.

(L3) There exist T > 0, C ∈ L(Rn) and D ∈ Rn such that

A(t+ T )−A(t) = C and f(t+ T )− f(t) = D for every t ∈ R.

It is well known (see e.g. [18, Theorem 7.4.5]) that if conditions (L1) and (L2) hold, then for
every x0 ∈ Rn, Eq. (4.1) has a unique solution defined on [t0,∞) and satisfying x(t0) = x0; let
us denote it by x(·, t0, x0). Clearly, we have

x(t, t0, x0) = x(t, t0, 0) + xh(t, t0, x0),

where xh is the solution of the corresponding homogeneous equation (i.e., Eq. (4.1) with f ≡ 0).
The set of all solutions of the homogeneous equation is a vector space, and the mapping x0 7→
xh(t, t0, x0) is a linear mapping on Rn. As a consequence, for every fixed t ≥ t0, the mapping

x0 7→ x(t, t0, x0)

is continuous on Rn.
Finally, note that if (L3) holds, then the function F given by (4.2) satisfies (N3).

Theorem 4.1 (Massera’s Theorem for Linear Generalized ODEs). Let A : R → L(Rn) and
f : R→ Rn be such that (L1)–(L3) hold. If Eq. (4.1) has a bounded solution on [t0,∞), then it
has a T -periodic solution.

Proof. Let x(·, t0, x0) be a bounded solution of Eq. (4.1) defined on [t0,∞). Hence, there exists
a constant M > 0 such that ‖x(t, t0, x0)‖ ≤M for every t ∈ [t0,∞). We know that the Poincaré
map P : Rn → Rn given by

P (y) = x(t0 + T, t0, y)

is continuous on Rn. Let us consider its restriction to the set

Λ = {y ∈ Rn : ‖x(t, t0, y)‖ ≤M for every t ≥ t0} .

The set Λ is nonempty because x0 ∈ Λ. It is also easy to see that Λ is convex. In fact, if
x0, y0 ∈ Λ and α ∈ (0, 1), then

αx(t, t0, x0) + (1− α)x(t, t0, y0) =

α

(
x0 +

∫ t

t0

d[A(s)]x(s, t0, x0) + f(t)− f(t0)

)
+(1− α)

(
y0 +

∫ t

t0

d[A(s)]x(s, t0, y0) + f(t)− f(t0)

)
= αx0 + (1− α)y0 +

∫ t

t0

d[A(s)](αx(s, t0, x0) + (1− α)x(s, t0, y0)) + f(t)− f(t0).
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Hence, the function αx(·, t0, x0) + (1− α)x(·, t0, y0) is a solution of Eq. (4.1). It coincides with
the solution x(·, t0, αx0 + (1− α)y0), which has the same value at t0. Therefore,

‖x(t, t0, αx0 + (1− α)y0)‖ = ‖αx(t, t0, x0) + (1− α)x(t, t0, y0)‖ ≤ αM + (1− α)M = M

for each t ≥ t0, implying that αx0 + (1− α)y0 ∈ Λ.
Notice that Λ is bounded, because y ∈ Λ implies ‖y‖ ≤ M . It is also closed: Let {yn}∞n=1

be a sequence in Λ with yn → y. Then ‖x(t, t0, yn)‖ ≤ M for every t ≥ t0, and therefore
‖x(t, t0, y)‖ ≤M for every t ≥ t0, implying that y ∈ Λ.

For every y ∈ Rn, it follows from Lemma 2.6 that the function t 7→ x(t+T, t0, y) is a solution
of Eq. (4.1). It has to coincide with the solution t 7→ x(t, t0, P (y)), which has the same value
at t0. Thus, if y ∈ Λ, we get

‖x(t, t0, P (y))‖ = ‖x(t+ T, t0, y)‖ ≤M.

This implies that P (y) ∈ Λ for every y ∈ Λ. By the Brouwer fixed point theorem, we conclude
that P has a fixed point x̃0 ∈ Λ, i.e., x(t0, t0, x̃0) = x̃0 = P (x̃0) = x(t0 + T, t0, x̃0). Lemma 2.6
implies that Eq. (4.1) has a T -periodic solution.

Example 4.2. Let us return to the generalized ODE presented in Example 3.3:

d

dt
x = DtF (x, t), (4.3)

where F : R × R → R is given by F (x, t) = −2mx for all t ∈ (m,m + 1] and m ∈ Z. This is
a linear equation of the form (4.1) with n = 1, f ≡ 0 and A(t) = −2m for all t ∈ (m,m + 1]
and m ∈ Z. It is clear that (L1) and (L2) are satisfied (note that A is left-continuous, and
therefore I−∆−A(t) = I for each t ∈ R), and (L3) holds with T = 1 and C = −2. We have seen
that Theorem 3.2 is not applicable, but the assumptions of Theorem 4.1 are satisfied. We also
know that all solutions are bounded; hence, Theorem 3.2 predicts the existence of a 1-periodic
solution, which is the zero solution (recall that all nonzero solutions are 2-periodic).

5 Massera’s theorems for measure differential equations

Once we have Massera’s theorems for generalized ordinary differential equations, we can obtain
the corresponding statements for measure differential equations, i.e., integral equations of the
form

x(t) = x(t0) +

∫ t

t0

f(x(s), s) dg(s). (5.1)

We begin with scalar nonlinear equations.

Theorem 5.1 (Massera’s Theorem for Nonlinear Measure DEs). Let f : R × R → R and
g : R→ R be such that the following conditions hold:

• g is nondecreasing, left-continuous, and there exist K,T > 0 such that g(t+T )− g(t) = K
for each t ∈ R.
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• f is continuous in the first variable and T -periodic in the second variable.

• The integral
∫ s2
s1
f(x, s) dg(s) exists for each interval [s1, s2] ⊂ R and each x ∈ R.

• For every bounded set O ⊂ R, there exist a locally integrable function m : R→ [0,∞) and
a continuous increasing function ω : [0,∞)→ R such that ω(0) = 0, limu→0+

∫ v
u

dr
ω(r) =∞

for a certain v > 0, and ∣∣∣∣∫ s2

s1

f(x, s) dg(s)

∣∣∣∣ ≤ ∫ s2

s1

m(s) dg(s), (5.2)∣∣∣∣∫ s2

s1

(f(x, s)− f(y, s)) dg(s)

∣∣∣∣ ≤ ω(|x− y|)
∫ s2

s1

m(s) dg(s) (5.3)

for each interval [s1, s2] ⊂ R and all x, y ∈ O.

• If u, v ∈ R with u < v, then u+ f(u, t)∆+g(t) ≤ v + f(v, t)∆+g(t) for every t ∈ R.

Then each bounded solution x : [t0,∞)→ R of Eq. (5.1) is asymptotic to a T -periodic solution.
In particular, the existence of a bounded solution implies the existence of a T -periodic solution.

Proof. Let

F (x, t) =

∫ t

t0

f(x, s) dg(s)

for all x, t ∈ R. The assumptions (5.2) and (5.3) imply that F satisfies conditions (N1) and (N2)
with h(t) =

∫ t
t0
m(s) dg(s), t ∈ R (note that g is left-continuous, and Theorem 2.2 implies that

h has the same property). Next, note that

F (x, t+ T )− F (x, t) =

∫ t+T

t
f(x, s) dg(s) =

∫ t0+T

t0

f(x, s) dg(s),

where the last equality follows from the assumptions on f and g. Thus, F satisfies (N3) with

M(x) =
∫ t0+T
t0

f(x, s) dg(s). As concerns (N4), it follows from the assumptions and Theorem 2.2
that if u < v, then

u+ F (u, t+)− F (u, t) = u+ f(u, t)∆+g(t) ≤ v + f(v, t)∆+g(t) = v + F (v, t+)− F (v, t)

for all t ∈ R.
Finally, [24, Proposition 5.12]1 implies

∫ t
t0

DsF (x(τ), s) =
∫ t
t0
f(x(s), s) dg(s) for each regu-

lated function x : [t0,∞) → R. Hence, the measure differential equation (5.1) is equivalent to
the generalized ODE

x(t) = x(t0) +

∫ t

t0

DsF (x(τ), s)

(note that the solutions of both equations are necessarily regulated), and the proof is finished
by applying Theorem 3.2.

1The statement given in [24] assumes that |f(x, s)| ≤ m(s) for all x, s ∈ R. However, our weaker assumptions
on f are sufficient if one avoids the dominated convergence theorem and instead uses the convergence theorem
given in [18, Theorem 6.8.10].
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A linear measure differential equation has the form (5.1) with f(x, t) = p(t)x+ q(t), i.e.,

x(t) = x(t0) +

∫ t

t0

(p(s)x(s) + q(s)) dg(s). (5.4)

Massera’s theorem for this type of equations reads as follows.

Theorem 5.2 (Massera’s Theorem for Linear Measure DEs). Let g : R → R, p : R → L(Rn)
and q : R→ Rn be such that the following conditions hold:

• g is nondecreasing, left-continuous, and there exist K,T > 0 such that g(t+T )− g(t) = K
for each t ∈ R.

• p, q are T -periodic and locally integrable with respect to g.

• There exists a locally integrable function m : R→ [0,∞) such that∥∥∥∥∫ s2

s1

p(s) dg(s)

∥∥∥∥ ≤ ∫ s2

s1

m(s) dg(s) (5.5)

for each interval [s1, s2] ⊂ R.

If Eq. (5.4) has a bounded solution on [t0,∞), then it has a T -periodic solution.

Proof. Let

A(t) =

∫ t

t0

p(s) dg(s), f(t) =

∫ t

t0

q(s) dg(s)

for all t ∈ R. Since g is regulated and left-continuous, it follows from Theorem 2.2 that A and
f have the same properties. Moreover, Eq. (5.5) implies that

var vuA ≤
∫ v

u
m(s) dg(s)

for each interval [u, v] ⊂ R, i.e., A has locally bounded variation. The periodicity of p, q and
the assumptions on g imply that for every t ∈ R, we have

A(t+ T )−A(t) =

∫ t+T

t
p(s) dg(s) =

∫ t0+T

t0

p(s) dg(s) = A(t0 + T )−A(t0),

f(t+ T )− f(t) =

∫ t+T

t
q(s) dg(s) =

∫ t0+T

t0

q(s) dg(s) = f(t0 + T )− f(t0).

It follows that A, f satisfy conditions (L1)–(L3) with C = A(t0 + T ) − A(t0) and D = f(t0 +
T )−f(t0). Finally, the substitution theorem for the Kurzweil-Stieltjes integral (see [18, Theorem
6.6.1]) implies

∫ t
t0

d[A(s)]x(s) =
∫ t
t0
p(s)x(s) dg(s). Hence, the measure differential equation (5.4)

is equivalent to the generalized linear ODE

x(t) = x(t0) +

∫ t

t0

d[A(s)]x(s) + f(t)− f(t0),

and the proof is finished by applying Theorem 4.1.
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6 Massera’s theorems for dynamic equations on time scales

We now proceed to Massera-type theorems for dynamic equations on time scales, which are
known to be a special case of measure differential equations (see e.g. [18, 23]). Let T be a time
scale, i.e., a closed nonempty subset of R. The dynamic equation

x∆(t) = f(x(t), t), t ∈ T, (6.1)

has the integral form

x(t) = x(t0) +

∫ t

t0

f(x(s), s)∆s, t ∈ T, (6.2)

where the ∆-integral on the right-hand side can be understood in the sense of Riemann,
Lebesgue, or Henstock-Kurzweil. More details about time scales, ∆-derivatives, ∆-integrals,
and dynamic equations are available in [2, 3, 7].

We will focus on Eq. (6.2) with the Henstock-Kurzweil ∆-integral, which is the most general
one; its definition can be found in [18] or [19]. Since we are interested in the existence of periodic
solutions, we will deal with periodic time scales; the following definition may be found e.g. in [9].

Definition 6.1. Given a T > 0, a time scale T is called T -periodic if t ∈ T implies t± T ∈ T.

Clearly, if T is T -periodic, then inf T = −∞ and supT = ∞. Throughout the rest of this
section, we will always assume that T is a periodic time scale.

In order to distinguish between intervals on the real line and time scale intervals, we will use
the notation [α, β]T = [α, β] ∩ T whenever α, β ∈ T. An arbitrary function h : T → Rn can be
extended to a function h∗ : R→ Rn as follows. For each t ∈ R, we define t∗ = inf{s ∈ T: t ≤ s},
and h∗(t) = h(t∗); note that h∗ coincides with h on T.

The next result, whose proof is available in [6, Theorem 4.2] or [18, Theorem 8.6.8], describes
the relation between the ∆-integral of a function defined on a time scale interval, and the
Kurzweil-Stieltjes integral of its extension to the corresponding interval on the real line.

Theorem 6.2. Let f : [a, b]T → Rn be an arbitrary function. Define g(t) = t∗ for every

t ∈ [a, b]. Then the Kurzweil-Henstock ∆-integral
∫ b
a f(t)∆t exists if and only if the Kurzweil-

Stieltjes integral
∫ b
a f
∗(t) dg(t) exists; in this case, both integrals have the same value.

We also need the following observation, which was proved in [6, Lemma 4.4].

Lemma 6.3. Let a, b ∈ T, a < b, g(t) = t∗ for every t ∈ [a, b]. If f : [a, b] → Rn is such that

the integral
∫ b
a f(t) dg(t) exists, then∫ d

c
f(t) dg(t) =

∫ d∗

c∗
f(t) dg(t)

for every c, d ∈ [a, b].

The next result, which describes the relation between dynamic equations and measure dif-
ferential equations, follows from [18, Theorem 8.7.1].
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Theorem 6.4. Suppose that a, b, t0 ∈ T, a ≤ t0 ≤ b, and consider a function f : Rn × [a, b]T →
Rn. Let g(t) = t∗ and f∗(x, t) = f(x, t∗) for all t ∈ [a, b], x ∈ Rn.

If a function x : [a, b]T → Rn satisfies

x(t) = x(t0) +

∫ t

t0

f(x(s), s) ∆s, t ∈ [a, b]T, (6.3)

then the function y : [a, b]→ Rn given by y = x∗ satisfies

y(t) = y(t0) +

∫ t

t0

f∗(y(s), s) dg(s), t ∈ [a, b]. (6.4)

Conversely, each function y : [a, b] → Rn satisfying Eq. (6.4) has the form y = x∗, where
x : [a, b]T → Rn satisfies Eq. (6.3).

Although the previous theorem was formulated for solutions defined on compact intervals,
it is clear that a similar result holds also for unbounded intervals.

We now prove Massera’s theorem for scalar nonlinear dynamic equations on time scales.

Theorem 6.5 (Massera’s Theorem for Nonlinear Dynamic Equations). Suppose that T is a
T -periodic time scale and f : R× T→ R satisfies the following conditions:

• f is continuous in the first variable and T -periodic with respect to the second variable.

• The integral
∫ s2
s1
f(x, s) ∆s exists whenever [s1, s2]T ⊂ T and x ∈ R.

• For every bounded set O ⊂ R, there exist a locally ∆-integrable function m : T→ [0,∞) and
a continuous increasing function ω : [0,∞)→ R such that ω(0) = 0, limu→0+

∫ v
u

dr
ω(r) =∞

for a certain v > 0, and ∣∣∣∣∫ s2

s1

f(x, s) ∆s

∣∣∣∣ ≤ ∫ s2

s1

m(s) ∆s,∣∣∣∣∫ s2

s1

(f(x, s)− f(y, s)) ∆s

∣∣∣∣ ≤ ω(|x− y|)
∫ s2

s1

m(s) ∆s

whenever [s1, s2]T ⊂ T and x, y ∈ O.

• If u, v ∈ R with u < v, then u+ f(u, t)µ(t) ≤ v + f(v, t)µ(t) for every t ∈ T.

Then each bounded solution x : [t0,∞)T → R of Eq. (6.2) is asymptotic to a T -periodic solution
on T. In particular, the existence of a bounded solution implies the existence of a T -periodic
solution.

Proof. Let f∗(x, t) = f(x, t∗) and g(t) = t∗ for all t ∈ R, x ∈ R. Then g is nondecreasing and
left-continuous (see [23, Lemma 4]). Since T is T–periodic, we have g(t+T )−g(t) = T for every
t ∈ R. Also, using the fact that ∆+g(t) = µ(t) for t ∈ T and ∆+g(t) = 0 otherwise, we see that
if u, v ∈ R satisfy u < v, then

u+ f(u, t)∆+g(t) ≤ v + f(v, t)∆+g(t) for every t ∈ R.
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By Theorem 6.2 and Lemma 6.3, we have
∫ s∗2
s∗1
f(x, s)∆s =

∫ s∗2
s∗1
f∗(x, s) dg(s) =

∫ s2
s1
f∗(x, s) dg(s)

whenever [s1, s2] ⊂ R and x ∈ R, i.e., the last integral exists. For a bounded set O ⊂ R, we get∣∣∣∣∫ s2

s1

f∗(x, s) dg(s)

∣∣∣∣ =

∣∣∣∣∣
∫ s∗2

s∗1

f(x, s) ∆s

∣∣∣∣∣ ≤
∫ s∗2

s∗1

m(s) ∆s =

∫ s2

s1

m∗(s) dg(s)

whenever [s1, s2] ⊂ R and x ∈ O, and similarly∣∣∣∣∫ s2

s1

(f∗(x, s)− f∗(y, s)) dg(s)

∣∣∣∣ ≤ ω(|x− y|)
∫ s2

s1

m∗(s) dg(s)

whenever [s1, s2] ⊂ R and x, y ∈ O. This shows that the functions f∗, g satisfy the assumptions
of Theorem 5.1.

If x : [t0,∞)T → R is a bounded solution of Eq. (6.2), then the function y : [t0,∞) → R
given by y = x∗ is bounded and (by Theorem 6.4) satisfies y(t) = y(t0) +

∫ t
t0
f∗(y(s), s) dg(s),

t ∈ [t0,∞). By Theorem 5.1, y is asymptotic to a T -periodic solution of the same equation
defined on R. By the second part of Theorem 6.4, this solution is the extension of a certain
T -periodic solution of Eq. (6.2).

Next, we consider a system of linear dynamic equations in the vector form

x∆(t) = p(t)x+ q(t), t ∈ T,

whose integral form is

x(t) = x(t0) +

∫ t

t0

(p(s)x(s) + q(s)) ∆s, t ∈ T. (6.5)

A version of Massera’s theorem for this type of equations is presented below.

Theorem 6.6 (Massera’s Theorem for Linear Dynamic Equations). Suppose that T is a T -
periodic time scale, and p : T→ L(Rn) and q : T→ Rn satisfy the following conditions:

• p and q are T -periodic and locally ∆-integrable.

• There exists a locally ∆-integrable function m : T→ [0,∞) such that∥∥∥∥∫ s2

s1

p(s) ∆s

∥∥∥∥ ≤ ∫ s2

s1

m(s) ∆s

whenever [s1, s2]T ⊂ T.

If Eq. (6.5) has a bounded solution x : [t0,∞)T → Rn, then it has a T -periodic solution on T.

Proof. Let g(t) = t∗ for every t ∈ R. Then g is nondecreasing and left-continuous (see [23,
Lemma 4]). Since T is T -periodic, we have g(t + T ) − g(t) = T for every t ∈ R. The functions
p∗ and q∗ are T -periodic, because p, q are T -periodic and the time scale is T -periodic. The fact
that they are locally integrable with respect to g follows from Theorem 6.2.
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By Theorem 6.2 and Lemma 6.3, we get∥∥∥∥∫ s2

s1

p∗(s) dg(s)

∥∥∥∥ =

∥∥∥∥∥
∫ s∗2

s∗1

p(s) ∆s

∥∥∥∥∥ ≤
∫ s∗2

s∗1

m(s) ∆s =

∫ s2

s1

m∗(s) dg(s).

whenever [s1, s2] ⊂ R. Hence, the functions g, p∗, q∗ satisfy the assumptions of Theorem 5.2.
The function y : [t0,∞) → Rn given by y = x∗ is bounded, and (by Theorem 6.4) satisfies

y(t) = y(t0) +
∫ t
t0

(p∗(s)y(s) + q∗(s)) dg(s), t ∈ [t0,∞). By Theorem 5.2, the last equation has a
T -periodic solution on R. By the second part of Theorem 6.4, this solution is the extension of
a T–periodic solution of Eq. (6.5).

Remark 6.7. In the existing literature, one can find several Massera-type theorems for dynamic
equations on time scales; see [1, 13]. In [1], the results are restricted to the special case when
T = qN0 , q > 1, and do not cover periodic time scales. The paper [13] contains Massera’s
theorems for dynamic equations on periodic time scales, but the corresponding result for linear
equations has stronger assumptions than our Theorem 6.6 (in [13, Theorem 2.1], the functions
on the right-hand side are required to be rd-continuous), and there is no direct analogue of
our Theorem 6.5 for nonlinear equations (in [13, Theorem 3.1], there is no information on the
asymptotic behavior of bounded solutions). Let us note that the authors of [13] work with
all time scales T such that t ∈ T implies t + T ∈ T and µ(t + T ) = µ(T ). This definition is
more general than our Definition 6.1, since it requires only periodicity in “forward time”, and
includes also time scales with inf T > −∞. We have opted for Definition 6.1 only to ensure that
if g(t) = t∗, then t 7→ g(t + T ) − g(t) is constant on R, as required by the results in Section 5.
However, it is clear that Theorems 6.5 and 6.6 might be reformulated to be applicable to all
time scales considered in [13], since each such time scale with inf T = t0 > −∞ can be enlarged
by adding points smaller than t0 in such a way that the new time scale is T -periodic according
to Definition 6.1.

7 Massera’s theorems for impulsive differential equations

In this section, our goal is to obtain Massera-type theorems for impulsive differential equations.
Consider an impulsive ODE of the form

x′(t) = f(x(t), t), (7.1)

∆+x(τj) = Ij(x(τj)), j ∈ Z, (7.2)

with f : Rn × R → Rn, Ij : Rn → Rn for each j ∈ Z, {τj}j∈Z being an increasing real
sequence, and ∆+x(τj) = x(τj+) − x(τj). It is common to assume that the equality in (7.1)
holds almost everywhere, the solution x is left-continuous, and absolutely continuous on each
interval (τj−1, τj ], j ∈ Z. Then the corresponding integral form is

x(t) = x(t0) +

∫ t

t0

f(x(s), s) ds+
∑
j∈Z,

t0≤τj<t

Ij(x(τj)), (7.3)
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where the integral on the right-hand side is the Lebesgue integral. In the following text, we
consider the more general situation where the integral is understood in the sense of Kurzweil-
Henstock. Since we are interested in the existence of periodic solutions, we will deal with periodic
impulses described by the following condition:

(P) There exist T > 0 and m ∈ N such that τj = τj−m + T and Ij = Ij−m for each j ∈ Z.

The next result, which follows from [6, Lemma 2.4] (see also [17, Lemma 5.2]), makes it
possible to rewrite the right-hand side of Eq. (7.3) using a Stieltjes integral.

Theorem 7.1. Let a ≤ η1 < η2 < · · · < ηk < b. Consider a function f : [a, b] → Rn and let
f̃ : [a, b]→ Rn be such that f̃(s) = f(s) for every s ∈ [a, b)\{η1, . . . , ηk}. Let g : [a, b]→ R be a
left-continuous function such that ∆+g(ηj) = 1 for each j ∈ {1, . . . , k}, and g(t)− g(u) = t− u
whenever [u, t]∩{η1, . . . , ηk} = ∅. Then the Kurzweil-Stieltjes integral

∫ b
a f̃(s) dg(s) exists if and

only if the Kurzweil-Henstock integral
∫ b
a f(s) ds exists. In this case, we have

∫ b

a
f̃(s) dg(s) =

∫ b

a
f(s) ds+

k∑
j=1

f̃(ηj).

We remark that each function g satisfying the assumptions of the previous theorem has the
form g(t) = g(a) + (t− a) +

∑k
j=1 χ(ηj ,∞)(t), t ∈ [a, b], and is therefore unique up to an additive

constant. The previous result implies the next theorem, which allows us to rewrite Eq. (7.3) as
a measure differential equation. (A similar result may be found in [17, Theorem 5.3].)

Theorem 7.2. Let {τj}j∈Z be an increasing real sequence with limj→±∞ τj = ±∞. Consider
functions f : Rn × R → Rn and Ij : Rn → Rn for each j ∈ Z. A function x : [a, b] → Rn is a
solution of Eq. (7.3) on [a, b] if and only if it is a solution of the measure differential equation

x(t) = x(t0) +

∫ t

t0

f̃(x(s), s) dg(s), t ∈ [a, b],

where f̃ : Rn × R→ Rn is given by

f̃(z, t) =

{
f(z, t), if t ∈ R \ {τj : j ∈ Z},
Ij(z), if t = τj for some j ∈ Z,

and g : R→ R is given by g(t) = t+ j for each t ∈ (τj , τj+1], j ∈ Z.

Note that the function g described in Theorem 7.2 satisfies the conditions of Theorem 7.1.
Moreover, the condition limj→±∞ τj = ±∞ ensures that each bounded interval contains at most
finitely many points of impulses, and therefore the sum in Eq. (7.3) is always finite.

Although Theorem 7.2 was formulated for solutions defined on compact intervals, it is clear
that a similar result holds also for unbounded intervals (note that the definitions of f̃ and g do
not depend on the choice of the interval).

We are now ready for Massera’s theorem for nonlinear scalar impulsive differential equations.
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Theorem 7.3 (Massera’s Theorem for Nonlinear Impulsive Equations). Consider an increasing
real sequence {τj}j∈Z and functions f : R×R→ R and Ij : R→ R, j ∈ Z, such that condition (P)
holds. Moreover, suppose that:

• f is continuous in the first variable and T -periodic in the second variable.

• The integral
∫ s2
s1
f(x, s) ds exists for each interval [s1, s2] ⊂ R and each x ∈ R.

• For every bounded set O ⊂ R, there exist a locally integrable function m : R→ [0,∞) and
a continuous increasing function ω : [0,∞)→ R such that ω(0) = 0, limu→0+

∫ v
u

dr
ω(r) =∞

for a certain v > 0, and ∣∣∣∣∫ s2

s1

f(x, s) ds

∣∣∣∣ ≤ ∫ s2

s1

m(s) ds,∣∣∣∣∫ s2

s1

(f(x, s)− f(y, s)) ds

∣∣∣∣ ≤ ω(|x− y|)
∫ s2

s1

m(s) ds

for each interval [s1, s2] ⊂ R and all x, y ∈ O. Moreover, for each j ∈ {1, . . . ,m}, there
exists a constant mj ≥ 0 such that

|Ij(x)| ≤ mj and |Ij(x)− Ij(y)| ≤ ω(|x− y|)mj

for all x, y ∈ O.

• If u, v ∈ R with u < v, then u+ Ij(u) ≤ v + Ij(v) for each j ∈ {1, . . . ,m}.

Then each bounded solution x : [t0,∞)→ R of Eq. (7.3) is asymptotic to a T -periodic solution.
In particular, the existence of a bounded solution implies the existence of a T -periodic solution.

Proof. Define f̃ : R×R→ R and g : R→ R as in Theorem 7.2. Then Eq. (7.3) is equivalent to
the measure differential equation

x(t) = x(t0) +

∫ t

t0

f̃(x(s), s) dg(s),

and it suffices to show that f̃ , g satisfy the assumptions of Theorem 5.1.
It is clear g that is nondecreasing, left-continuous, and condition (P) ensures that t 7→

g(t+ T )− g(t) is a constant function on R. If u < v and t ∈ R \ {τj : j ∈ Z}, then

u+ f̃(u, t)∆+g(t) = u < v = v + f̃(v, t)∆+g(t).

Otherwise, if t = τj for some j ∈ {1, . . . ,m}, then

u+ f̃(u, t)∆+g(t) = u+ Ij(u) ≤ v + Ij(v) = v + f̃(v, t)∆+g(t).

By condition (P), it is clear that the same result holds for each j ∈ Z.
From the definition of f̃ , we see that it is continuous in the first variable and T -periodic in

the second variable. By hypothesis, the integral
∫ s2
s1
f(x, s) ds exists for each interval [s1, s2] ⊂ R

and each x ∈ R. Applying Theorem 7.1, we see that the integral
∫ s2
s1
f̃(x, s) dg(s) also exists.
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Given a bounded set O ⊂ R, consider the functions m : R→ [0,∞), ω : [0,∞)→ R, and con-
stants m1, . . . ,mm, whose existence is guaranteed by the assumptions. We extend m1, . . . ,mm

into a m-periodic sequence {mj}j∈Z, and define m̃ : R→ R by

m̃(t) =

{
m(t), if t ∈ R \ {τj : j ∈ Z},
mj , if t = τj for some j ∈ Z.

(7.4)

By Theorem 7.1, for each interval [s1, s2] ⊂ R and all x, y ∈ O, we get

∣∣∣∣∫ s2

s1

f̃(x, s) dg(s)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫ s2

s1

f(x, s) ds+
∑
j∈Z,

s1≤τj<s2

Ij(x)

∣∣∣∣∣∣∣∣
≤
∫ s2

s1

m(s) ds+
∑
j∈Z,

s1≤τj<s2

mj =

∫ s2

s1

m̃(s) dg(s),

and similarly

∣∣∣∣∫ s2

s1

(f̃(x, s)− f̃(y, s)) dg(s)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫ s2

s1

(f(x, s)− f(y, s)) ds+
∑
j∈Z,

s1≤τj<s2

(Ij(x)− Ij(y))

∣∣∣∣∣∣∣∣
≤ ω(|x− y|)

∫ s2

s1

m(s) ds+
∑
j∈Z,

s1≤τj<s2

ω(|x− y|)mj = ω(|x− y|)
∫ s2

s1

m̃(s) dg(s).

Thus, all assumptions of Theorem 5.1 are satisfied, and the proof is complete.

Next, we turn our attention to linear impulsive differential equations in the integral form

x(t) = x(t0) +

∫ t

t0

(p(s)x(s) + q(s)) ds+
∑
j∈Z,

t0≤τj<t

(Ajx(τj) + bj), (7.5)

with p : R→ L(Rn), q : R→ Rn, Aj ∈ L(Rn), and bj ∈ Rn for every j ∈ Z. Eq. (7.5) represents
a special case of Eq. (7.3) with f(x, t) = p(t)x+ q(t) and Ij(x) = Ajx+ bj for all x ∈ Rn, t ∈ R,
j ∈ Z. In this case, we can reformulate condition (P) as follows:

(P’) There exist T > 0 and m ∈ N such that τj = τj−m + T , Aj = Aj−m and bj = bj−m for
each j ∈ Z.

Theorem 7.4 (Massera’s Theorem for Linear Impulsive Equations). Consider an increasing real
sequence {τj}j∈Z and Aj ∈ L(Rn), bj ∈ Rn, j ∈ Z, such that condition (P’) holds. Moreover,
consider functions p : R→ L(Rn) and q : R→ Rn satisfying the following conditions:

• p, q are T -periodic and locally integrable.
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• There exists a locally integrable function m : R→ [0,∞) such that∥∥∥∥∫ s2

s1

p(s) ds

∥∥∥∥ ≤ ∫ s2

s1

m(s) ds

for each interval [s1, s2] ⊂ R.

If Eq. (7.5) has a bounded solution on [t0,∞), then it has a T -periodic solution.

Proof. Define g : R→ R as in Theorem 7.2. Then Eq. (7.5) is equivalent to the linear measure
differential equation

x(t) = x(t0) +

∫ t

t0

(p̃(s)x(s) + q̃(s)) dg(s),

where the functions p̃ : R→ L(Rn) and q̃ : R→ Rn are given by

p̃(t) =

{
p(t), if t ∈ R \ {τj : j ∈ Z},
Aj , if t = τj for some j ∈ Z,

q̃(t) =

{
q(t), if t ∈ R \ {τj : j ∈ Z},
bj , if t = τj for some j ∈ Z.

To finish the proof, it suffices to show that p̃, q̃, g satisfy the assumptions of Theorem 5.2. It is
clear that g is nondecreasing and left-continuous. Condition (P’) ensures that t 7→ g(t+T )−g(t)
is a constant function on R, and that p̃ and q̃ are T -periodic; the fact that they are locally
integrable with respect to g follows from Theorem 7.1. Define m̃ : R→ R by

m̃(t) =

{
m(t), if t ∈ R \ {τj : j ∈ Z},
‖Aj‖, if t = τj for some j ∈ Z.

By Theorem 7.1, for each interval [s1, s2] ⊂ R, we get

∥∥∥∥∫ s2

s1

p̃(s) dg(s)

∥∥∥∥ =

∥∥∥∥∥∥∥∥
∫ s2

s1

p(s) ds+
∑
j∈Z,

s1≤τj<s2

Aj

∥∥∥∥∥∥∥∥ ≤
∫ s2

s1

m(s) ds+
∑
j∈Z,

s1≤τj<s2

‖Aj‖ =

∫ s2

s1

m̃(s) dg(s).

Hence, all assumptions of Theorem 5.2 are satisfied, and the proof is complete.
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[21] R. López Pouso, I. Márquez Albés, G. A. Monteiro, Extremal solutions of systems of mea-
sure differential equations and applications in the study of Stieltjes differential problems,
Electron. J. Qual. Theory Differ. Equ. 2018, No. 38, 1–24.

[22] A. Slav́ık, Well-posedness results for abstract generalized differential equations and measure
functional differential equations, J. Differential Equations 259 (2015), 666–707.

[23] A. Slav́ık, Dynamic equations on time scales and generalized ordinary differential equations,
J. Math. Anal. Appl. 385 (2012), 534–550.
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