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Abstract. We count lucky cars in parking functions of a given length, and provide elementary
derivations for the generating functions, expected values and variances. We consider not only
classical parking functions, but also problems with additional parking slots, and with cars of
different sizes.

1. PARKING FUNCTIONS AND LUCKY CARS. The classical concept of a park-
ing function arises from the following problem: Consider n parking slots in a one-way
street. There are n cars that arrive sequentially and their preferred parking slots are
π1, . . . , πn ∈ {1, . . . , n}. Car i will park in the first empty slot (if any) whose number
is greater than or equal to πi. If all cars are able to park, we say that π = (π1, . . . , πn)
is a parking function of length n.

We are interested in counting lucky cars, where car i is called lucky if it succeeds
in parking in its preferred spot πi. Let al(n) be the number of parking functions of
length n with exactly l lucky cars. Note that a0(n) = 0 for each n ∈ N, because the
first car is always lucky, and an(n) = n!, because all cars are lucky if and only if they
have distinct preferences.

For a fixed n ∈ N, the numbers a0(n), . . . , an(n) can be calculated from the gen-
erating function

n∑
l=0

al(n)z
l = z

n−1∏
i=1

(i+ (n− i+ 1)z), (1)

which was obtained by I. M. Gessel and S. Seo in [3, Section 10]. For example, if
n = 3, the polynomial on the right-hand side is 6z3 + 8z2 + 2z. Indeed, there are
• 6 parking functions with 3 lucky cars: (1, 2, 3) and its permutations,
• 8 parking functions with 2 lucky cars: (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 3, 1),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1),

• 2 parking functions with 1 lucky car: (1, 1, 1), (1, 1, 2).

We can also consider a more general problem with n cars, but n+ c− 1 parking
slots instead of n. The cars now have preferences π1, . . . , πn ∈ {1, . . . , n+ c− 1},
and the parking process is the same as before. If all cars are able to park, we say that
π = (π1, . . . , πn) is a c-parking function of length n. (Hence, a 1-parking function is
the classical parking function introduced earlier.)

If al(n, c) is the number of c-parking functions of length n, we have

n∑
l=0

al(n, c)z
l = cz

n−1∏
i=1

(i+ (n− i+ c)z). (2)

Gessel and Seo also proved this result in [3, Section 10].
A detailed survey of parking functions by C. H. Yan is available in [6]. Perhaps

the best known result says that the number of all parking functions of length n is
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(n + 1)n−1. An elegant proof based on adding an extra parking slot and arranging
the resulting n+ 1 slots clockwise in a circle is due to H. O. Pollak; it was first de-
scribed by J. Riordan in [4], see also [6, p. 836]. A straightforward modification of this
proof shows that the number of c-parking functions of length n is c(n+ c)n−1. These
formulas can be also obtained by letting z = 1 in (1) and (2), respectively.

Starting with (1) and dividing by (n+ 1)n−1, P. Diaconis and A. Hicks have dis-
covered in [1, p. 139] that the expected number of lucky cars and the variance of this
number for a random parking function of length n are

µn = n− n(n− 1)

2(n+ 1)
=

n

2

(
1 +

2

n+ 1

)
, σ2

n =
n−1∑
i=1

(
1− i

n+ 1

)
i

n+ 1
. (3)

Thus, for a random parking function, approximately half of the cars are lucky.
Unfortunately, the proof of (1) in [3] is not entirely elementary. It begins by show-

ing that the double generating function Q(x, z) =
∑∞

n=0

∑n
l=0 al(n)z

l xn

n!
satisfies

the differential equation ∂Q
∂x

= zQ2 + xQ∂Q
∂x

, and then verifying that the exponential
generating function of the right-hand side of (1) satisfies this equation.

Our aim is to present a completely elementary derivation of the relations (3) and of
the more general formulas for lucky cars in a random c-parking function of length n,
namely

µn,c =
n

2

(
1 +

c+ 1

n+ c

)
, σ2

n,c =
n−1∑
i=1

(
1− i

n+ c

)
i

n+ c
. (4)

At the same time, we will obtain an elementary proof of the identities (1) and (2).
Finally, we will show that essentially the same method is applicable to the problem

with cars of different sizes introduced by R. Ehrenborg and A. Happ in [2]. The corre-
sponding generating function as well as the formula for the expected number of lucky
cars that we derive in the last section are new.

2. AN ELEMENTARY APPROACH TO LUCKY CARS. Instead of dealing with
parking functions for n cars and n+ c− 1 parking slots in a row, we will follow Pol-
lak’s idea and consider n cars and n+ c parking slots arranged clockwise in a circle.
As before, each car has a preferred slot. If it is occupied, the car cruises clockwise until
it finds an empty slot. We make the following observations:

• For each choice of parking preferences π1, . . . , πn ∈ {1, . . . , n+ c}, all n cars are
able to park, and c slots remain empty.

• Let F be the mapping that takes a vector of preferences π = (π1, . . . , πn) and
yields a vector F (π) whose components are the components of π increased by 1
modulo n+ c (i.e., we identify 0 with n+ c). In other words, all preferences in π
are shifted clockwise by one position. Consequently, the final parking positions of
cars with preferences F (π) are obtained by a clockwise shift of the positions of
cars with preferences π.

• For each π, consider the sequence of vectors

π, F (π), . . . , F n+c−1(π). (5)

Exactly c of them (those where the additional slot n+ c remains empty) correspond
to c-parking functions in the original problem with n+ c− 1 slots in a row.
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• The shift F does not influence whether a car is lucky or not. Thus, all the vectors
in (5) yield the same number of lucky cars.

These observations imply that the probability of a car i being lucky in the circular
problem is the same as in the original problem with slots in a row. However, the calcu-
lation for the circular problem is much simpler: Suppose that the parking preferences
π1, . . . , πn ∈ {1, . . . , n+ c} are chosen independently and uniformly at random. For
each i ∈ {1, . . . , n}, let

Xi =

{
1 if car i is lucky,
0 otherwise.

(6)

Thus, X1, . . . , Xn are random variables depending on the choice of parking pref-
erences. When car i arrives, i − 1 slots in the circle are already occupied, and the
remaining ones are empty. Hence,

P (Xi = 0) =
i− 1

n+ c
, EXi = P (Xi = 1) = 1− i− 1

n+ c
. (7)

By linearity of the expected value, the expected number of lucky cars is

µn,c = E(X1 + · · ·+Xn) =
n∑

i=1

EXi =
n∑

i=1

(
1− i− 1

n+ c

)

= n− 1

n+ c

(n− 1)n

2
=

n(n+ 2c+ 1)

2(n+ c)
,

which proves the first identity in (4).
What happens if the number of parking slots is k times greater than the number of

cars, i.e., if c = (k − 1)n + 1? For a large number of cars, the proportion of lucky
cars will be approximately

lim
n→∞

µn,(k−1)n+1

n
= lim

n→∞

(2k − 1)n+ 3

2(kn+ 1)
=

2k − 1

2k
.

The random variables X1, . . . , Xn also lead to a simple proof of (2). The probabil-
ity generating function for each random variable Xi is

Gi(z) = P (Xi = 0) + P (Xi = 1)z =
i− 1

n+ c
+

(
1− i− 1

n+ c

)
z.

Since summation of independent random variables corresponds to multiplication of
their probability generating functions, we see that

G(z) = G1(z) · · ·Gn(z) =
n∏

i=1

(
i− 1

n+ c
+

(
1− i− 1

n+ c

)
z

)
is the probability generating function for the random variable X1 + · · · +Xn, i.e.,
for the number of lucky cars. Denote by pl(n, c) the probability that for a random
c-parking function of length n, exactly l cars out of n are lucky. Then

G(z) =
n∑

l=0

pl(n, c)z
l =

n∏
i=1

(
i− 1

n+ c
+

(
1− i− 1

n+ c

)
z

)
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= z
n−1∏
i=1

(
i

n+ c
+

(
1− i

n+ c

)
z

)
. (8)

Recall that the total number of c-parking functions is c(n + c)n−1. Multiplying the
previous equality by this constant, we get

n∑
l=0

al(n, c)z
l = cz

n−1∏
i=1

(i+ (n− i+ c)z), (9)

which is formula (2). For c = 1, we recover the special case (1).
The derivation of (3) in [1, p. 139] contains essentially the same discrete random

variables X1, . . . , Xn (with c = 1) as in (7). However, [1] does not provide the com-
binatorial meaning of these variables (although the authors might have been aware of
it), and they are introduced only formally as the random variables whose probability
generating functions correspond to the factors in (8). Our approach is different: We
first introduce X1, . . . , Xn by means of (6), and subsequently use them to deduce (8)
and (9).

The generating function (9) is useful for calculating the values ak(n, c), but it can
reveal more information. For example, note that the polynomial

z 7→ c
n−1∏
i=1

(i+ (n− i+ c)z)

has only real negative roots. According to [5, Theorem 4.27], the sequence of its co-
efficients, {al+1(n, c)}n−1

l=0 , is logarithmically concave. By [5, Proposition 4.26], the
sequence {al(n, c)}nl=0 is unimodal, i.e., it consists of a nondecreasing part followed
by a nonincreasing part. Clearly, {pl(n, c)}nl=0 has the same property.

As a different application, let us calculate the variance for the number of lucky cars.
For a random variable whose probability generating function is G, the variance can
be calculated as (logG)′(1) + (logG)′′(1); see [5, Section 4.1]. For the generating
function from (8), we get

(logG)′(z) =
1

z
+

n−1∑
i=1

1− i
n+c

i
n+c

+
(
1− i

n+c

)
z
,

(logG)′′(z) = − 1

z2
−

n−1∑
i=1

(
1− i

n+c

)2

(
i

n+c
+

(
1− i

n+c

)
z
)2 ,

and therefore the variance for the number of lucky cars in c-parking functions of
length n is

σ2
n,c =

n−1∑
i=1

(
1− i

n+ c

)
−

n−1∑
i=1

(
1− i

n+ c

)2

=
n−1∑
i=1

(
1− i

n+ c

)
i

n+ c
=

n(n− 1)(n+ 1 + 3c)

6(n+ c)2
,

which proves the second identity in (4).
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3. CARS OF DIFFERENT SIZES. One possible generalization of the original
parking problem is to consider cars of different sizes y1, . . . , yn ∈ N. The number
of parking slots is now k =

∑n
i=1 yi, and the cars have preferences π1, . . . , πn ∈

{1, . . . , k}. According to the scenario described in [2], car i searches for the first
available slot whose number is greater than or equal to πi; if the following yi − 1 slots
are empty as well, the car parks successfully; otherwise, the parking process fails.
If all cars are able to park, then π = (π1, . . . , πn) is called a parking function1 for
(y1, . . . , yn). In this setting, car i is lucky if it parks in a block of consecutive slots
starting at πi.

We want to calculate the expected number of lucky cars, and find the generating
function for the numbers al(y1, . . . , yn) that count parking functions for (y1, . . . , yn)
with exactly l lucky cars.

Consider instead k + 1 parking slots arranged clockwise in a circle, n cars of sizes
y1, . . . , yn ∈ N, and preferences π1, . . . , πn ∈ {1, . . . , k + 1}. If all cars are able to
park (this is no longer guaranteed!), exactly one slot remains empty, and we say that
π = (π1, . . . , πn) is a circular parking function for (y1, . . . , yn). As in Section 2, the
probability of car i being lucky does not depend on whether we choose a random park-
ing function, or a random circular parking function. (Use again the shift mapping F ,
which preserves lucky cars, and observe that if π is a circular parking function, then
exactly one of π, F (π), . . . , F k(π) is a parking function.)

To calculate the expected number of lucky cars for a random circular parking func-
tion, we rely on the following observation from [2, Section 2]: After all cars have
parked, the circle is divided into n + 1 blocks corresponding to the n cars and one
empty slot. The position of the first car and the order of the blocks completely deter-
mine where each car parks.

Car 1 is always lucky. In general, car i will end in one of the n+ 2− i remaining
available blocks. It can happen that the beginning of the block coincides with the car’s
preference, making the car lucky. Alternatively, the car’s preference might coincide
with one of the y1 + · · ·+ yi−1 already occupied slots, and it will need to cruise until
it arrives in its destination. To sum up, we have y1 + · · ·+ yi−1 + n+ 2− i choices
for car i, with n + 2 − i of them making it lucky. Therefore, for a random circular
parking function for (y1, . . . , yn), the expected number of lucky cars is

n∑
i=1

n+ 2− i

y1 + · · ·+ yi−1 + n+ 2− i
. (10)

As in Section 2, we can now obtain the generating function for the sequence
{pl(y1, . . . , yn)}nl=0, whose terms are the probabilities that, in a random parking
function for (y1, . . . , yn), exactly l cars are lucky:

n∑
l=0

pl(y1, . . . , yn)z
l =

n∏
i=1

y1 + · · ·+ yi−1 + (n+ 2− i)z

y1 + · · ·+ yi−1 + n+ 2− i

= z
n−1∏
i=1

y1 + · · ·+ yi + (n+ 1− i)z

y1 + · · ·+ yi + n+ 1− i
.

1The authors of [2] prefer the term “parking sequence,” which might be more appropriate, but we stick to
“parking function” for the sake of consistency.
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Since the total number of parking functions for (y1, . . . , yn) is

n−1∏
i=1

(y1 + · · ·+ yi + n+ 1− i)

(see [2, Theorem 3]), the generating function for the numbers al(y1, . . . , yn) is

n∑
l=0

al(y1, . . . , yn)z
l = z

n−1∏
i=1

(y1 + · · ·+ yi + (n+ 1− i)z) . (11)

If y1 = · · · = yn = 1, the previous formula reduces to (1).
As a quick check, consider the case n = 3 and (y1, y2, y3) = (2, 2, 1). The poly-

nomial on the right-hand side of (11) is 6z3 + 16z2 + 8z. Indeed, there are

• 6 parking functions with 3 lucky cars:
(1, 3, 5), (1, 4, 3), (2, 4, 1), (3, 1, 5), (4, 1, 3), (4, 2, 1),

• 16 parking functions with 2 lucky cars:
(1, 1, 5), (1, 2, 5), (1, 3, 1), (1, 3, 2), (1, 3, 3), (1, 3, 4), (1, 4, 1), (1, 4, 2),
(2, 2, 1), (2, 3, 1), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 1, 4), (4, 1, 1), (4, 1, 2),

• 8 parking functions with 1 lucky car:
(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4).

The expected number of lucky cars is (6 · 3 + 16 · 2 + 8 · 1)/30 = 29/15, as pre-
dicted by (10).

Observe again that the product on the right-hand side of (11) has only negative real
roots, and therefore {ak(y1, . . . , yn)}nl=0 as well as {pk(y1, . . . , yn)}nl=0 are unimodal
sequences. The calculation of the variance for the number of lucky cars is left as an
exercise to the reader.
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