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Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail: slavik@karlin.mff.cuni.cz

Abstract

In this paper, we study systems of lattice differential equations of reaction-diffusion type. First, we
establish some basic properties such as the local existence and global uniqueness of bounded solutions.
Then we proceed to our main goal, which is the study of invariant regions. Our main result can be
interpreted as an analogue of the weak maximum principle for systems of lattice differential equations.
It is inspired by existing results for parabolic differential equations, but its proof is different and relies
on the Euler approximations of solutions to lattice differential equations. As a corollary, we obtain
a global existence theorem for nonlinear systems of lattice reaction-diffusion equations. The results
are illustrated on examples from population dynamics.
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1 Introduction

The most studied example of a lattice differential equation has the form

∂u

∂t
(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t), x, t), x ∈ Z, t ∈ [0,∞), (1.1)

where u : Z × [0,∞) → R is the unknown function. This equation is obtained from the classical one-
dimensional reaction-diffusion equation

∂u

∂t
(x, t) = k

∂2u

∂x2
(x, t) + f(u(x, t), x, t), x ∈ R, t ∈ [0,∞), (1.2)

by discretizing the space variable. For some applications in biology, chemistry, kinematics or population
dynamics, the semidiscrete equation seems to be more appropriate than the classical reaction-diffusion
equation (see, e.g., [2, 11, 14, 21, 22]).

For various choices of the reaction function f , numerous authors have studied the properties of so-
lutions to Eq. (1.1), such as the asymptotic behavior [4, 35, 36], existence of traveling wave solutions
[8, 11, 24, 40, 41] or pattern formation [6, 7, 8]. On the other hand, the recent papers [30, 31] have fo-
cused on well-posedness results and maximum principles for Eq. (1.1) with a general reaction function f .
Let us mention that the maximum principles are important for the study of traveling wave solutions
(cf. [24, 39]).

Systems of two or more lattice differential equations were also considered by numerous authors. The
motivation for the study of such systems often comes from population dynamics – see, e.g., [5, 16, 17, 18,
19, 23] and the references there. Again, most papers focus on equations of reaction-diffusion type with
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specific choices of the reaction function. A fairly general class of linear lattice systems with continuous,
discrete or mixed time was studied in [28].

The present paper is devoted to general systems of nonlinear lattice differential equations of the form

∂u

∂t
(x, t) = A(x, t)u(x+ 1, t) +B(x, t)u(x, t) + C(x, t)u(x− 1, t) + f(u(x, t), x, t), x ∈ Z, t ≥ 0, (1.3)

where u takes values in Rm and A, B, C are matrix-valued functions. Obviously, Eq. (1.1) represents
a special case of Eq. (1.3) with m = 1, A(x, t) = C(x, t) = k and B(x, t) = −2k.

In Section 2, we present some basic results on the existence and uniqueness of solutions to nonlinear
systems of lattice equations. We focus on initial-values problems with bounded initial conditions. Such
problems generally have infinitely many solutions (see, e.g., [29, Section 3]); to get uniqueness, we restrict
ourselves to the class of bounded solutions. As explained in [14], the space of bounded sequences is a
quite natural choice for the study of diffusion-type lattice differential equations.

The core of the paper is in Section 3, where we study invariant regions for systems of the form (1.3).
The invariance results can be interpreted as a generalization of the weak maximum principle: In the scalar
case (1.1), the weak maximum principle says that under suitable assumptions on the reaction function f ,
the values of the solution always remain in the interval determined by the infimum and supremum of the
initial values. Thus, the interval is an invariant region for the given equation. In the higher-dimensional
setting, the interval is replaced by a closed convex set S, and the problem is to find sufficient conditions
guaranteeing that S is an invariant region, i.e., that solutions with initial values in S never leave this
set. The key assumption is that the vector field f points inward S or is tangent to the boundary at all
boundary points of S. This condition is well known from the invariance results for classical parabolic
equations; see [1, 9, 25, 34, 38]. The proofs of these classical results are fairly straightforward for bounded
spatial domains, while the treatment of unbounded domains is more difficult.

For example, Weinberger [38] uses the fact that solutions to initial-value problems on unbounded
spatial domains can be obtained as limits of solutions to initial-boundary-value problems on bounded
domains. As far as we are aware, no such result is available for lattice reaction-diffusion systems. Chueh
et al. [9] simply add the additional hypothesis that for all t > 0, u(x, t) ∈ S whenever x is sufficiently large.
Redheffer and Walter [25] provide a more general invariance theorem for solutions satisfying a certain
growth condition as |x| → ∞; however, their method does not seem to be applicable to lattice equations.
The method used by València [34] is elegant and can be used in the context of lattice equations, but it
seems to work only in the case when S is a hyperrectangle.

The proof of our invariance result for lattice equations is different from the existing proofs for parabolic
equations: We start by deriving an invariance result for the Euler approximations to Eq. (1.3), and only
later pass to the continuous-time limit. Therefore, the results of Section 3 also contribute to the theory
of partial difference equations.

In Section 4, we illustrate our invariance result on examples from population dynamics, including a
predator-prey model of Lotka-Volterra type, and a model of two competing species.

Let us remark that in Sections 3 and 4, we consider only those equations of the form (1.3) that satisfy
A+B +C = 0. Already in the scalar case (i.e., when m = 1), this condition is necessary for the validity
of the weak maximum principle; see [29, Section 4]. For applications, this restriction is not a serious one:
Consider a system of lattice reaction-diffusion equations of the form

∂u

∂t
(x, t) = D1(x, t)u∆∇(x, t) +D2(x, t)u∆(t) +D3(x, t)u∇(x, t) + f(u(x, t), x, t), (1.4)

where u∆∇(x, t) = u(x+ 1, t)− 2u(x, t) +u(x− 1, t) denotes the second-order central difference of u with
respect to x, u∆(x, t) = u(x+ 1, t)− u(x, t) is the forward difference and u∇(x, t) = u(x, t)− u(x− 1, t)
is the backward difference. The system (1.4) is the semidiscrete counterpart of the parabolic system

∂u

∂t
(x, t) = D(x, t)

∂2u

∂x2
(x, t) + E(x, t)

∂u

∂x
(x, t) + f(u(x, t), x, t),

2



which has been studied in [1, 9, 25, 34, 38]; the second-order derivative on the right-hand side is replaced
by the second-order central difference, and the first-order derivative is replaced either with the forward
or the backward difference.

By expanding the differences in (1.4), we see that the system is equivalent to (1.3) with

A(x, t) = D1(x, t) +D2(x, t),

B(x, t) = −2D1(x, t)−D2(x, t) +D3(x, t),

C(x, t) = D1(x, t)−D3(x, t),

which means that A+B+C = 0. Conversely, each equation of the form (1.3) satisfying A+B+C = 0 can
be rewritten in the form (1.4). The corresponding coefficients D1, D2, D3 are not uniquely determined;
for example, it is possible to choose

D1(x, t) = 0, D2(x, t) = A(x, t), D3(x, t) = −C(x, t).

2 Well-posedness results

Throughout the rest of this paper, we use the symbol `∞(Z) to denote the vector space of all bounded
real sequences {ux}x∈Z. This space is equipped with the supremum norm

‖u‖ = sup
x∈Z
|ux|, u ∈ `∞(Z).

The symbol `∞(Z)m denotes the product space whose elements have the form u = (u1, . . . , um) with
u1, . . . , um ∈ `∞(Z). This space is equipped with the supremum norm

‖u‖ = max{‖u1‖, . . . , ‖um‖}, u ∈ `∞(Z)m,

and it is a Banach space. For an arbitrary u ∈ `∞(Z)m and x ∈ Z, we use the symbol ux to denote the
vector (u1

x, . . . , u
m
x ) ∈ Rm.

In this section, we generalize the results from [30] and obtain some basic well-posedness results for
the initial-value problem

∂u

∂t
(x, t) =

k∑
j=−k

Aj(x, t)u(x+ j, t) + f(u(x, t), x, t), x ∈ Z, t ∈ [0, T ],

u(x, 0) = u0
x, x ∈ Z,

 (2.1)

where u0 = {u0
x}x∈Z ∈ `∞(Z)m, u : Z × [0, T ] → Rm, A−k, . . . , Ak : Z × [0, T ] → Rm×m, and f :

Rm × Z × [0, T ] → Rm. This system generalizes (1.3), which corresponds to the special case k = 1.
Systems with k > 1 are useful, for example, in the study of stochastic processes; see [15].

We impose the following conditions on the functions A−k, . . . , Ak, and f :

(A1) A−k, . . . , Ak are bounded.

(A2) For each j ∈ {−k, . . . , k}, ε > 0 and t ∈ [0, T ], there exists a δ > 0 such that if s ∈ (t−δ, t+δ)∩[0, T ],
then ‖Aj(x, t)−Aj(x, s)‖ < ε for all x ∈ Z.

(F1) f is bounded on each set B × Z× [0, T ], where B ⊂ Rm is bounded.

(F2) f is Lipschitz-continuous in the first variable on each set B×Z× [0, T ], where B ⊂ Rm is bounded.
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(F3) For each bounded set B ⊂ Rm and each choice of ε > 0 and t ∈ [0, T ], there exists a δ > 0 such
that if s ∈ (t− δ, t+ δ) ∩ [0, T ], then ‖f(u, x, t)− f(u, x, s)‖ < ε for all u ∈ B, x ∈ Z.

The proof of the next theorem is similar to the proof of [30, Theorem 2.1]; we include it here for
completeness.

Theorem 2.1. Assume that A−k, . . . , Ak : Z × [0, T ] → Rm×m satisfy (A1), (A2), and f : Rm × Z ×
[0, T ]→ Rm satisfies (F1)–(F3). Then for each u0 ∈ `∞(Z)m, the initial-value problem (2.1) has a bounded
local solution defined on Z× [0, δ], where δ > 0. The solution is obtained by letting u(x, t) = U(t)x, where
U : [0, δ]→ `∞(Z)m is a solution of the abstract differential equation

U ′(t) = Φ(U(t), t), U(0) = u0,

with Φ : `∞(Z)m × [0, T ]→ `∞(Z)m being given by

Φ({ux}x∈Z, t) = {Ak(x, t)ux+k + · · ·+A−k(x, t)ux−k + f(ux, x, t)}x∈Z. (2.2)

Proof. Conditions (A1) and (F1) guarantee that Φ indeed takes values in `∞(Z)m. Choose an arbi-
trary ρ > 0, and denote B = {u ∈ `∞(Z)m; ‖u − u0‖ ≤ ρ}. For each i ∈ {1, . . . ,m}, let Bi =[
infx∈Z(u0

x)i − ρ, supx∈Z(u0
x)i + ρ

]
⊂ R, and denote B = B1 × · · · × Bm. Note that if u, v ∈ B, then

ux, vx ∈ B for all x ∈ Z. Let L, M be the Lipschitz constant and the bound for the function f on
B × Z× [0, T ], and M−k, . . . ,Mk the bounds for the functions A−k, . . . , Ak on Z× [0, T ].

Observe that Φ is bounded on B × [0, T ]: For each u ∈ B, we have ux ∈ B for all x ∈ Z, and
consequently

‖Φ(u, t)‖ ≤Mk · ‖{ux+k}x∈Z‖+ · · ·+M−k · ‖{ux−k}x∈Z‖+ ‖{f(ux, x, t)}x∈Z‖
≤ (M−k + · · ·+Mk)‖u‖+M ≤ (M−k + · · ·+Mk)(‖u0‖+ ρ) +M.

Next, we show that Φ is Lipschitz-continuous in the first variable on B × [0, T ]:

‖Φ(u, t)− Φ(v, t)‖ ≤Mk · ‖{ux+k − vx+k}x∈Z‖+ · · ·+M−k · ‖{ux−k − vx−k}x∈Z‖

+‖{f(ux, x, t)− f(vx, x, t)}x∈Z‖ ≤ (M−k + · · ·+Mk)‖u− v‖+ L‖u− v‖.

Finally, we claim that Φ is continuous on B × [0, T ]. To see this, consider an arbitrary ε > 0 and
a fixed pair (u, t) ∈ B × [0, T ]. Let δmin > 0 be the minimum of all numbers δ obtained from conditions
(A2) and (F3). Then for all (v, s) ∈ B × [0, T ] with ‖u − v‖ < ε and s ∈ (t − δmin, t + δmin) ∩ [0, T ], we
have

‖Φ(u, t)− Φ(v, s)‖ ≤ ‖Φ(u, t)− Φ(v, t)‖+ ‖Φ(v, t)− Φ(v, s)‖

≤ (M−k + · · ·+Mk + L)‖u− v‖+ ‖{f(vx, x, t)− f(vx, x, s)}x∈Z‖

+‖{(Ak(x, t)−Ak(x, s))ux+k + · · ·+ (A−k(x, t)−A−k(x, s))ux−k}x∈Z‖

≤ (M−k + · · ·+Mk + L)‖u− v‖+ ε+ (2k + 1)ε‖u‖,

which proves that Φ is continuous at the point (u, t).
By the Picard-Lindelöf theorem, the initial-value problem

U ′(t) = Φ(U(t), t), U(0) = u0,

has a local solution defined on [0, δ], where δ > 0. Letting u(x, t) = U(t)x, x ∈ Z, we see that u is
a solution of the initial-value problem (2.1).

The next result is a slight generalization of [30, Theorem 2.2], which corresponds to the special case
when m = 1. The proof for a general m ∈ N can be carried out in the same way and we omit it.
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Theorem 2.2. Assume that ϕ : `∞(Z)m × Z× [0, T ]→ Rm satisfies the following conditions:

1. ϕ is bounded on each set B × Z× [0, T ], where B ⊂ `∞(Z)m is bounded.

2. ϕ is Lipschitz-continuous in the first variable on each set B × Z × [0, T ], where B ⊂ `∞(Z)m is
bounded.

Then for each u0 ∈ `∞(Z)m, the initial-value problem

∂u

∂t
(x, t) = ϕ({u(x, t)}x∈Z, x, t), x ∈ Z, t ∈ [0, T ],

u(x, 0) = u0
x, x ∈ Z,

 (2.3)

has at most one bounded solution u : Z× [0, T ]→ Rm.

As a corollary of the previous result, we obtain the uniqueness of bounded solutions to the initial-value
problem (2.1).

Corollary 2.3. Assume that A−k, . . . , Ak : Z×[0, T ]→ Rm×m satisfy (A1), and f : Rm×Z×[0, T ]→ Rm
satisfies (F1), (F2). Then for each u0 ∈ `∞(Z)m, the initial-value problem (2.1) has at most one bounded
solution u : Z× [0, T ]→ Rm.

Proof. Note that (2.1) is a special case of (2.3) with the function ϕ : `∞(Z)m × Z × [0, T ] → Rm being
given by

ϕ({ux}x∈Z, x, t) = Ak(x, t)ux+k + · · ·+A−k(x, t)ux−k + f(ux, x, t).

Hence, it is enough to verify that the two assumptions of Theorem 2.2 are satisfied.
Given an arbitrary bounded set B ⊂ `∞(Z)m, there exists a bounded set B ⊂ Rm such that u ∈ B

implies ux ∈ B, x ∈ Z. Hence, the first condition in Theorem 2.2 is an immediate consequence of (A1) and
(F1). To verify the second condition, let L be the Lipschitz constant for the function f on B×Z× [0, T ],
and M−k, . . . ,Mk the bounds for the functions A−k, . . . , Ak on Z× [0, T ]. Then, for each pair of sequences
u, v ∈ B ⊂ `∞(Z)m, we have

|ϕ(u, x, t)−ϕ(v, x, t)| ≤ (M−k+· · ·+Mk)·‖u−v‖+‖f(ux, x, t)−f(vx, x, t)‖ ≤ (M−k+· · ·+Mk+L)·‖u−v‖,

which means that ϕ is Lipschitz-continuous in the first variable on B × Z× [0, T ].

We conclude this section with two continuous dependence results concerning ordinary differential
equations in Banach spaces. Thanks to Theorem 2.1, these results are also applicable in the study of
Eq. (2.1). The first result is a special case of [30, Theorem 3.2]; it provides sufficient conditions ensuring
that the solution of a given ordinary differential equation is the limit of the Euler approximations.

Theorem 2.4. Let X be a Banach space and B ⊆ X. Suppose that Φ : B× [0, T ]→ X is continuous and
Lipschitz-continuous with respect to the first variable. Assume that u0 ∈ B and U : [0, T ]→ B satisfies

U ′(t) = Φ(U(t), t), t ∈ [0, T ], U(0) = u0.

For each n ∈ N, let h = T/n, and assume that Un : {0, h, 2h, . . . , (n− 1)h, nh} → B satisfies

Un(t+ h)− Un(t)

h
= Φ(Un(t), t), t ∈ {0, h, 2h, . . . , (n− 1)h}, Un(0) = u0.

Moreover, let U∗n : [0, T ]→ B be the piecewise constant extension of Un given by

U∗n(t) =

{
Un(0) if t = 0,

Un(kh) if t ∈ ((k − 1)h, kh] for some k ∈ {1, . . . , n}.

Then the sequence {U∗n}∞n=1 is uniformly convergent to U on [0, T ].
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The second result, which is a consequence of [27, Theorem 4.7], is concerned with continuous depen-
dence of solutions on the right-hand side of a differential equation.

Theorem 2.5. Let X be a Banach space, C ⊆ X and u0 ∈ C. Consider functions Φ : C × [0, T ]→ X and
Φn : C × [0, T ] → X, n ∈ N, which are continuous, bounded by the same constant, Lipschitz-continuous
in the first variable with the same Lipschitz constant, and such that Φn → Φ on C × [0, T ]. Assume that
U : [0, T ]→ C satisfies

U ′(t) = Φ(U(t), t), t ∈ [0, T ], U(0) = u0.

Finally, suppose there exists a ρ > 0 such that the open ρ-neighborhood of U in X is contained in C.
Then there is an n0 ∈ N and a sequence of functions Un : [0, T ]→ C, n ≥ n0, such that

U ′n(t) = Φn(Un(t), t), t ∈ [0, T ], Un(0) = u0,

and {Un}∞n=n0
is uniformly convergent to U on [0, T ].

3 Invariance results

Throughout this section, we consider compact convex sets S described as intersections of sublevel sets of
certain functions G1, . . . , Gk. More precisely, we introduce the following condition:

(S) Assume that k ∈ N, U1, . . . , Uk ⊆ Rm are open sets, and for each i ∈ {1, . . . , k}, Gi : Ui → R is
a C1 function. Suppose also that the closed sets

Si = {u ∈ Ui; Gi(u) ≤ 0}, i ∈ {1, . . . , k},

are convex, their intersection

S = S1 ∩ · · · ∩ Sk = {u ∈ U1 ∩ · · · ∩ Uk; G1(u) ≤ 0, . . . , Gk(u) ≤ 0}

is bounded and has nonempty interior, and that ∇Gi(u) 6= 0 for each i ∈ {1, . . . , k}, u ∈ ∂Si.

If condition (S) is satisfied, then S is a compact convex set with nonempty interior. Note that ∇Gi(u)
is the outward normal to Si at u ∈ ∂Si, the set

{z ∈ Rm;∇Gi(u) · z = ∇Gi(u) · u} (3.1)

is the unique supporting hyperplane (and also the tangent hyperplane) of Si at u, and Si is contained in
the supporting half-space

{z ∈ Rm;∇Gi(u) · z ≤ ∇Gi(u) · u}.

Remark 3.1. The description of the convex set S in terms of the functions G1, . . . , Gk is taken over
from the paper [9]. In practice, the set S is often chosen in one of the following two ways:

1. S is the interior of a closed hypersurface described by the equation G(u) = 0, where u ∈ U ⊂ Rm,
and G : U → R is a C1 function with nonzero gradient on ∂S. In this case, we have k = 1 and
S = {u ∈ U ; G(u) ≤ 0}. A simple illustration of this case will be given in Example 4.1.

2. S is the m-dimensional hyperrectangle S = [a1, b1]×· · ·× [am, bm]. In this situation, we let k = 2m,
U1 = · · · = U2m = Rm, and

Si = {u ∈ Rm; Gi(u) = ai − ui ≤ 0}, i ∈ {1, . . . ,m},
Sm+i = {u ∈ Rm; Gm+i(u) = ui − bi ≤ 0}, i ∈ {1, . . . ,m}.

An illustration of this situation will be provided in Example 4.2.
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Remark 3.2. Since a nonempty closed convex set is the intersection of all its supporting half-spaces
(see, e.g., [26, Corollary 1.3.5]), we have

Si =
⋂

u∈∂Si

{z ∈ Rm;∇Gi(u) · z ≤ ∇Gi(u) · u},

and consequently

S =

k⋂
i=1

⋂
u∈∂Si

{z ∈ Rm;∇Gi(u) · z ≤ ∇Gi(u) · u}.

However, for our purposes, it is more convenient to express S in the form

S =

k⋂
i=1

⋂
u∈∂Si∩S

{z ∈ Rm;∇Gi(u) · z ≤ ∇Gi(u) · u}. (3.2)

To see why the last relation holds, we use the fact (see, e.g., [10, pp. 27–28]) that S, which is a compact
convex set with nonempty interior, can be expressed as the intersection of only those of its supporting half-
spaces that correspond to extreme supporting hyperplanes. (A supporting hyperplane is called extreme
if its normal vector a cannot be written in the form a = αa1 + βa2, where α, β > 0, α + β = 1, and
a1, a2 are normal vectors of two distinct supporting hyperplanes at the given point.) Now, if u ∈ ∂S is
such that u ∈ ∂Si for a unique index i, then (3.1) is the unique supporting half-plane of S at u, and thus
it is extreme. Otherwise, we have u ∈ ∂Si for several indices i ∈ I, where I ⊂ {1, . . . , k} and |I| > 1.
There might be more than one supporting hyperplane of S at u, but the normal cone of S at u (i.e., the
set of all outer normal vectors of S at u together with the zero vector) is the sum of the normal cones
of the sets Si, i ∈ I, at u (see [26, Theorem 2.2.1]). Since the latter cones are half-lines in the direction
of ∇Gi(u), i ∈ I, it follows that all extreme supporting hyperplanes of S at u have the form (3.1) with
i ∈ I, and this establishes the formula (3.2).

We now consider initial-value problems for lattice reaction-diffusion equations having the form

∂u

∂t
(x, t) = A(x, t)u(x+ 1, t) +B(x, t)u(x, t) + C(x, t)u(x− 1, t) + f(u(x, t), t), x ∈ Z, t ∈ [0, T ],

u(x, 0) = u0
x, x ∈ Z,

 (3.3)

where u0 = {u0
x}x∈Z ∈ `∞(Z)m, u : Z× [0, T ]→ Rm, A, B, C : Z× [0, T ]→ Rm×m, and f : Rm× [0, T ]→

Rm. This initial-value problem is a special case of (2.1) with k = 1 and

A−1(x, t) = A(x, t), A0(x, t) = B(x, t), A1(x, t) = C(x, t).

Whenever we refer to conditions (A1), (A2) from Section 2, we always assume that A−1, A0, A1 are
defined in this way.

To avoid technical difficulties, we restrict ourselves to the case when f does not explicitly depend
on x. In this setting, the conditions (F1)–(F3) can be simplified as follows:

(D1) f is Lipschitz-continuous in the first variable on each set B × [0, T ], where B ⊂ Rm is bounded.

(D2) f is continuous in the second variable.

Obviously, (D1) implies (F2). If (v, s) ∈ Rm × [0, T ] and V is an arbitrary bounded neighborhood of v,
then the estimate

‖f(u, t)− f(v, s)‖ ≤ ‖f(u, t)− f(v, t)‖+ ‖f(v, t)− f(v, s)‖
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together with the Lipschitz-continuity of f in the first variable on V × [0, T ] and continuity in the second
variable at (v, s) imply the continuity of f (as a function of two variables) at (v, s). Thus, the conditions
(D1) and (D2) imply that f is continuous. For each bounded set B ⊂ Rm, f is uniformly continuous and
bounded on the compact set B × [0, T ], which means that the conditions (F1) and (F3) are satisfied.

Our goal is to obtain sufficient conditions guaranteeing that S is an invariant region for bounded
solutions of Eq. (3.3), i.e., that each bounded solution of Eq. (3.3) with u0

x ∈ S, x ∈ Z, satisfies u(x, t) ∈ S
for each t ∈ [0, T ], x ∈ Z. We introduce the following conditions:

(C1) For each i ∈ {1, . . . , k} and u ∈ ∂Si ∩ S, we have ∇Gi(u) · f(u, t) ≤ 0 for all t ∈ [0, T ].

(C2) For each i ∈ {1, . . . , k}, u ∈ ∂Si ∩ S, x ∈ Z and t ∈ [0, T ], there exist numbers a ≥ 0, b ≤ 0, c ≥ 0
such that

∇Gi(u)>A(x, t) = a∇Gi(u)>, ∇Gi(u)>B(x, t) = b∇Gi(u)>, ∇Gi(u)>C(x, t) = c∇Gi(u)>.

(C3) For each x ∈ Z and t ∈ [0, T ], we have A(x, t) +B(x, t) + C(x, t) = 0.

Remark 3.3. The fact that the condition (C3) is necessary even in the scalar case was already noticed
in the introduction. Let us provide some additional comments concerning the first two conditions:

• Recall that if u ∈ ∂Si∩S, then ∇Gi(u) is the outward normal to Si at u. Thus, condition (C1) says
that the vector field f at u points inward Si or is tangent to ∂Si for all values of t. This condition,
which was mentioned in the introduction of this paper, is the standard condition in the study of
invariant regions for both ordinary and partial differential equations (see, e.g., [1, 9, 25, 33, 34, 38]).

• Condition (C2) says that∇Gi(u) is a left eigenvector of the matrices A(x, t), B(x, t), C(x, t) for each
x ∈ Z and t ∈ [0, T ]; equivalently, it is the eigenvector of A(x, t)>, B(x, t)>, C(x, t)>. Moreover, it is
required that the corresponding eigenvalues a, c are nonnegative, while b is nonpositive (note that
the eigenvalues might depend on x and t). Condition of a similar type can be found in [9, 12, 13, 37],
and it is also implicitly present in [34]. Let us mention two typical situations when (C2) is satisfied:

1. The matrices A, B, C are scalar multiples of the identity matrix, where the scalars correspond-
ing to A, C are nonnegative and the scalar corresponding to B is nonpositive (the scalars might
depend on x and t). This happens, e.g., for weakly coupled systems of lattice reaction-diffusion
equations, where all equations have the same diffusion coefficient; see Example 4.1. Since each
vector in Rm is a left eigenvector to a scalar multiple of the identity matrix, the condition (C2)
is satisfied for an arbitrary set S.

2. The matrices A, B, C are diagonal, the diagonal elements of A, C are nonnegative, and
the diagonal elements of B are nonpositive. This happens, e.g., for weakly coupled systems
of lattice reaction-diffusion equations where different equations might have different diffusion
coefficients; see Example 4.2. Since the eigenvectors of a diagonal matrix are precisely the
vectors of the canonical basis in Rm (and their multiples), condition (C2) is satisfied if S is
the m-dimensional hyperrectangle described in Remark 3.1.

Clearly, if A, B, C are not scalar multiples of the identity matrix, then condition (C2) imposes
a serious restriction on the shape of S – it says that the boundary of S has to be such that the
normal vectors ∇Gi are left eigenvectors of A, B, C. In general, a condition of this type cannot
be avoided. The necessity of an analogous condition for systems of parabolic differential equations
was proved in [9, Theorem 4.2]. For example, if we have a decoupled system of two linear diffusion
equations with different diffusion coefficients, it can easily happen that a solution leaves a compact
convex set that has a non-rectangular shape; a convincing pictorial argument can be found in [12,
Section 3.4]. The situation when A, B, C are not scalar multiples of the identity matrix will be
illustrated in Example 4.3.
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We begin our investigation of invariant regions by considering the linear case f ≡ 0; in this situation,
condition (C1) is trivially satisfied.

Lemma 3.4. Suppose that the conditions (S), (C2), (C3) are satisfied and there exists a β > 0 such that
if x ∈ Z, t ∈ [0, T ] and λ is an eigenvalue of B(x, t), then |λ| ≤ β. If h ∈ (0, 1/β] and {ux}x∈Z is a
sequence such that ux ∈ S for each x ∈ Z, then

hA(x, t)ux+1 + (I + hB(x, t))ux + hC(x, t)ux−1

is an element of S for all t ∈ [0, T ], x ∈ Z.

Proof. Assume that h ∈ (0, 1/β] and {ux}x∈Z is a sequence such that ux ∈ S for each x ∈ Z. Consider
a fixed pair t ∈ [0, T ], x ∈ Z, and denote

ũ = hA(x, t)ux+1 + (I + hB(x, t))ux + hC(x, t)ux−1.

We will show that ũ ∈ S. Taking into account (cf. Remark 3.2) that

S =

k⋂
i=1

⋂
y∈∂Si∩S

{z ∈ Rm;∇Gi(y) · z ≤ ∇Gi(y) · y},

we need to prove that if i ∈ {1, . . . , k} and y ∈ ∂Si ∩ S, then ∇Gi(y) · ũ ≤ ∇Gi(y) · y.
We know that ux+1, ux and ux−1 are elements of Si, and therefore

∇Gi(y) · ux+1 ≤ ∇Gi(y) · y, ∇Gi(y) · ux ≤ ∇Gi(y) · y, ∇Gi(y) · ux−1 ≤ ∇Gi(y) · y.

Using condition (C2), we get

∇Gi(y) · ũ = ∇Gi(y)>ũ = ∇Gi(y)>(haux+1 + (1 + hb)ux + hcux−1)

= ∇Gi(y) · (haux+1 + (1 + hb)ux + hcux−1),

where a, c ≥ 0 and b ≤ 0. Note that the three identities in condition (C2) together with condition (C3)
imply that a+ b+ c = 0. Moreover, the relation ∇Gi(u)>B(x, t) = b∇Gi(u)> from condition (C2) implies
that the number b is an eigenvalue of B(x, t), and therefore 1+hb = 1−h|b| ≥ 1− 1

ββ = 0. Consequently,

∇Gi(y) · ũ ≤ ha∇Gi(y) · y + (1 + hb)∇Gi(y) · y + hc∇Gi(y) · y = ∇Gi(y) · y,

which completes the proof.

The previous lemma will be needed in the proof of our main result; however, we can immediately derive
the following interesting corollary, which shows that S is an invariant region for the Euler approximations
of the linear system whenever the time step is sufficiently small.

Corollary 3.5. Suppose that the conditions (S), (C2), (C3) are satisfied and there exists a β > 0 such
that if x ∈ Z, t ∈ [0, T ] and λ is an eigenvalue of B(x, t), then |λ| ≤ β. Let n ∈ N, h = T/n, and consider
the partial difference equation

u(x, t+ h)− u(x, t)

h
= A(x, t)u(x+ 1, t) +B(x, t)u(x, t) + C(x, t)u(x− 1, t), x ∈ Z, (3.4)

where t ∈ {0, h, 2h, . . . , (n− 1)h}. If h ∈ (0, 1/β], then S is an invariant region for Eq. (3.4).

Proof. The statement is an immediate consequence of Lemma 3.4, because Eq. (3.4) is equivalent to the
relation

u(x, t+ h) = hA(x, t)u(x+ 1, t) + (I + hB(x, t))u(x, t) + hC(x, t)u(x− 1, t), x ∈ Z.
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Remark 3.6. Obviously, the statement of the previous corollary remains valid if we consider Euler
approximations with nonconstant step size, which does not exceed 1/β. Note that if B is bounded, then
its eigenvalues are also bounded. Thus, our result generalizes [29, Theorem 4.7] in the case of a discrete
time scale.

We now turn our attention to nonlinear systems and temporarily replace the condition (C1) by the
following stronger version:

(C ′1) For each i ∈ {1, . . . , k} and u ∈ ∂Si ∩ S, we have ∇Gi(u) · f(u, t) < 0 for all t ∈ [0, T ].

This stronger assumption will enable us to show that S is an invariant region for the Euler approx-
imations of Eq. (3.3) provided that the step size is sufficiently small. We need the following auxiliary
lemma.

Lemma 3.7. Assume that conditions (S), (D1), (D2), (C ′1) are satisfied. Then there exist numbers
δ > 0, ε > 0 with the following property: If i ∈ {1, . . . , k}, z, w ∈ Rm, d(z, ∂Si ∩S) ≤ δ and ‖w− z‖ ≤ δ,
then z, w ∈ Ui and ∇Gi(w) · f(z, t) < −ε for all t ∈ [0, T ].

Proof. Choose an arbitrary i ∈ {1, . . . , k}. Recall that Ui is open and S ⊂ Ui. Thus, there exists a ρi > 0
such that the closed ρi-neighborhood of S, i.e., the set Sρi = {y ∈ Rm; d(y, S) ≤ ρi}, is contained in Ui.
(If Ui 6= Rm, note that d(∂S, ∂Ui) > 0, because u 7→ d(u, ∂Ui) is a continuous positive function on the
compact set ∂S.)

Since f and ∇Gi are continuous and (∂Si ∩ S)× [0, T ] is compact, (C ′1) implies

di = max
y∈∂Si∩S,t∈[0,T ]

∇Gi(y) · f(y, t) < 0.

The function
g(w, z, t) = ∇Gi(w) · f(z, t)

is continuous on the compact set Sρi×Sρi× [0, T ], and therefore uniformly continuous. Thus, there exists
ηi > 0 such that

|g(z1, w1, t)− g(z2, w2, t)| <
|di|
2

whenever ‖z1 − z2‖ ≤ ηi, ‖w1 − w2‖ ≤ ηi.
Choose a positive number δi ≤ min(ηi/2, ρi/2) and let εi = −di/2. Consider an arbitrary pair

z, w ∈ Rm satisfying d(z, ∂Si ∩ S) ≤ δi and ‖w − z‖ ≤ δi. Note that z, w ∈ Sρi ⊂ Ui. Let p(z) be the
closest point to z on ∂Si∩S. Then ‖z−p(z)‖ ≤ δi ≤ ηi/2, ‖w−p(z)‖ ≤ ‖w− z‖+‖z−p(z)‖ ≤ 2δi ≤ ηi,
and consequently

∇Gi(w) · f(z, t) = g(w, z, t) = g(p(z), p(z), t) + g(w, z, t)− g(p(z), p(z), t) < di +
|di|
2

=
di
2

= −εi.

Thus, the assertion of the theorem holds with δ = min(δ1, . . . , δk) and ε = min(ε1, . . . , εk).

We now proceed to the promised result concerning the invariance of S under the Euler approximations
of Eq. (3.3). Parts of the proof are inspired by the proof of [33, Lemma 5.1], which deals with the invariance
of convex sets under the Euler approximations to ordinary differential equations.

Theorem 3.8. Suppose that conditions (S), (A1), (A2), (D1), (D2), (C ′1), (C2), (C3) are satisfied. Let
n ∈ N, h = T/n, and consider the partial difference equation

u(x, t+ h)− u(x, t)

h
= A(x, t)u(x+ 1, t) +B(x, t)u(x, t) +C(x, t)u(x−1, t) +f(u(x, t), t), x ∈ Z, (3.5)

where t ∈ {0, h, 2h, . . . , (n− 1)h}. If h is sufficiently small, then S is an invariant region for Eq. (3.5).
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Proof. Since the function B is bounded, there exists a β > 0 with the following property: If λ is an
eigenvalue of B(x, t) for some x ∈ Z, t ∈ [0, T ], then |λ| ≤ β. Thus, the assumptions of Lemma 3.4 are
satisfied.

Let δ, ε be the numbers from Lemma 3.7. The lemma implies that if Sδ is the closed δ-neighborhood
of S, then Sδ ⊂ U1 ∩ · · · ∩ Uk. Denote

M1 = sup
y∈S,t∈[0,T ]

‖f(y, t)‖, (3.6)

M2 = max
i∈{1,...,k}

(
max
y∈Sδ

‖∇Gi(y)‖
)
, (3.7)

M3 = sup
t∈[0,T ]

(‖A(x, t)‖+ ‖B(x, t)‖+ ‖C(x, t)‖), (3.8)

M4 = max
y∈S
‖y‖. (3.9)

Let L be the Lipschitz constant for f on S × [0, T ] and denote

h0 = min

(
1

β
,
δ

M1
,

ε

M2M3M4L

)
.

Assume that h ∈ (0, h0]. We now show that if t ∈ {0, h, 2h, . . . , (n−1)h} and u(x, t) ∈ S for all x ∈ Z,
then u(x, t + h) ∈ S for all x ∈ Z. Fix an arbitrary i ∈ {1, . . . , k}; we will prove that u(x, t + h) ∈ Si,
i.e., that Gi(u(x, t+ h)) ≤ 0. Denote

ũ = hA(x, t)u(x+ 1, t) + (I + hB(x, t))u(x, t) + hC(x, t)u(x− 1, t)

and observe that
u(x, t+ h) = ũ+ hf(u(x, t), t), x ∈ Z.

By Lemma 3.4, we have ũ ∈ S. We now distinguish two cases: either d(ũ, ∂S) ≥ δ, or d(ũ, ∂S) < δ.
If d(ũ, ∂S) ≥ δ, the fact that u(x, t+h) ∈ S follows immediately from the estimate ‖u(x, t+h)− ũ‖ =

h‖f(u(x, t), t)‖ ≤ hM1 ≤ h0M1 ≤ δ.
It remains to consider the case when d(ũ, ∂S) < δ. Let ` be the line segment connecting the points ũ

and ũ+hf(u(x, t), t). Since ‖u(x, t+h)− ũ‖ ≤ δ and ũ ∈ S, the distance between an arbitrary point of `
and the set S does not exceed δ, and therefore ` ⊂ Sδ ⊂ Ui. Using the mean-value theorem, we obtain

Gi(u(x, t+ h)) = Gi(ũ+ hf(u(x, t), t)) = Gi(ũ) +Gi(ũ+ hf(u(x, t), t))−Gi(ũ)

= Gi(ũ) + h∇Gi(w) · f(u(x, t), t),

where w ∈ `. Note that Gi(ũ) ≤ 0 (because ũ ∈ S) and ∇Gi(w) · f(ũ, t) < −ε (this follows from
Lemma 3.7, because ‖w − ũ‖ ≤ δ). Consequently,

Gi(u(x, t+ h)) ≤ h∇Gi(w) · f(u(x, t), t)

= h∇Gi(w) · f(ũ, t) + h∇Gi(w) · (f(u(x, t), t)− f(ũ, t))

< −hε+ h‖∇Gi(w)‖L‖u(x, t)− ũ‖
≤ −hε+ h2M2L‖A(x, t)u(x+ 1, t) +B(x, t)u(x, t) + C(x, t)u(x− 1, t)‖
≤ −hε+ h2M2LM4(‖A(x, t)‖+ ‖B(x, t)‖+ ‖C(x, t)‖)
≤ −hε+ h2M2LM4M3 = −h(ε− hLM2M3M4).

By the definition of h0, the last term is nonpositive, and therefore Gi(u(x, t+ h)) < 0.
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Remark 3.9. Note that the previous theorem no longer holds if (C ′1) is replaced by the weaker ver-
sion (C1). Indeed, suppose that at a certain point y ∈ ∂Si ∩ S, the vector field f is nonzero and tangent
to the boundary of Si. Furthermore, assume that y is the only point of S on the half-line determined by
y and the vector f (i.e., the normal section of ∂Si at y in the direction of f is “curved”). If we start with
the initial condition u(x, 0) = y for all x ∈ Z, then the solution of Eq. (3.5) will immediately leave the
set S no matter how small step size h we choose.

We now use our previous result concerning the Euler approximations to show that S is an invariant
region for the lattice differential equation (3.3).

Theorem 3.10. Assume that conditions (S), (A1), (A2), (D1), (D2), (C ′1), (C2), (C3) are satisfied. If
u : Z × [0, T ] → Rm is a bounded solution of Eq. (3.3) with u0 ∈ `∞(Z)m and u0

x ∈ S for each x ∈ Z,
then u(x, t) ∈ S for all t ∈ [0, T ], x ∈ Z.

Proof. According to Theorems 2.1 and 2.3, the solution u necessarily has the form u(x, t) = U(t)x, where
U : [0, T ]→ `∞(Z)m is the unique solution of the abstract differential equation

U ′(t) = Φ(U(t), t), U(0) = u0

with Φ : `∞(Z)m × [0, T ]→ `∞(Z)m being given by

Φ({ux}x∈Z, t) = {A(x, t)ux+1 +B(x, t)ux + C(x, t)ux−1 + f(ux, t)}x∈Z. (3.10)

For each n ∈ N, let Tn = {0, h, 2h, . . . , (n− 1)h, h}, where h = 1/n. Also, let Un : Tn → `∞(Z)m be
the solution of the abstract difference equation

Un(t+ h)− Un(t)

h
= Φ(Un(t), t), x ∈ Z, t ∈ {0, h, 2h, . . . , (n− 1)h}, Un(0) = u0.

Obviously, if we denote un(x, t) = (Un(t))x, then un is the solution of the partial difference equation

un(x, t+ h)− un(x, t)

h
= A(x, t)un(x+ 1, t) +B(x, t)un(x, t) + C(x, t)un(x− 1, t) + f(un(x, t), t)

satisfying un(x, 0) = u0
x for all x ∈ Z.

By Theorem 3.8, there exists an n0 ∈ N such that un(x, t) ∈ S for all n ≥ n0, x ∈ Z, t ∈ Tn. Thus,
if we denote B = {u ∈ `∞(Z)m;ux ∈ S for all x ∈ Z}, then Un(t) ∈ B for all n ≥ n0, t ∈ Tn. It follows
that the piecewise constant extension U∗n described in Theorem 2.4 also takes values in B. According to
this theorem, the sequence {U∗n}∞n=1 is uniformly convergent to U on [0, T ]. Since B is closed (because
S is closed), it follows that U takes values in B, i.e., u(x, t) ∈ S for all t ∈ [0, T ], x ∈ Z.

Our final goal is to prove that the previous theorem remains valid if (C ′1) is replaced by the weaker
condition (C1). The idea is to find a perturbation of the reaction function f such that the new reaction
function will satisfy the stronger condition (C ′1). This idea was used by Chueh et al. [9] in the context of
parabolic equations. Unfortunately, the authors did not provide any details on the construction of such
a perturbation. This purpose of the next lemma is to fill this gap.

Lemma 3.11. If condition (S) holds, there exists a function N : Rm → Rm that is Lipschitz-continuous
on each bounded subset of Rm, ‖N(u)‖ ≤ 1 for all u ∈ Rm, and ∇Gi(u) ·N(u) < 0 for each i ∈ {1, . . . , k}
and u ∈ ∂Si ∩ S.

Proof. Choose an arbitrary s0 in the interior of S and let

N(u) = δ(u)
s0 − u

diam S + 1
, u ∈ Rm,
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where diam S denotes the diameter of S and δ : Rm → R is given by

δ(u) = (1− d(u, S))+.

It is well known that the distance from a point to a nonempty set is Lipschitz-continuous. Hence, δ is
Lipschitz-continuous (because it is a composition of Lipschitz-continuous functions) and takes values in
[0, 1]. On each bounded subset of Rm, N is the product of two bounded Lipschitz-continuous functions,
and therefore Lipschitz-continuous.

If d(u, S) > 1, we have N(u) = 0. Otherwise, let p(u) be the closest point to u in S. Then
‖p(u)− u‖ ≤ 1, ‖p(u)− s0‖ ≤ diam S, and therefore

‖N(u)‖ ≤ ‖s0 − u‖
diam S + 1

≤ ‖s0 − p(u)‖+ ‖p(u)− u‖
diam S + 1

≤ 1.

Finally, if u ∈ ∂Si ∩ S, then ∇Gi(u) is the outward normal of Si at u. Since the vector s0 − u points
from u to the interior of Si, we have ∇Gi(u) · (s0 − u) < 0, and consequently ∇Gi(u) ·N(u) < 0.

Theorem 3.12. Assume that conditions (S), (A1), (A2), (D1), (D2), (C1)–(C3) are satisfied. If u :
Z × [0, T ] → Rm is a bounded solution of Eq. (3.3) with u0 ∈ `∞(Z)m and u0

x ∈ S for each x ∈ Z, then
u(x, t) ∈ S for all t ∈ [0, T ], x ∈ Z.

Proof. According to Theorems 2.1 and 2.3, the solution u necessarily has the form u(x, t) = U(t)x, where
U : [0, T ]→ `∞(Z)m is a solution of the abstract differential equation

U ′(t) = Φ(U(t), t), U(0) = u0,

with Φ : `∞(Z)m × [0, T ] → `∞(Z)m being given by (3.10). Since u is bounded, there exists a bounded
set C ⊂ `∞(Z)m that contains the solution U together with its 1-neighborhood. As in the proof of
Theorem 2.1, one can show that the restriction of the function Φ to C × [0, T ] is continuous, bounded,
and Lipschitz-continuous in the first variable.

Consider the operator Φε : `∞(Z)m × [0, T ]→ `∞(Z)m given by

Φε({ux}x∈Z, t) = Φ({ux}x∈Z, t) + ε{N(ux)}x∈Z,

where N is the function from Lemma 3.11. It follows from the properties of Φ and N that for each
ε ∈ [0, 1], the restrictions of the functions Φε to C × [0, T ] are continuous, bounded by a constant
independent of ε, and Lipschitz-continuous in the first variable with a Lipschitz constant independent
of ε. Note also that limε→0+ Φε({ux}x∈Z, t) = Φ({ux}x∈Z, t). According to Theorem 2.5, there exists an
n0 ∈ N and a sequence of functions Un : [0, T ]→ C, n ≥ n0, such that

U ′n(t) = Φ1/n(Un(t), t), t ∈ [0, T ], Un(0) = u0.

Moreover, {Un}∞n=n0
is uniformly convergent to U on [0, T ]. If we denote un(x, t) = (Un(t))x, then

un : Z× [0, T ]→ Rm is a bounded solution of the equation

∂un
∂t

(x, t) = A(x, t)un(x+ 1, t) +B(x, t)un(x, t) +C(x, t)un(x− 1, t) + fn(un(x, t), t), x ∈ Z, t ∈ [0, T ],

where

fn(u, t) = f(u, t) +
1

n
N(u), u ∈ Rm, t ∈ [0, T ].

For each i ∈ {1, . . . , k} and u ∈ ∂Si ∩ S, it follows from condition (C1) and the properties of N that

∇Gi(u) · fn(u, t) = ∇Gi(u) · f(u, t) +
1

n
∇Gi(u) ·N(u) < 0, t ∈ [0, T ].
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Thus, fn satisfies condition (C ′1). Since f fulfills the conditions (D1) and (D2), it is clear that fn has the
same properties.

According to Theorem 3.10, we have un(x, t) ∈ S for all x ∈ Z, t ∈ [0, T ]. Thus, if we denote
B = {u ∈ `∞(Z)m;ux ∈ S for all x ∈ Z}, then Un(t) ∈ B for all n ≥ n0, t ∈ [0, T ]. Since B is closed
(because S is closed), it follows that U takes values in B, i.e., u(x, t) ∈ S for all t ∈ [0, T ], x ∈ Z.

Remark 3.13. Let us mention two special cases of Theorem 3.12, which generalize earlier results:

• If f ≡ 0, Eq. (3.3) becomes a linear system of lattice diffusion-type equations. If A, B, C satisfy
conditions (A1), (A2), (C2), (C3), Theorem 3.12 implies that each bounded solution of Eq. (3.3) with
initial values in the compact convex set S remains in this set for all t > 0. This result generalizes
[29, Theorem 4.7] in the case when T = R.

• If m = 1, Eq. (3.3) becomes a scalar reaction-diffusion equation. Assume that S = [α, β], i.e.,

S1 = {u ∈ R; G1(u) = α− u ≤ 0},
S2 = {u ∈ R; G2(u) = u− β ≤ 0}

(cf. Remark 3.1). Then ∇S1(u) = −1 and ∇S2(u) = 1 for all u ∈ R. Since ∂S1 ∩ S = {α} and
∂S2 ∩S = {β}, condition (C1) is satisfied if f(α, t) ≤ 0 and f(β, t) ≥ 0 for all t ∈ [0, T ]. Obviously,
condition (C2) is satisfied if A, C are nonnegative and B is nonpositive. Provided that the remaining
conditions (C3), (A1), (A2), (D1) and (D2) are satisfied, we get the invariance of the interval [α, β];
this result extends [30, Theorem 4.4] in the case when T = R (in [30], it was assumed that A, B, C
are constant).

A simple corollary of our invariance result is the following global existence theorem; its proof is
essentially the same as in [30, Theorem 4.6], but we include it for completeness.

Theorem 3.14. Assume that conditions (S), (A1), (A2), (D1), (D2), (C1)–(C3) are satisfied. If u0 ∈
`∞(Z)m is such that ux ∈ S for all x ∈ Z, then the initial-value problem (3.3) has a unique bounded
solution u : Z× [0, T ]→ Rm.

Proof. The uniqueness is an immediate consequence of Theorem 2.3. According to Theorem 2.1, it is
enough to prove that the initial-value problem

U ′(t) = Φ(U(t), t), U(0) = u0, (3.11)

where Φ : `∞(Z)m × [0, T ]→ `∞(Z)m is given by Eq. (3.10), has a solution on the whole interval [0, T ].
Let T be the set of all τ ∈ [0, T ] such that Eq. (3.11) has a solution on [0, τ ], and denote t1 = sup T .

We know from Theorem 2.1 that t1 > 0; let us prove that t1 ∈ T . It follows from the definition of t1 that
Eq. (3.11) has a solution U defined on [0, t1). According to Theorem 3.12, U takes values in the bounded
set S = {u ∈ `∞(Z)m; ux ∈ S for all x ∈ Z}. As in the proof of Theorem 2.1, one can show that Φ is
continuous on its domain and bounded on S × [0, T ] by a constant M . Since U is a solution of (3.11),
we have

U(t) = U(0) +

∫ t

0

Φ(U(s), s) ds (3.12)

for each t ∈ [0, t1). Hence, ‖U(s1) − U(s2)‖ ≤ M |s1 − s2| for all s1, s2 ∈ [0, t1), which means that
the Cauchy condition for the existence of the limit U(t1−) = lims→t1− U(s) is satisfied. If we extend
U to [0, t1] by letting U(t1) = U(t1−), we see that (3.12) holds also for t = t1. Since the mapping
s 7→ Φ(U(s), s) is continuous on [0, t1], it follows that U is a solution of Eq. (3.11) on [0, t1], i.e., t1 ∈ T .

If t1 < T , Theorem 2.1 implies that U can be extended from [0, t1] to a larger interval, which
contradicts the definition of t1. Thus, we necessarily have t1 = T .
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4 Examples

Let us illustrate the previous results on three examples. Following the discussion in Remark 3.3, we
consider three typical cases: 1) A, B, C are scalar multiples of the identity matrix. 2) A, B, C are
diagonal matrices. 3) A, B, C are nondiagonal matrices.

Throughout this section, we use the symbol u∆∇ to denote the second-order central difference of u
with respect to x, i.e., u∆∇(x, t) = u(x+ 1, t)− 2u(x, t) + u(x− 1, t); cf. Section 1.

Example 4.1. Consider the pair of weakly coupled lattice reaction-diffusion equations

∂u1

∂t
(x, t) = ku∆∇

1 (x, t) + au1(x, t)− bu1(x, t)u2(x, t),

∂u2

∂t
(x, t) = ku∆∇

2 (x, t)− cu2(x, t) + du1(x, t)u2(x, t),

where k ≥ 0 is the diffusion coefficient and a, b, c, d > 0 are parameters. This system can be interpreted
as a predator-prey model of Lotka-Volterra type with diffusion; u1(x, t) is the number of prey and u2(x, t)
the number of predators at point x ∈ Z and time t ∈ [0, T ].

The given system is a special case of Eq. (3.3) with m = 2,

A(x, t) = k

(
1 0
0 1

)
, B(x, t) = −2k

(
1 0
0 1

)
, C(x, t) = k

(
1 0
0 1

)
,

f1(u, t) = au1 − bu1u2, f2(u, t) = −cu2 + du1u2.

It is obvious that conditions (A1), (A2), (D1), (D2) are satisfied. Let U = (0,∞)×(0,∞). In the classical
Lotka-Volterra model, it is well known that the quantity

du1 − c lnu1 + bu2 − a lnu2

remains constant along each solution u = (u1, u2) contained in U (see, e.g., [20, Section 11.2]). More
precisely, each solution with positive initial values is a closed orbit in U given by the equation

du1 − c lnu1 + bu2 − a lnu2 = K (4.1)

for a certain K ∈ R. Let S be the planar region enclosed by the curve (4.1), i.e., S = {u ∈ U ; G(u) ≤ 0},
where G(u) = du1 − c lnu1 + bu2 − a lnu2 −K.

Our previous considerations imply that ∇G(u) ·f(u, t) = 0 for each u ∈ ∂S, and this fact is confirmed
by simple calculation:

∇G(u) · f(u, t) =

(
d− c/u1

b− a/u2

)
·
(
au1 − bu1u2

−cu2 + du1u2

)
= 0

Thus, condition (C1) is satisfied. Condition (C2) also holds because A, B, C are scalar multiples of the
identity matrix (cf. Remark 3.3):

∇G(u)>A(x, t) = k∇G(u)>,

∇G(u)>B(x, t) = −2k∇G(u)>,

∇G(u)> C(x, t) = k∇G(u)>.

Obviously, condition (C3) holds as well. Note that G is a convex function of two variables on U , because
its Hessian matrix (

c/u2
1 0

0 a/u2
2

)
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is positive definite (cf. [26, Theorem 1.5.13]). Consequently, the set S ⊂ U is convex, because it is
a sublevel set of the convex function G. Hence, condition (S) holds and Theorem 3.12 implies that S is
an invariant region for the given system of equations.

Example 4.2. Consider the pair of weakly coupled lattice reaction-diffusion equations

∂u1

∂t
(x, t) = d1u

∆∇
1 (x, t) + u1(x, t)

(
a1 − b1u1(x, t)− c1u2(x, t)

)
,

∂u2

∂t
(x, t) = d2u

∆∇
2 (x, t) + u2(x, t)

(
a2 − b2u2(x, t)− c2u1(x, t)

)
,

 (4.2)

where d1, d2 ≥ 0 are diffusion coefficients and a1, a2, b1, b2 > 0, c1, c2 ≥ 0 are parameters. This system
can be interpreted as a model of Lotka-Volterra type with two competing populations; for each i ∈ {1, 2},
ui(x, t) is the number of individuals from the i-th population at point x ∈ Z and time t ∈ [0, T ]. In the
absence of one population, the other population obeys the logistic law. This competition model has been
studied in numerous papers, see [16, 17, 18] and the references there.

The given system of equations is a special case of (3.3) with m = 2,

A(x, t) =

(
d1 0
0 d2

)
, B(x, t) = −2

(
d1 0
0 d2

)
, C(x, t) =

(
d1 0
0 d2

)
,

f1(u, t) = u1(a1 − b1u1 − c1u2), f2(u, t) = u2(a2 − b2u2 − c2u1).

It is obvious that conditions (A1), (A2), (D1), (D2) are satisfied.
Let us try to find rectangles of the form S = [α, β]× [γ, δ], 0 ≤ α < β, 0 ≤ γ < δ, that are invariant

regions for the given system. Such a rectangle S is the intersection of the four closed half-planes

S1 = {u ∈ R2;G1(u) = α− u1 ≤ 0},
S2 = {u ∈ R2;G2(u) = γ − u2 ≤ 0},
S3 = {u ∈ R2;G3(u) = u1 − β ≤ 0},
S4 = {u ∈ R2;G4(u) = u2 − δ ≤ 0}.

We have U1 = U2 = U3 = U4 = R2 and for each u ∈ R2, we get

∇G1(u) =

(
−1
0

)
, ∇G2(u) =

(
0
−1

)
, ∇G3(u) =

(
1
0

)
, ∇G4(u) =

(
0
1

)
,

which means that condition (S) is satisfied. Condition (C2) holds because A, B, C are diagonal and the
vectors ∇Gi(u) are multiples of the vectors from the canonical basis in R2 (cf. Remark 3.3):

∇Gi(u)>A(x, t) = d1∇Gi(u)> for i ∈ {1, 3},
∇Gi(u)>A(x, t) = d2∇Gi(u)> for i ∈ {2, 4},
∇Gi(u)>B(x, t) = −2d1∇Gi(u)> for i ∈ {1, 3},
∇Gi(u)>B(x, t) = −2d2∇Gi(u)> for i ∈ {2, 4},
∇Gi(u)> C(x, t) = d1∇Gi(u)> for i ∈ {1, 3},
∇Gi(u)> C(x, t) = d2∇Gi(u)> for i ∈ {2, 4}.

Obviously, condition (C3) holds as well, and it remains to check condition (C1). For each i ∈ {1, 2, 3, 4}
and u ∈ ∂Si ∩ S, we find necessary and sufficient conditions guaranteeing that ∇Gi(u) · f(u, t) ≤ 0:

16



• If i = 1 and u ∈ ∂S1 ∩ S, then u1 = α and u2 ∈ [γ, δ]. Therefore, we need

∇G1(u) · f(u, t) = −f1(u, t) = −α(a1 − b1α− c1u2) ≤ 0 for all u2 ∈ [γ, δ].

Since α ≥ 0, this is equivalent to

α = 0 or a1 − b1α− c1δ ≥ 0. (4.3)

• If i = 2 and u ∈ ∂S2 ∩ S, then u2 = γ and u1 ∈ [α, β]. Therefore, we need

∇G2(u) · f(u, t) = −f2(u, t) = −γ(a2 − b2γ − c2u1) ≤ 0 for all u1 ∈ [α, β].

Since γ ≥ 0, this is equivalent to

γ = 0 or a2 − b2γ − c2β ≥ 0. (4.4)

• If i = 3 and u ∈ ∂S3 ∩ S, then u1 = β and u2 ∈ [γ, δ]. Therefore, we need

∇G3(u) · f(u, t) = f1(u, t) = β(a1 − b1β − c1u2) ≤ 0 for all u2 ∈ [γ, δ].

Since β > 0, this is equivalent to
a1 − b1β − c1γ ≤ 0. (4.5)

• If i = 4 and u ∈ ∂S4 ∩ S, then u2 = δ and u1 ∈ [α, β]. Therefore, we need

∇G4(u) · f(u, t) = f2(u, t) = δ(a2 − b2δ − c2u1) ≤ 0 for all u1 ∈ [α, β].

Since δ > 0, this is equivalent to
a2 − b2δ − c2α ≤ 0. (4.6)

Theorem 3.12 implies that if conditions (4.3)–(4.6) are satisfied, then the rectangle S = [α, β] × [γ, δ] is
an invariant region for our system of equations.

For example, if we let α = γ = 0, then (4.3) and (4.4) are satisfied, while (4.5) and (4.6) require
that β ≥ a1/b1 and δ ≥ a2/b2, respectively. Note that (0, 0), (a1/b1, 0) and (0, a2/b2) are equilibrium
points of the vector field f . We also remark that Theorem 3.14 guarantees the existence of a unique
bounded global solution on [0, T ] for all initial conditions u0 ∈ `∞(Z)2 with nonnegative components
(take S = [0, β]× [0, δ] with β ≥ a1/b1 and δ ≥ a2/b2 chosen in such a way that u0

x ∈ S for all x ∈ Z).
Several authors (e.g., [16, 17, 18]) have considered the special case of the system (4.2) with a1 = a2 =

b1 = b2 = 1, c1 = k, c2 = h, i.e., the system

∂u1

∂t
(x, t) = d1u

∆∇
1 (x, t) + u1(x, t)

(
1− u1(x, t)− ku2(x, t)

)
,

∂u2

∂t
(x, t) = d2u

∆∇
2 (x, t) + u2(x, t)

(
1− u2(x, t)− hu1(x, t)

)
.

 (4.7)

The case when h, k > 1 is referred to as the bistable case, since both equilibria (1, 0) and (0, 1) are stable.
Moreover, there is another equilibrium point at(

1− k
1− hk

,
1− h
1− hk

)
.

As a consequence of our previous calculation, we can show the existence of two invariant rectangles
adjacent to the two stable equilibria (for a different approach, see the proof of Theorem 1 in [16]).
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1. To find an invariant rectangle adjacent to (0, 1), we let S = [α, β] × [γ, δ] with α = 0, 0 < γ ≤ 1,
δ ≥ 1. Then (4.3) and (4.6) are satisfied, while (4.4) and (4.5) reduce to

1− γ − hβ ≥ 0 and 1− β − kγ ≤ 0.

Solving for β, we get

1− kγ ≤ β ≤ 1− γ
h

.

This pair of inequalities can be satisfied if and only if 1 − kγ ≤ 1−γ
h , which is easily shown to be

equivalent to

γ ≤ 1− h
1− hk

.

2. To find an invariant rectangle adjacent to (1, 0), we let S = [α, β] × [γ, δ] with γ = 0, 0 < α ≤ 1,
β ≥ 1. Then (4.4) and (4.5) are satisfied, while (4.3) and (4.6) reduce to

1− α− kδ ≥ 0 and 1− δ − hα ≤ 0.

Solving for δ, we get

1− hα ≤ δ ≤ 1− α
k

.

This pair of inequalities can be satisfied if and only if 1 − hα ≤ 1−α
k , which is easily shown to be

equivalent to

α ≤ 1− k
1− hk

.

Example 4.3. Suppose that a, b > 0 and consider the linear system of lattice diffusion equations

∂u1

∂t
(x, t) = au∆∇

1 (x, t) + bu∆∇
2 (x, t),

∂u2

∂t
(x, t) = bu∆∇

1 (x, t) + au∆∇
2 (x, t),

 (4.8)

or, equivalently,

∂u

∂t
(x, t) = Du∆∇(x, t), where D =

(
a b
b a

)
and u(x, t) =

(
u1(x, t)
u2(x, t)

)
.

In contrast to the previous examples, the diffusion matrix D is no longer diagonal. The cross-diffusion
terms (together with suitable reaction terms) are used in various population or epidemic models (see,
e.g., [3, 32] in the context of parabolic equations). For example, u1 and u2 might describe two different
types of individuals with the same diffusion rate a. Moreover, we assume that the individuals of each
type try to keep away from places with high concentration of individuals of the other type; this behavior
is sometimes modeled by the cross-diffusion terms with diffusion rates b.

Unfortunately, simple models of this kind have the unpleasant property that nonnegative initial con-
ditions need not lead to nonnegative solutions. For example, consider the initial condition

u1(x, 0) =

{
1 for x = 0,

0 for x 6= 0,
u2(x, 0) = 0 for all x ∈ Z.

Using Eq. (4.8), we get ∂u2

∂t (0, 0) = −2b < 0, which means that t 7→ u2(0, t) is negative for small positive
values of t. A similar argument shows that no rectangle of the form S = [α, β]× [γ, δ] can be an invariant
region for Eq. (4.8). To see this, take the initial condition

u1(x, 0) =

{
α+β

2 for x = 0,

α for x 6= 0,
u2(x, 0) = γ for all x ∈ Z,
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and observe that ∂u2

∂t (0, 0) = b(α− β) < 0.
Nevertheless, if a ≥ b, then Eq. (4.8) has invariant regions of a different type, namely all rectangles

whose sides make a 45◦ angle with the coordinate axes. This follows from Theorem 3.12, because we have

A(x, t) = D, B(x, t) = −2D, C(x, t) = D, f1(u, t) = f2(u, t) = 0.

The eigenvalues of D are a+ b and a− b, and the corresponding left eigenvectors are (1, 1) and (−1, 1).
Hence, if S is a rectangle of the above-mentioned type, then condition (C2) holds; the remaining assump-
tions of Theorem 3.12 are trivially satisfied.

Remark 4.4. Sometimes it is necessary to deal with lattice systems of the form (3.3) where the reaction
function f is not defined on the whole set Rm×[0, T ]. For example, the authors of [5] study a predator-prey
model consisting of two weakly coupled lattice reaction-diffusion equations

∂u1

∂t
(x, t) = u∆∇

1 (x, t) + ru1(x, t)
(
1− u1(x, t)− ku2(x, t)

)
,

∂u2

∂t
(x, t) = du∆∇

2 (x, t) + su2(x, t)

(
1− u2(x, t)

u1(x, t)

)
,

where d, r, s, k > 0 are parameters. Here, the reaction function is undefined on the line u1 = 0.
In general, suppose that f is defined on a set Y × [0, T ], where Y ⊂ Rm. Assume that f is Lipschitz-

continuous in the first variable on each set B× [0, T ], where B ⊂ Y is bounded, and that f is continuous
in the second variable.

If S ⊂ Y is a compact convex set, the question whether S is an invariant region for bounded solutions
of Eq. (3.3) still makes sense. To be able to apply the results from Section 3, we can extend f to Rm×[0, T ]
by letting

f(u, t) = f(p(u), t), u ∈ Rm, t ∈ [0, T ],

where p(u) is the projection of u to S, i.e., the unique point of S that minimizes the distance to u.
We claim that this extension of f satisfies conditions (D1), (D2). Continuity in the second variable is
obvious. To verify that (D1) holds, let L be the Lipschitz constant for f on S × [0, T ]. Then for each
pair u, v ∈ Rm, we have

‖f(u, t)− f(v, t)‖ = ‖f(p(u), t)− f(p(v), t)‖ ≤ L‖p(u)− p(v)‖ ≤ L‖u− v‖,

where the last inequality follows from the well-known fact that projection onto closed convex sets is
a nonexpansive mapping. This shows that (D1) is fulfilled and therefore the results from Section 3 are
applicable. In particular, Theorems 3.12 and 3.14 still hold: Although their proofs require that f is
defined on Rm × [0, T ], the values of f outside S are unimportant thanks to the invariance of S.
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