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1 Introduction

The concept of a generalized ordinary differential equation was originally introduced by J. Kurzweil in [20]
as a tool in the study of continuous dependence of solutions to ordinary differential equations of the usual
form x′(t) = f(x(t), t). He observed that instead of dealing directly with the right-hand side f , it might be

advantageous to work with the function F (x, t) =
∫ t
t0
f(x, s) ds, i.e., the primitive to f . In this connection,

he also introduced an integral whose special case is the Kurzweil-Henstock integral. Gauge-type integrals
are well known to specialists in integration theory, but they are also becoming more popular in the field
of differential equations (see e.g. [5]).

Over the years, it became clear that the theory of generalized differential equations is not only useful in
the study of classical nonautonomous differential equations (see e.g. [2]), but also represents a suitable tool
for the investigation of equations with discontinuous solutions. (For other approaches to equations with
discontinuous solutions or right-hand sides, such as measure differential equations, equations in Filippov’s
or Krasovskii’s sense, distributional differential equations, or impulsive differential equations, see e.g. [6, 7,
14, 18, 19, 25, 22, 31].) In particular, generalized differential equations encompass other types of equations,
such as equations with impulses, dynamic equations on time scales, functional differential equations with
impulses, or measure functional differential equations (see e.g. [10, 11, 13, 27, 32, 37] and the references
there). To deal with functional differential equations, it is necessary to consider generalized equations
whose solutions take values in infinite-dimensional Banach spaces; this fact provides a motivation to the
study of abstract generalized differential equations.

Unfortunately, the existing theory for abstract generalized equations is not as powerful as in the finite-
dimensional case. The only exception is the class of linear equations, where the results are quite satisfactory
(see [17, 27, 28]). Our goal is to rectify this situation and obtain new results concerning well-posedness of
solutions to abstract nonlinear generalized differential equations under reasonably weak assumptions on
the right-hand sides.
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In the theory of classical ordinary differential equations, it is well known that Picard’s theorem on the
local existence and uniqueness of solutions of the problem

x′(t) = f(x(t), t), t ∈ [a, b], x(a) = x0, (1.1)

can be improved in the following way: Instead of working with a locally Lipschitz continuous right-hand
side, it is enough to assume that f is a continuous function satisfying

‖f(x, t)− f(y, t)‖ ≤ ω(‖x− y‖),

where ω : [0,∞)→ [0,∞) is a continuous increasing function such that ω(0) = 0 and

lim
v→0+

∫ u

v

dr

ω(r)
=∞ (1.2)

for every u > 0. This existence-uniqueness result is known as Osgood’s theorem (in [29], W. F. Osgood
identified (1.2) to be a sufficient condition for uniqueness). The situation in finite-dimensional spaces is
rather simple, since the existence of a local solution follows from Peano’s theorem, and condition (1.2)
together with Bihari’s inequality guarantee uniqueness.

Remarkably, Peano’s theorem is no longer valid in infinite-dimensional Banach spaces, but Osgood’s
theorem remains true (see e.g. [8, Theorem 3.2] and [35]). In this case, condition (1.2) is necessary to
prove both existence and uniqueness. The proof uses the fact that a continuous right-hand side can be
uniformly approximated by locally Lipschitz continuous right-hand sides; the corresponding initial-value
problems have unique solutions, which are uniformly convergent to a solution of the original equation.

Things become more complicated when we switch to abstract generalized differential equations, whose
right-hand sides are usually assumed to be continuous in x, but may be discontinuous in t. A local
existence-uniqueness theorem, whose proof is based on the contraction mapping theorem, can be found
in [13]; this is the analogue of Picard’s theorem for generalized equations. In Section 3, we prove a more
general Osgood-type existence and uniqueness theorem; again, the idea is to approximate the right-hand
side by functions such that the theorem from [13] is applicable.

In Section 4, we discuss continuous dependence of solutions to generalized differential equations with
respect to initial values and parameters. We obtain two new theorems, which generalize several results
available in the literature. We also provide an example showing why we cannot expect the infinite-
dimensional theorems to hold under exactly the same assumptions as in the finite-dimensional case.

In Section 5, we use the previous theory to study the well-posedness for nonlinear measure functional
differential equations of the form

y(t) = y(t0) +

∫ t

t0

f(ys, s) dg(s).

These equations were introduced only relatively recently in [10], and were subsequently studied in [3, 11,
12, 26, 27, 37]. Fairly general results concerning the well-posedness for linear equations with finite delay
have been obtained in [27], while the nonlinear case with finite delay was considered in [10]. Here we show
that the theory from Sections 3 and 4 leads to new well-posedness theorems for nonlinear equations with
infinite delay, which significantly improve the results from [10].

Functional differential equations with impulses, which represent an important special case of measure
functional differential equations, are briefly discussed in Section 6.

2 Preliminaries

The theory of generalized ordinary differential equations is based on the concept of Kurzweil integral. We
recall the definition here, and refer the reader to [21, 24, 32, 34] for more information about the properties
of this integral and its special cases, the Kurzweil-Stieltjes and Kurzweil-Henstock integral.

Given a function δ : [a, b]→ R+, a tagged partition of the interval [a, b] with division points a = s0 ≤
s1 ≤ · · · ≤ sk = b and tags τi ∈ [si−1, si], i ∈ {1, . . . , k}, is called δ-fine if

[si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)), i ∈ {1, . . . , k}.
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Let X be a Banach space. A function U : [a, b]× [a, b]→ X is called Kurzweil integrable on [a, b], if there
is an element I ∈ X such that for every ε > 0, there is a function δ : [a, b]→ R+ such that∥∥∥∥∥

k∑
i=1

(U(τi, si)− U(τi, si−1))− I

∥∥∥∥∥ < ε

for every δ-fine tagged partition of [a, b]. In this case, we define
∫ b
a
DU(τ, t) = I.

An important special case is the Kurzweil-Stieltjes integral (also known as the Perron-Stieltjes integral)
of a function f : [a, b] → X with respect to a function g : [a, b] → R, which corresponds to the choice

U(τ, t) = f(τ)g(t). This integral will be denoted by
∫ b
a
f(t) dg(t). There is a useful simple criterion for the

existence of the Kurzweil-Stieltjes integral: If f : [a, b] → X is regulated and g : [a, b] → R has bounded

variation, then
∫ b
a
f(t) dg(t) exists (see [33, Proposition 15]). We will often use this criterion in situations

where g is a nondecreasing function.
We can now proceed to the definition of a generalized ordinary differential equation. Consider a set

B ⊂ X, an interval I ⊂ R, and a function F : B × I → X. A generalized ordinary differential equation
with the right-hand side F has the form

dx

dτ
= DF (x, t), t ∈ I, (2.1)

which is a shorthand notation for the integral equation

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t), [s1, s2] ⊂ I. (2.2)

In other words, a function x : I → B is a solution of (2.1) if and only if (2.2) is satisfied. The reader should
keep in mind that (2.1) is a symbolic notation only and does not necessarily mean that x is differentiable.

The next definition introduces classes of functions which occur frequently in the theory of generalized
differential equations.

Definition 2.1. Assume that B ⊂ X, G = B × I, h1 : I → R, h2 : I → R are nondecreasing functions,
and ω : [0,∞) → R is a continuous increasing function with ω(0) = 0. The class F(G, h1, h2, ω) consists
of all functions F : G→ X satisfying the following conditions:

‖F (x, t2)− F (x, t1)‖ ≤ h1(t2)− h1(t1), x ∈ B, [t1, t2] ⊂ I,

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖ ≤ ω(‖x− y‖)(h2(t2)− h2(t1)), x, y ∈ B, [t1, t2] ⊂ I.

For the rest of the paper, let us make the following agreement: Whenever we write F ∈ F(G, h1, h2, ω),
we assume that h1, h2, ω satisfy the assumptions listed in Definition 2.1, without mentioning all of them
explicitly.

In the special case when h1 and h2 are equal to the same function h, we write F(G, h, ω) instead of
F(G, h1, h2, ω). Many authors focus solely on this special case. Indeed, in many situations, the important
thing is the existence of a pair of functions such that F ∈ F(G, h1, h2, ω), while the particular values of h1

and h2 play no role. In this case, the assumption h1 = h2 presents no loss of generality, because we always
have

F(G, h1, h2, ω) ⊂ F(G, h1 + h2, h1 + h2, ω) = F(G, h1 + h2, ω).

Still, for our purposes, it is useful to distinguish h1 and h2. In Theorem 3.2, this will enable us to
provide a more reasonable lower bound for the length of the interval where a local solution is guaranteed
to exist.

Under certain assumptions on the right-hand side (see [32, Theorem 5.14]), a classical ordinary differ-
ential equation of the form

x′(t) = f(x(t), t), t ∈ I,
is equivalent to the generalized ordinary differential equation

dx

dτ
= DF (x, t), t ∈ I,
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where

F (x, t) =

∫ t

t0

f(x, s) ds, t ∈ I,

and t0 is an arbitrary point in I. In this situation, the two conditions from Definition 2.1 reduce to∥∥∥∥∫ t2

t1

f(x, s) ds

∥∥∥∥ ≤ h1(t2)− h1(t1), x ∈ B, [t1, t2] ⊂ I, (2.3)

∥∥∥∥∫ t2

t1

(f(x, s)− f(y, s)) ds

∥∥∥∥ ≤ ω(‖x− y‖)(h2(t2)− h2(t1)), x, y ∈ B, [t1, t2] ⊂ I. (2.4)

However, we emphasize that not every generalized differential equation is equivalent to a classical one;
different choices of F might lead to other types of equations (cf. Section 5).

In the rest of this section, we collect some basic facts about regulated functions, Kurzweil integration,
and generalized ordinary differential equations.

The following proposition, which characterizes relatively compact sets in the space of regulated func-
tions, was proved in [16, Theorem 2.18]. For an arbitrary interval I ⊂ R, we use the symbol G(I,X) to
denote the space of all bounded regulated functions f : I → X (if I is a compact interval, then every
regulated function f : I → X is necessarily bounded). The space G(I,X) is equipped with the supremum
norm

‖f‖∞ = sup
t∈I
‖f(t)‖, f ∈ G(I,X).

For an arbitrary set B ⊂ X, let G(I,B) denote the set of all bounded regulated functions f : I → B.

Theorem 2.2. For every set A ⊂ G([a, b],Rn), the following conditions are equivalent:

1. A is relatively compact.

2. The set {x(a); x ∈ A} is bounded, there are an increasing continuous function η : [0,∞) → [0,∞)
with η(0) = 0, and an increasing function K : [a, b]→ R such that

‖x(t2)− x(t1)‖ ≤ η(K(t2)−K(t1))

whenever x ∈ A and [t1, t2] ⊂ [a, b].

We now present two inequalities for the Kurzweil integral. Both follow easily from the definition of the
integral, and are special cases of [32, Corollary 1.36].

Lemma 2.3. Let B ⊂ X, G = B × [a, b]. Assume that F : G→ X satisfies

‖F (x, t2)− F (x, t1)‖ ≤ h1(t2)− h1(t1), x ∈ B, [t1, t2] ⊂ [a, b],

where h1 : [a, b] → R is a nondecreasing function. If x : [a, b] → B and the integral
∫ b
a
DF (x(τ), t) exists,

then ∥∥∥∥∥
∫ b

a

DF (x(τ), t)

∥∥∥∥∥ ≤ h1(b)− h1(a).

Consequently, if x : [a, b]→ X is a solution of a generalized equation dx
dτ = DF (x, t) whose right-hand

side is an element of F(G, h1, h2, ω), we have the estimate

‖x(t2)− x(t1)‖ ≤ h1(t2)− h1(t1), [t1, t2] ∈ [a, b].

Lemma 2.4. Let B ⊂ X, G = B × [a, b]. Assume that F : G→ X belongs to the class F(G, h1, h2, ω). If
x, y : [a, b]→ B are arbitrary functions, then∥∥∥∥∥

∫ b

a

D[F (x(τ), t)− F (y(τ), t)]

∥∥∥∥∥ ≤
∫ b

a

ω(‖x(t)− y(t)‖) dh2(t),

provided that the integrals on both sides exist.
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The next three lemmas provide sufficient conditions for the existence of the Kurzweil integral
∫ b
a
DF (x(τ), t).

The proof of the first statement can be found in the proof of [32, Corollary 3.15].

Lemma 2.5. Let B ⊂ X, G = B × [a, b]. Assume that F : G → X belongs to the class F(G, h, ω). If
x : [a, b]→ B is a step function, i.e., if there exists a partition

a = s0 < s1 < · · · < sm = b

and elements c1, . . . , cm ∈ X such that

x(s) = ci, s ∈ (si−1, si), i ∈ {1, . . . ,m},

then the integral
∫ b
a
DF (x(τ), t) exists and equals

m∑
j=1

(
F (cj , sj−)− F (cj , sj−1+) + F (x(sj−1), sj−1+)− F (x(sj−1), sj−1) + F (x(sj), sj)− F (x(sj), sj−)

)
.

The next lemma generalizes [1, Proposition 2.13], which is a special case of our statement corresponding
to ω(r) = r. (A finite-dimensional version can be found in [32, Corollary 3.15]; unfortunately, the proof
no longer works in infinite dimension.)

Lemma 2.6. Let B ⊂ X, G = B × [a, b]. Assume that F : G → X belongs to the class F(G, h, ω). If
x : [a, b]→ B is the uniform limit of a sequence of step functions xk : [a, b]→ B, k ∈ N, then the integral∫ b
a
DF (x(τ), t) exists and equals limk→∞

∫ b
a
DF (xk(τ), t).

Proof. By Lemma 2.5, the integral
∫ b
a
DF (xk(τ), t) exists for every k ∈ N. Let us prove the existence of

limk→∞
∫ b
a
DF (xk(τ), t). For each pair i, j ∈ N, Lemma 2.4 implies∥∥∥∥∥

∫ b

a

D[F (xi(τ), t)− F (xj(τ), t)]

∥∥∥∥∥ ≤
∫ b

a

ω(‖xi(t)− xj(t)‖) dh(t) ≤ ω (‖xi − xj‖∞) (h(b)− h(a)).

The right-hand side approaches zero as i, j →∞, and therefore the Cauchy condition for the existence of

limk→∞
∫ b
a
DF (xk(τ), t) is satisfied.

Choose an arbitrary ε > 0. There exists a k ∈ N such that∥∥∥∥∥
∫ b

a

DF (xk(τ), t)− lim
l→∞

∫ b

a

DF (xl(τ), t)

∥∥∥∥∥ < ε

3
,

ω (‖x− xk‖∞) (h(b)− h(a)) <
ε

3
.

Also, there exists a gauge δ on [a, b] such that∥∥∥∥∥
m∑
i=1

(F (xk(τi), si)− F (xk(τi), si−1))−
∫ b

a

DF (xk(τ), t)

∥∥∥∥∥ < ε

3

for every δ-fine tagged partition of [a, b] with division points s0, s1, . . . , sm and tags τ1, . . . , τm. For these
partitions, we get ∥∥∥∥∥

m∑
i=1

(F (x(τi), si)− F (x(τi), si−1))− lim
l→∞

∫ b

a

DF (xl(τ), t)

∥∥∥∥∥
≤

∥∥∥∥∥
m∑
i=1

(F (x(τi), si)− F (x(τi), si−1)− F (xk(τi), si) + F (xk(τi), si−1))

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=1

(F (xk(τi), si)− F (xk(τi), si−1))−
∫ b

a

DF (xk(τ), t)

∥∥∥∥∥+

∥∥∥∥∥
∫ b

a

DF (xk(τ), t)− lim
l→∞

∫ b

a

DF (xl(τ), t)

∥∥∥∥∥
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≤
m∑
i=1

ω(‖x(τi)− xk(τi)‖)(h(si)− h(si−1)) +
2ε

3
≤ ω (‖x− xk‖∞) (h(b)− h(a)) +

2ε

3
< ε,

which proves that
∫ b
a
DF (x(τ), t) exists and equals liml→∞

∫ b
a
DF (xl(τ), t).

Since every regulated function is the uniform limit of step functions, we get the following corollary.

Lemma 2.7. Let B ⊂ X, G = B × [a, b]. Assume that F : G→ X belongs to the class F(G, h1, h2, ω). If

x : [a, b]→ B is a regulated function, then the integral
∫ b
a
DF (x(τ), t) exists.

The proof of the next lemma is almost identical to the proof of [28, Proposition 3.8] (which is concerned
with the special case when Fk(t, x) = Ak(t), k ∈ N0), but we include it here for reader’s convenience.

Lemma 2.8. Let B ⊂ X, G = B× [a, b], and consider a sequence of functions Fk : B× [a, b]→ X, k ∈ N0,
such that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0. Then

lim
k→∞

Fk(x, t+) = F0(x, t+), (x, t) ∈ B × [a, b),

lim
k→∞

Fk(x, t−) = F0(x, t−), (x, t) ∈ B × (a, b].

Moreover, for every fixed x ∈ B, the sequence of functions t 7→ Fk(x, t), k ∈ N, is uniformly convergent to
the function t 7→ F0(x, t) on [a, b].

Proof. For every x ∈ B and t ∈ [a, b), we have Fk(x, t+)→ F0(x, t+) for k →∞, because

‖Fk(x, t+)− F0(x, t+)‖ ≤ ‖Fk(x, t+)− Fk(x, t+ δ)‖+ ‖Fk(x, t+ δ)− F0(x, t+ δ)‖

+‖F0(x, t+ δ)− F0(x, t+)‖ ≤ 2(h(t+ δ)− h(t+)) + ‖Fk(x, t+ δ)− F0(x, t+ δ)‖,

and the right-hand side can be made arbitrarily small by choosing δ > 0 sufficiently small and k ∈ N
sufficiently large. Similarly, one can prove that Fk(x, t−)→ F0(x, t−) for k →∞.

Now, assume there is an x ∈ B such that the sequence t 7→ Fk(x, t), k ∈ N, is not uniformly convergent
to t 7→ F0(x, t). Then, there exist an ε > 0, a subsequence {Fkl}∞l=1, and a sequence {tl}∞l=1 such that

‖Fkl(x, tl)− F0(x, tl)‖ ≥ ε, l ∈ N. (2.5)

Moreover, without loss of generality, we can assume that liml→∞ tl = t0 ∈ [a, b]. Then, at least one of the
following statements has to be true:

a) The sequence {tl}∞l=1 has a subsequence {tlm}∞m=1 whose terms are all smaller than t0.

b) The sequence {tl}∞l=1 has a subsequence {tlm}∞m=1 whose terms are all greater than t0.

(If neither a) nor b) was true, then tl = t0 for infinitely many values of l; together with (2.5), this would
contradict the fact that Fk(x, t0) → F0(x, t0).) We show that a) leads to a contradiction, and leave the
other case up to the reader. We have

ε ≤ ‖Fklm (x, tlm)− F0(x, tlm)‖ ≤ ‖Fklm (x, tlm)− Fklm (x, t0−)‖+ ‖Fklm (x, t0−)− F0(x, t0−)‖

+‖F0(x, t0−)− F0(x, tlm)‖ ≤ 2(h(t0−)− h(tlm)) + ‖Fklm (x, t0−)− F0(x, t0−)‖.

However, the expression on the right-hand side approaches zero for m→∞, which is a contradiction.

The following lemma represents a stronger version of [32, Lemma 8.1]; instead of pointwise convergence,
we prove uniform convergence of the indefinite integrals. Also, the original condition that x has bounded
variation is replaced by the weaker assumption of regulatedness.

6



Lemma 2.9. Let B ⊂ X, G = B × [a, b], and consider a sequence of functions Fk : G→ X, k ∈ N0, such
that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0. If x : [a, b]→ B is regulated, then

lim
k→∞

∫ s

a

DFk(x(τ), t) =

∫ s

a

DF0(x(τ), t)

uniformly with respect to s ∈ [a, b].

Proof. First, let us verify the statement in the case when x : [a, b] → B is a step function: There exist
a partition a = s0 < s1 < · · · < sm = b and elements c1, . . . , cm ∈ X such that x(t) = cj for every
t ∈ (sj−1, sj). Choose an arbitrary ε > 0. According to Lemma 2.8, there exists a k0 ∈ N such that

‖Fk(cj , sj−)− F0(cj , sj−)‖ < ε/(6m), j ∈ {1, . . . ,m},
‖Fk(cj , sj−1+)− F0(cj , sj−1+)‖ < ε/(6m), j ∈ {1, . . . ,m},

‖Fk(x(sj−1), sj−1+)− F0(x(sj−1), sj−1+)‖ < ε/(6m), j ∈ {1, . . . ,m},
‖Fk(x(sj), sj−)− F0(x(sj), sj−)‖ < ε/(6m), j ∈ {1, . . . ,m},

‖Fk(x(sj), s)− F0(x(sj), s)‖ < ε/(6m), j ∈ {0, . . . ,m}, s ∈ [a, b],

‖Fk(cj , s)− F0(cj , s)‖ < ε/(6m), j ∈ {1, . . . ,m}, s ∈ [a, b],

for all k ≥ k0. By Lemma 2.5, we have∫ sj

sj−1

DFk(x(τ), t) = Fk(cj , sj−)− Fk(cj , sj−1+) + Fk(x(sj−1), sj−1+)

−Fk(x(sj−1), sj−1) + Fk(x(sj), sj)− Fk(x(sj), sj−),

for all k ∈ N0, j ∈ {1, . . . ,m}, and therefore∥∥∥∥∥
∫ sj

sj−1

DFk(x(τ), t)−
∫ sj

sj−1

DF0(x(τ), t)

∥∥∥∥∥ < ε

m
, k ≥ k0.

When s ∈ (sj−1, sj) for some j ∈ {1, . . . ,m}, we have x(s) = cj ,∫ s

sj−1

DFk(x(τ), t) = Fk(cj , s)− Fk(cj , sj−1+) + Fk(x(sj−1), sj−1+)− Fk(x(sj−1), sj−1),

and therefore ∥∥∥∥∥
∫ s

sj−1

DFk(x(τ), t)−
∫ s

sj−1

DF0(x(τ), t)

∥∥∥∥∥ < 4ε

6m
<

ε

m
, k ≥ k0.

It follows that for every s ∈ [a, b], we have∥∥∥∥∫ s

a

DFk(x(τ), t)−
∫ s

a

DF0(x(τ), t)

∥∥∥∥ < ε, k ≥ k0.

Now, consider the general situation when x : [a, b]→ B is regulated. Choose an arbitrary ε > 0. There
exists a step function ϕ : [a, b] → B such that ω(‖x − ϕ‖∞) < ε

2(h(b)−h(a)+1) . Also, there exists a k0 ∈ N
such that

∥∥∫ s
a
DFk(ϕ(τ), t)−

∫ s
a
DF0(ϕ(τ), t)

∥∥ < ε/2 for all k ≥ k0 and s ∈ [a, b]. Then∥∥∥∥∫ s

a

DFk(x(τ), t)−
∫ s

a

DF0(x(τ), t)

∥∥∥∥ ≤ ∥∥∥∥∫ s

a

DFk(x(τ), t)−
∫ s

a

DFk(ϕ(τ), t)

∥∥∥∥
+

∥∥∥∥∫ s

a

DFk(ϕ(τ), t)−
∫ s

a

DF0(ϕ(τ), t)

∥∥∥∥+

∥∥∥∥∫ s

a

DF0(ϕ(τ), t)−
∫ s

a

DF0(x(τ), t)

∥∥∥∥
≤ 2

∫ s

a

ω(‖x(τ)− ϕ(τ)‖) dh(τ) +
ε

2
< 2ω(‖x− ϕ‖∞)(h(s)− h(a)) +

ε

2
< ε

holds for all k ≥ k0 and s ∈ [a, b], and the proof is complete.
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The following lemma summarizes some properties of solutions to generalized differential equations; it
is a consequence of [32, Corollary 3.11] and [32, Lemma 3.12].

Lemma 2.10. Let B ⊂ X, G = B × [a, b]. Consider a function F : G→ X satisfying

‖F (x, t2)− F (x, t1)‖ ≤ h1(t2)− h1(t1), x ∈ B, [t1, t2] ⊂ [a, b], (2.6)

where h1 : [a, b] → R is a nondecreasing function. If x : [a, b] → X is a solution of the generalized
differential equation dx

dτ = DF (x, t), then x is a regulated function with bounded variation. Moreover,

x(s+) = x(s) + F (x(s), s+)− F (x(s), s), s ∈ [a, b),

x(s−) = x(s) + F (x(s), s−)− F (x(s), s), s ∈ (a, b].

If h1 is left-continuous, then x is left-continuous as well.

Consider an equation dx
dτ = DF (x, t), where F satisfies (2.6) with a left-continuous function h1. Assume

that we have a solution of this equation on [a, b), and would like to extend it to [a, b]. According to
Lemma 2.10, the extension obtained by letting x(b) = x(b−) is the only candidate for such a solution. In
the next lemma, we verify that the limit always exists, and that the extension indeed provides a solution
on [a, b].

Lemma 2.11. Assume that B ⊂ X, G = B × [a, b], and F : G→ X satisfies (2.6) with a left-continuous
function h1. If x : [a, b) → X is a solution of dx

dτ = DF (x, t), then the limit x(b−) exists. If x(b−) ∈ B
and we extend x to [a, b] by letting x(b) = x(b−), we obtain a solution of dx

dτ = DF (x, t) on [a, b].

Proof. The Cauchy condition for the existence of the left-sided limit x(b−) is satisfied, because

‖x(s1)− x(s2)‖ ≤ |h1(s1)− h1(s2)|, s1, s2 ∈ [a, a+ b),

and the left-sided limit of h1 does exist. Assume that x(b−) ∈ B. Since∥∥∥∥∥
∫ b

a

DF (x(τ), t)−
∫ s

a

DF (x(τ), t)

∥∥∥∥∥ =

∥∥∥∥∥
∫ b

s

DF (x(τ), t)

∥∥∥∥∥ ≤ h1(b)− h1(s), s ∈ [a, b],

it follows that lims→b−
∫ s
a
DF (x(τ), t) =

∫ b
a
DF (x(τ), t), and therefore

x(b) = x(b−) = x(a) + lim
s→b−

∫ s

a

DF (x(τ), t) =

∫ b

a

DF (x(τ), t).

The following theorem, which describes the properties of the indefinite Kurzweil-Stieltjes integral, is
a special case of [32, Theorem 1.16].

Theorem 2.12. Let f : [a, b] → Rn and g : [a, b] → R be a pair of functions such that g is regulated and∫ b
a
f dg exists. Then the function

h(t) =

∫ t

a

f(s) dg(s), t ∈ [a, b],

is regulated and satisfies

h(t+) = h(t) + f(t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f(t)∆−g(t), t ∈ (a, b],

where ∆+g(t) = g(t+)− g(t) and ∆−g(t) = g(t)− g(t−).

The next result is a Bihari-type inequality (i.e., a nonlinear version of the Gronwall inequality) for the
Kurzweil-Stieltjes integral, which can be found in [32, Theorem 1.40].
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Theorem 2.13. Consider functions ψ : [a, b] → [0,+∞), h : [a, b] → R, ω : [0,+∞) → R such that ψ is
bounded, h is nondecreasing and left-continuous, ω is continuous, increasing and ω(0) = 0. Suppose there
exists a k > 0 such that

ψ(t) ≤ k +

∫ t

a

ω(ψ(s)) dh(s), t ∈ [a, b].

For an arbitrary u0 > 0, let

Ω(u) =

∫ u

u0

1

ω(r)
dr, u ∈ (0,∞),

α = limu→0+ Ω(u) ≥ −∞, and β = limu→+∞ Ω(u) ≤ ∞. Also, let Ω−1 : (α, β) → R be the inverse
function to Ω. If Ω(k) + h(b)− h(a) < β, then

ψ(t) ≤ Ω−1(Ω(k) + h(t)− h(a)), t ∈ [a, b].

The next proposition is an Osgood-type uniqueness theorem for generalized differential equations. The
finite-dimensional version can be found in [32, Theorem 4.11], and its proof remains valid even in the
infinite-dimensional case (in fact, it is a fairly straightforward consequence of Theorem 2.13).

Theorem 2.14. Let B ⊂ X, G = B × [a, b]. Consider a function F : G → X such that F ∈ F(G, h, ω),
where h : [a, b]→ R is left-continuous, and

lim
v→0+

∫ u

v

dr

ω(r)
=∞

for every u > 0. If x̃ ∈ X, [a, b1], [a, b2] ⊂ [a, b], and x1 : [a, b1]→ B, x2 : [a, b2]→ B are solutions of the
initial-value problem

dx

dτ
= DF (x, t), x(a) = x̃,

then x1(t) = x2(t) for every t ∈ [a, b1] ∩ [a, b2].

Finally, let us recall the following existence-uniqueness theorem for generalized ordinary differential
equations whose right-hand sides are elements of F(G, h, ω1) with ω1(r) = r, r ≥ 0. Its proof, which is
based on the contraction mapping theorem, can be found in [13, Theorem 2.15].

Theorem 2.15. Assume that B ⊂ X is an open set, G = B × [a, b], F : G → X belongs to the class
F(G, h, ω1) with a left-continuous function h and ω1(r) = r, r ≥ 0.

If x0 ∈ B is such that x0 + F (x0, a+)− F (x0, a) ∈ B, then the initial-value problem

dx

dτ
= DF (x, t), x(a) = x0, (2.7)

has a unique local solution defined on a right neighborhood of a.

If x is a local solution of the initial-value problem (2.7), it follows from Lemma 2.10 that x(a+) =
x0 + F (x0, a+)− F (x0, a); this explains the meaning of the condition x0 + F (x0, a+)− F (x0, a) ∈ B.

3 An Osgood-type existence theorem

In this section, we prove an Osgood-type existence theorem for abstract generalized differential equations.
Unfortunately, the finite-dimensional proof presented in [32, Theorem 4.2], which makes use of Helly’s
choice theorem, is no longer applicable. Our proof is based on the following lemma, which says that a right-
hand side F ∈ F(B× [a, b], h1, h2, ω) can be approximated by a function Fε which is in a certain sense close
to F . Moreover, Fε has the property that for every x ∈ B, there is a neighborhood U(x) and a constant
L(x) > 0 such that the restriction of Fε to U(x) × [a, b] is an element of F(U(x) × [a, b], h1, L(x)h1, ω1),
where ω1(r) = r, r ≥ 0.
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Lemma 3.1. Let B be an open subset of X and G = B × [a, b]. Consider a function F : G → X such
that F ∈ F(G, h1, h2, ω). Then, for every ε > 0, there exists a function Fε : G → X with the following
properties:

1. ‖(F − Fε)(x, t2)− (F − Fε)(x, t1)‖ ≤ ε(h2(t2)− h2(t1)) for all x ∈ B, [t1, t2] ⊂ [a, b].

2. ‖Fε(x, t2)− Fε(x, t1)‖ ≤ h1(t2)− h1(t1) for all x ∈ B, [t1, t2] ⊂ [a, b].

3. For every x ∈ B, there exist a neighborhood U(x) and a constant L(x) > 0 such that

‖Fε(y, t2)− Fε(y, t1)− Fε(z, t2) + Fε(z, t1)‖ ≤ ‖y − z‖L(x)(h1(t2)− h1(t1))

for all y, z ∈ U(x), [t1, t2] ⊂ [a, b].

Proof. There exists a δ > 0 such that ω(δ) < ε. For every x ∈ B, let Uδ(x) = {y ∈ B; ‖x − y‖ < δ/2}.
Clearly, the system {Uδ(x); x ∈ B} is an open cover of B. Using the fact that every metric space is
paracompact (see e.g. [30] or [4, Corollary 2.2]), we conclude that {Uδ(x); x ∈ B} has a locally finite open
refinement {Wj ; j ∈ J}; that is, the system {Wj ; j ∈ J} is an open cover of B, every Wj is contained in
Uδ(x) for a certain x ∈ B, and every x ∈ B has a neighborhood V (x) that intersects only finitely many
sets Wj .

Let {ϕj ; j ∈ J} be a partition of unity subordinated to {Wj ; j ∈ J}, i.e., a collection of functions such
that for every j ∈ J , the support of ϕj is contained in Wj , and

∑
j∈J ϕj(x) = 1 for every x ∈ B. The

existence of such a partition of unity follows from paracompactness again (see e.g. [4, Proposition 2.3]).
Moreover, it is known that the functions ϕj can be chosen to be locally Lipschitz continuous; the standard
way of achieving this goal (cf. [23, Lemma 1]) is to let

ψj(x) =

{
d(x, ∂Wj), x ∈Wj

0, x /∈Wj

(where d denotes the distance between a point and a set), ψ(x) =
∑
j∈J ψj(x), and finally ϕj(x) =

ψj(x)
ψ(x) .

It is not difficult to verify that the functions ψj are Lipschitz continuous with the Lipschitz constant equal
to 1, ψ is locally Lipschitz continuous (because {Wj ; j ∈ J} is locally finite), and ϕj are locally Lipschitz
continuous.

Now, for every j ∈ J , choose an arbitrary wj ∈Wj , and let

Fε(x, t) =
∑
j∈J

ϕj(x)F (wj , t), x ∈ B, t ∈ [a, b].

We claim that Fε possesses the three properties listed in the statement of the theorem. Indeed, for all
x ∈ B and [t1, t2] ⊂ [a, b], we have

‖(F − Fε)(x, t2)− (F − Fε)(x, t1)‖ =

∥∥∥∥∥∥
∑
j∈J

ϕj(x)(F (x, t2)− F (wj , t2)− F (x, t1) + F (wj , t1))

∥∥∥∥∥∥
≤
∑
j∈J

ϕj(x)‖F (x, t2)− F (wj , t2)− F (x, t1) + F (wj , t1)‖ ≤
∑
j∈J

ϕj(x)ω(‖x− wj‖)(h2(t2)− h2(t1)).

Note that ϕj(x) is nonzero only for those j ∈ J such that x ∈Wj ; in this case, both x and wj are elements
of Uδ(y). Thus ‖x− wj‖ < δ, ω(‖x− wj‖) < ε, and we obtain the estimate∑

j∈J
ϕj(x)ω(‖x− wj‖)(h2(t2)− h2(t1)) ≤ ε(h2(t2)− h2(t1))

∑
j∈J

ϕj(x) = ε(h2(t2)− h2(t1)).

Next, note that

‖Fε(x, t2)−Fε(x, t1)‖ =

∥∥∥∥∥∥
∑
j∈J

ϕj(x)(F (wj , t2)− F (wj , t1))

∥∥∥∥∥∥ ≤
∑
j∈J

ϕj(x)(h1(t2)−h1(t1)) = h1(t2)−h1(t1).
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Finally, for every x ∈ B, there exists a neighborhood U(x) that intersects only a finite number of sets from
the open cover {Wj ; j ∈ J}, say k(x) of them. Without loss of generality, we can assume that U(x) is so
small that all functions ϕj whose support intersects U(x) are Lipschitz-continuous in U(x), i.e., satisfy

|ϕj(y)− ϕj(z)| ≤ C(x)‖y − z‖, y, z ∈ U(x)

for a certain constant C(x) ≥ 0. Then

‖Fε(y, t2)− Fε(y, t1)− Fε(z, t2) + Fε(z, t1)‖ =

∥∥∥∥∥∥
∑
j∈J

(ϕj(y)− ϕj(z))(F (wj , t2)− F (wj , t1))

∥∥∥∥∥∥
≤ k(x)C(x)‖y − z‖(h1(t2)− h1(t1)), y, z ∈ U(x), [t1, t2] ⊂ [a, b].

We are now ready to prove the promised existence-uniqueness theorem for abstract generalized differ-
ential equations. It generalizes Theorem 2.15, which corresponds to the special case when ω(r) = r. Even
in that case, our theorem provides more information since it specifies a lower bound for the length of the
interval where the solution is guaranteed to exist.

Theorem 3.2. Assume that B ⊂ X is an open set, G = B × [a, b], F : G → X belongs to the class
F(G, h1, h2, ω), where h1, h2 are left-continuous, and

lim
v→0+

∫ u

v

dr

ω(r)
=∞ (3.1)

for every u > 0.
If x0 ∈ B is such that x0 + F (x0, a+)− F (x0, a) ∈ B, then the initial-value problem

dx

dτ
= DF (x, t), x(a) = x0, (3.2)

has a unique local solution defined on a right neighborhood of a.
Moreover, if ∆ > 0 is such that the closed ball

{x ∈ X; ‖x− (x0 + F (x0, a+)− F (x0, a))‖ ≤ h1(a+ ∆)− h1(a+)} (3.3)

is contained in B, the solution is guaranteed to exist on [a, a+ ∆].

Proof. Let ∆ > 0 be an arbitrary number with the property described in the statement of the theorem
(since B is open, such a ∆ always exists). Clearly, it is enough to find a unique solution of Eq. (3.2) on
the interval [a, a+ ∆0], where

∆0 = inf{t ∈ [a, a+ ∆]; h1(t) = h1(a+ ∆)}.

Indeed, if ∆0 < ∆ and we have a solution x defined on [a, a+ ∆0], we can extend it to [a, a+ ∆] by letting

x(s) = x(a+ ∆0) + F (x(a+ ∆0), (a+ ∆0)+)− F (x(a+ ∆0), a+ ∆0), s ∈ (a+ ∆0, a+ ∆].

One can easily check that ‖x(s)−x(a+)‖ ≤ h1((a+ ∆0)+)−h1(a+), i.e., x(s) lies in the closed ball (3.3).
Also, for every x ∈ B, the function t 7→ F (x, t) is constant on (a+∆0, a+∆] (because h1 is constant there).
According to Lemma 2.5, we have

∫ s
a+∆0

DF (x(τ), t) = F (x(a+ ∆0), (a+ ∆0)+)− F (x(a+ ∆0), a+ ∆0)

for all s ∈ (a+ ∆0, a+ ∆]. It follows that

x(s) = x(a+ ∆0) +

∫ s

a+∆0

DF (x(τ), t) = x0 +

∫ s

a

DF (x(τ), t), s ∈ (a+ ∆0, a+ ∆],

i.e., x is a solution of Eq. (3.2) on [a, a+ ∆]; uniqueness follows from Theorem 2.14.
To show the existence of a unique solution on [a, a + ∆0], it is sufficient to prove the existence of

a unique solution on [a, a + ∆1] for every ∆1 ∈ (0,∆0). Then we have a unique solution on [a, a + ∆0),
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which can be extended to [a, a + ∆0] using Lemma 2.11. The assumption x((a + ∆0)−) ∈ B from the
lemma will be satisfied, because ‖x(t) − x(a+)‖ ≤ h1(t) − h1(a+) for all t ∈ [a, a + ∆0), and thus the
values x(t), t ∈ [a, a+ ∆0) lie in the closed ball (3.3).

Let ∆1 ∈ (0,∆0) and note that h1(a+ ∆)− h1(a+ ∆1) > 0. We claim that for every ε > 0 satisfying

ε(h2(a+)− h2(a)) < h1(a+ ∆)− h1(a+ ∆1), (3.4)

there exists a unique solution x : [a, a+ ∆1]→ X of the initial-value problem

dx

dτ
= DFε(x, t), x(a) = x0, (3.5)

where Fε is the function obtained from Lemma 3.1. To prove this, let C be the set of all c ∈ [a, a + ∆1]
such that (3.5) has a unique solution x on [a, c]. Clearly, C is nonempty (because a ∈ C) and closed (this
is a consequence of Lemma 2.11). Our goal is to show that C = [a, a+ ∆1], which can be accomplished by
proving that C is open in [a, a+∆1]. To this end, it is necessary to show that for every c ∈ [a, a+∆1)∩C,
the unique solution x of (3.5) defined on [a, c] can be always extended to a larger interval. Let

x̃c = x(c) + Fε(x(c), c+)− Fε(x(c), c).

Using the properties of Fε listed in Lemma 3.1 and (3.4), we get

‖x̃c − (x0 + F (x0, a+)− F (x0, a))‖

≤ ‖x̃c − (x0 + Fε(x0, a+)− Fε(x0, a))‖+ ‖Fε(x0, a+)− Fε(x0, a)− F (x0, a+) + F (x0, a)‖

≤ ‖x(c)− x(a+)‖+ ‖Fε(x(c), c+)− Fε(x(c), c)‖+ ε(h2(a+)− h2(a))

≤ h1(c)− h1(a+) + h1(c+)− h1(c) + h1(a+ ∆)− h1(a+ ∆1) ≤ h1(a+ ∆)− h1(a+),

i.e., x̃c ∈ B. By Lemma 3.1, there are a neighborhood U(x̃c) of the point x̃c and a number L(x̃c) > 0
such that Fε ∈ F(U(x̃c)× [a, b], h1, L(x)h1, ω1) ⊂ F(U(x̃c)× [a, b], (1 +L(x))h1, ω1). We would like to use
Theorem 2.15 find a unique local solution of dx

dτ = DFε(x, t) defined on a right neighborhood of c, whose
value at c is x(c). If x(c) ∈ U(x̃c), all assumptions of the theorem are satisfied. If x(c) /∈ U(x̃c), it is
enough to find a local solution of the equation

dy

dτ
= DF̃ε(y, t), y(c) = x̃c,

where F̃ε(y, c) = Fε(y, c+) and F̃ε(y, t) = Fε(y, t) for all y ∈ U(x̃c), t ∈ [c, b]; note that Fε ∈ F(U(x̃c) ×
[c, b], (1 + L(x))h1, ω1). Then, extend the solution x of (3.5) from [a, c] to a larger interval by letting
x(t) = y(t) for t > c. This extended function x has the correct jump at c, and is a solution of (3.5) on
a right neighborhood of c.

Let n0 ∈ N be such that 1
n0

(h2(a+)−h2(a)) < h1(a+ ∆)−h1(a+ ∆1). We have proved that for every
integer n ≥ n0, there exists a function xn : [a, a+ ∆1]→ X satisfying

xn(s) = x0 +

∫ s

a

DF1/n(xn(τ), t), s ∈ [a, a+ ∆1]. (3.6)

For each pair of integers m,n ≥ n0, we obtain

xn(s)−xm(s) =

∫ s

a

D[(F1/n−F )(xn(τ), t)]+

∫ s

a

D[F (xn(τ), t)−F (xm(τ), t)]+

∫ s

a

D[(F−F1/m)(xm(τ), t)].

Lemma 2.4 implies∥∥∥∥∫ s

a

D[F (xn(τ), t)− F (xm(τ), t)]

∥∥∥∥ ≤ ∫ s

a

ω(‖xn(t)− xm(t)‖) dh2(t), s ∈ [a, a+ ∆1],
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and Lemma 2.3 gives the estimate∥∥∥∥∫ s

a

D[(F1/k − F )(xk(τ), t)]

∥∥∥∥ ≤ h2(s)− h2(a)

k
, s ∈ [a, a+ ∆1], k ≥ n0.

Consequently,

‖xn(s)−xm(s)‖ ≤
∫ s

a

ω(‖xn(t)−xm(t)‖) dh2(t)+(h2(b)−h2(a))

(
1

n
+

1

m

)
, s ∈ [a, a+∆1], m, n ≥ n0.

For an arbitrary u0 > 0, the function

Ω(u) =

∫ u

u0

1

ω(r)
dr, u ∈ (0,∞),

is continuous, increasing, α = limu→0+ Ω(u) = −∞, and β = limu→+∞ Ω(u) ≤ ∞. Hence, the inverse
function Ω−1 is increasing on its domain (−∞, β). For m, n sufficiently large, we have

Ω

(
(h2(b)− h2(a))

(
1

n
+

1

m

))
+ h2(b)− h2(a) < β,

and it follows from Theorem 2.13 that

‖xn(s)− xm(s)‖ ≤ Ω−1

(
Ω

(
(h2(b)− h2(a))

(
1

n
+

1

m

))
+ h2(b)− h2(a)

)
, s ∈ [a, a+ ∆1].

As m,n increase, the argument of Ω−1 tends to −∞, and therefore the whole right-hand side approaches
zero. Thus {xn}n≥n0 is a Cauchy sequence in G([a, a+ ∆1], X), and has a limit x : [a, a+ ∆1]→ X.

Observe that limn→∞
∫ s
a
DF1/n(xn(τ), t) =

∫ s
a
DF (x(τ), t) for every s ∈ [a, a+ ∆1], because∥∥∥∥∫ s

a

D[F1/n(xn(τ), t)− F (x(τ), t)]

∥∥∥∥ ≤ ∥∥∥∥∫ s

a

D[(F1/n − F )(xn(τ), t)]

∥∥∥∥+

∥∥∥∥∫ s

a

D[F (xn(τ), t)− F (x(τ), t)]

∥∥∥∥
≤ h2(s)− h2(a)

n
+

∫ s

a

ω(‖xn(t)− x(t)‖) dh2(t) ≤ h2(s)− h2(a)

n
+ ω(‖xn − x‖∞)(h2(s)− h2(a)),

and the last expression approaches zero as n→∞.
By letting n→∞ in Eq. (3.6), we see that x is a solution of dx

dτ = DF (x, t) on [a, a+ ∆1]; uniqueness
follows from Theorem 2.14.

Remark 3.3. We have just proved that the condition

{x ∈ X; ‖x− (x0 + F (x0, a+)− F (x0, a))‖ ≤ h1(a+ ∆)− h1(a+)} ⊂ B

guarantees that the local solution exists on [a, a + ∆]. However, assume that we a priori know that the
solution of dx

dτ = DF (x, t), x(a) = x0, never leaves a certain set Y ⊂ X. Then, an inspection of the
previous proof shows that it is enough to verify the following two conditions:

• If x ∈ Y and ‖x− (x0 + F (x0, a+)− F (x0, a))‖ ≤ h1(a+ ∆)− h1(a+), then x ∈ B.

• If x ∈ Y and t ∈ [a, a+ ∆), then x+ F (x, t+)− F (x, t) ∈ Y .

We will use this observation in the proof of Osgood theorem for measure functional differential equations.
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4 Continuous dependence

Following the usual convention, we state our continuous dependence theorems for sequences of initial-value
problems of the following form:

dxk
dτ

= DFk(xk, t), t ∈ [a, b], xk(a) = x̃k, k ∈ N0, (4.1)

where Fk → F0 and x̃k → x̃0 for k → ∞. However, the results may be easily adapted to initial-value
problems where the right-hand side as well as the initial condition depends on a parameter λ ∈ Λ (for
example, Λ can be a metric space):

dxλ
dτ

= DF (xλ, t, λ), t ∈ [a, b], xλ(a) = x̃(λ), λ ∈ Λ,

where F (x, t, λ)→ F (x, t, λ0) and x̃(λ)→ x̃(λ0) for λ→ λ0.
In this paper, we are interested in sequences of problems of the form (4.1), where all the right-hand sides

Fk are elements of F(G, h, ω) for a fixed pair of functions h, ω. In particular, our goal is to investigate
infinite-dimensional counterparts of the following two finite-dimensional theorems, which can be found
in [32] (see Theorems 8.2 and 8.6 there).

Theorem 4.1. Let B ⊂ Rn, G = B × [a, b], and consider a sequence of functions Fk : G → Rn, k ∈ N0,
such that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0. Finally, suppose there exists a sequence of functions
xk : [a, b]→ B, k ∈ N0, such that

dxk
dτ

= DFk(xk, t), t ∈ [a, b], k ∈ N,

and limk→∞ xk(s) = x0(s) for every s ∈ [a, b]. Then

dx0

dτ
= DF0(x0, t), t ∈ [a, b].

Theorem 4.2. Let B ⊂ Rn, G = B × [a, b], and consider a sequence of functions Fk : G → Rn, k ∈ N0,
such that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0, where h is left-continuous. Suppose that x̃0 ∈ B and
x0 : [a, b]→ B is a unique solution of

dx

dτ
= DF0(x, t), x(a) = x̃0.

Finally, assume there exists a ρ > 0 such that ‖y − x0(s)‖ < ρ implies y ∈ B whenever s ∈ [a, b] (i.e.,
the ρ-neighborhood of x0 is contained in B). Then, given an arbitrary sequence x̃k ∈ Rn, k ∈ N, such that
limk→∞ x̃k = x̃0, there is a k0 ∈ N and a sequence of functions xk : [a, b]→ B, k ≥ k0, which satisfy

dxk
dτ

= DFk(xk, t), t ∈ [a, b], xk(a) = x̃k. (4.2)

Moreover, limk→∞ xk(s) = x0(s) for every s ∈ [a, b].

We start by deriving an infinite-dimensional version of Theorem 4.1. The finite-dimensional proof given
in [32] makes use of Helly’s selection theorem (which is no longer valid in infinite dimension), but only to
conclude that the limit function has bounded variation. Fortunately, this is easy to prove without Helly’s
theorem. Moreover, our proof does not depend on this fact because we have generalized Lemma 2.9 to
regulated functions. Otherwise, the main idea of the proof is similar to the proof from [32].
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Note the remarkable fact that (thanks to Lemma 2.9 and Theorem 2.2) the conclusion of our theorem is
stronger than in the original finite-dimensional version: we prove the uniform convergence of the sequence
{xk}∞k=1. The theorem also generalizes Theorem A.3 from [1], since we do not assume that h is left-
continuous and has only finitely many discontinuities (although these assumptions are not mentioned
explicitly in the statement of Theorem A.3, they can be found at the beginning of Appendix A in [1], and
are needed in the proof of Theorem A.3).

Theorem 4.3. Let B ⊂ X, G = B × [a, b], and consider a sequence of functions Fk : G → X, k ∈ N0,
such that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0. Finally, suppose there exists a sequence of functions
xk : [a, b]→ B, k ∈ N0, such that

dxk
dτ

= DFk(xk, t), t ∈ [a, b], k ∈ N,

and limk→∞ xk(s) = x0(s) for every s ∈ [a, b]. Then

dx0

dτ
= DF0(x0, t), t ∈ [a, b].

Moreover, the sequence {xk}∞k=1 is uniformly convergent to x0.

Proof. We know that

xk(s) = xk(a) +

∫ s

a

DFk(xk(τ), t), s ∈ [a, b], k ∈ N,

and our goal is to prove that

x0(s) = x0(a) +

∫ s

a

DF0(x0(τ), t), s ∈ [a, b]. (4.3)

Clearly, it is enough to show that limk→∞
∫ s
a
DFk(xk(τ), t) =

∫ s
a
DF0(x0(τ), t) uniformly with respect to

s ∈ [a, b]. The assumption Fk ∈ F(G, h, ω) together with Lemma 2.3 imply

‖xk(β)− xk(α)‖ ≤ h(β)− h(α), k ∈ N, [α, β] ⊂ [a, b].

Passing to the limit k →∞, we obtain

‖x0(β)− x0(α)‖ ≤ h(β)− h(α), [α, β] ⊂ [a, b].

Since h is regulated, it follows that x0 is regulated as well. (In fact, it is clear that x0 has bounded

variation.) By Lemma 2.7, the integrals
∫ b
a
DF0(x0(τ), t) and

∫ b
a
DFk(x0(τ), t) exist. We have∫ s

a

DFk(xk(τ), t)−
∫ s

a

DF0(x0(τ), t) =

∫ s

a

D[Fk(xk(τ), t)−Fk(x0(τ), t)]+

∫ s

a

D[Fk(x0(τ), t)−F0(x0(τ), t)].

We need to show that both integrals on the right-hand side are convergent to zero for k → ∞, and that
the convergence is uniform with respect to s ∈ [a, b]. For the second integral, this is a consequence of
Lemma 2.9. The first integral can be estimated using Lemma 2.4:∥∥∥∥∫ s

a

D[Fk(xk(τ), t)− Fk(x0(τ), t)]

∥∥∥∥ ≤ ∫ s

a

ω(‖xk(τ)− x0(τ)‖) dh(τ)

Observe that the sequence of functions {xk − x0}∞k=1 is uniformly bounded, because

‖xk(s)− x0(s)‖ ≤ ‖xk(s)− xk(a)‖+ ‖xk(a)− x0(a)‖+ ‖x0(a)− x0(s)‖ ≤M, k ∈ N, s ∈ [a, b],
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where M = 2(h(b) − h(a)) + supk∈N ‖xk(a) − x0(a)‖. Since ω is continuous, the assumptions of the
dominated convergence theorem for the Kurzweil-Stieltjes integral (see [32, Corollary 1.32]) are satisfied,
and we get

lim
k→∞

∫ s

a

ω(‖xk(τ)− x0(τ)‖) dh(τ) =

∫ s

a

lim
k→∞

ω(‖xk(τ)− x0(τ)‖) dh(τ) = 0, s ∈ [a, b].

Let ϕk(s) =
∫ s
a
ω(‖xk(τ) − x0(τ)‖) dh(τ), s ∈ [a, b], k ∈ N. We know that ϕk → 0 for k → ∞, and it

remains to check that the convergence is uniform on [a, b]. To this end, it is enough to verify that every
subsequence of {ϕk}∞k=1 has a subsequence which is uniformly convergent to zero. (Then it follows easily
that {ϕk}∞k=1 itself is convergent to zero; otherwise, we could find an ε > 0 and a subsequence {ϕkl}∞l=1

such that ‖ϕkl‖∞ ≥ ε, which is a contradiction.) For every k ∈ N, we have ϕk(a) = 0, and

|ϕk(β)− ϕk(α)| =
∫ β

α

ω(‖xk(τ)− x0(τ)‖) dh(τ) ≤ ω(M)(h(β)− h(α))

whenever [α, β] ⊂ [a, b]. Therefore, the second condition of Theorem 2.2 is satisfied with η(r) = ω(M)r
and K(t) = h(t)+ t. By this theorem, every subsequence of {ϕk}∞k=1 has a subsequence which is uniformly
convergent to zero, and the proof is complete.

Our next goal is to obtain an infinite-dimensional version of Theorem 4.2. The proof given in [32] is
again based on Helly’s selection theorem. This time, there seems to be no simple way to avoid it, and
we have to follow a different approach. Moreover, one cannot expect to prove an infinite-dimensional
version of Theorem 4.2 under the same assumptions as in the finite-dimensional case. The reason is that
in Theorem 4.2, the assumption Fk ∈ F(G, h, ω) guarantees the local existence of solutions to Eq. (4.2) for
all sufficiently large k ∈ N (see [32, Chapter 4]). Unfortunately, this is no longer true in a general Banach
space. Example 4.5 shows that Theorem 4.2 fails in infinite dimension; the construction is based on an
example from J. Dieudonné’s paper [9], where he demonstrated that Peano’s existence theorem need not
hold in infinite-dimensional spaces.

First, we need the following inequality.

Lemma 4.4. If x, y ∈ R, then |
√
|x| −

√
|y|| ≤

√
|x− y|.

Proof. The function f(x) =
√
x is concave and f(0) = 0; hence, f is subadditive on [0,∞).

Given an arbitrary pair x, y ∈ R, we have√
|x| =

√
|x− y + y| ≤

√
|x− y|+ |y| ≤

√
|x− y|+

√
|y|,

and therefore
√
|x|−

√
|y| ≤

√
|x− y|. A similar reasoning leads to the inequality

√
|y|−

√
|x| ≤

√
|y − x|,

which completes the proof.

Example 4.5. Let c0 be the space of all real sequences {xn}∞n=0 such that limn→∞ xn = 0; this space is
equipped with the supremum norm. For an arbitrary λ ∈ R, define the mapping fλ : c0 → c0 by

fλ({xn}∞n=0) = λ

{√
|xn|+

1

n+ 1

}∞
n=0

.

Consider the abstract differential equation

x′(t) = fλ(x(t)), t ≥ 0, x(0) = 0. (4.4)

For λ = 0, the equation has the unique solution x(t) = 0 for t ≥ 0. On the other hand, for λ > 0, the
equation is not even locally solvable. For contradiction, assume that x = {xn}∞n=0 is a solution defined on
[0, b] for some b > 0. Then

x′n(t) = λ

(√
|xn(t)|+ 1

n+ 1

)
, t ∈ [0, b], xn(0) = 0, n ∈ N0.
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By the comparison theorem for initial-value problems, we get xn(t) ≥ yn(t), where yn is any solution of

y′n(t) = λ
√
|yn(t)|, t ∈ [0, b], yn(0) = 0.

One solution of the last equation is yn(t) = (λt)2/4, and therefore xn(t) ≥ (λt)2/4. For t > 0, this is in
contradiction with the fact that limn→∞ xn(t) = 0.

For any λ ≥ 0 and x, y ∈ c0, we have

‖fλ(x)‖ = sup
n∈N0

λ

∣∣∣∣√|xn|+ 1

n+ 1

∣∣∣∣ ≤ λ(
√
‖x‖+ 1), (4.5)

‖fλ(x)− fλ(y)‖ = sup
n∈N0

λ|
√
|xn| −

√
|yn|| ≤ sup

n∈N0

λ
√
|xn − yn| = λ

√
‖x− y‖. (4.6)

These inequalities guarantee that the initial-value problem (4.4) is equivalent to

dx

dτ
= DFλ(x, t), t ≥ 0, x(0) = 0, (4.7)

where Fλ(x, t) =
∫ t

0
fλ(x) ds = tfλ(x); see [32, Theorem 5.14] (the proof in infinite dimension is the same

as the finite-dimensional one, the only exception is that one has to rely on our Lemma 2.6 instead of its
finite-dimensional counterpart). Hence, Eq. (4.7) has a unique global solution for λ = 0, and no local
solutions for λ > 0.

Now, let λ0 = 0 and let {λk}∞k=1 be any sequence of positive real numbers such that limk→∞ λk = 0.
Also, suppose that b > 0 and B ⊂ c0 is an arbitrary bounded set containing the zero element. Clearly,

lim
k→∞

Fλk
(x, t) = Fλ0(x, t), (x, t) ∈ B × [0, b].

Our final goal is to verify that Fλk
∈ F(B × [0, b], h, ω) for all k ∈ N0. It follows from (4.5) and (4.6) that

‖Fλk
(x, t2)− Fλk

(x, t1)‖ = (t2 − t1)‖fλk
(x)‖ ≤ (t2 − t1)

(
sup
k∈N
|λk|

)(
sup
x∈B

√
‖x‖+ 1

)
,

‖Fλk
(x, t2)− Fλk

(x, t1)− Fλk
(y, t2) + Fλk

(y, t1)‖

= (t2 − t1)‖fλk
(x)− fλk

(y)‖ ≤ (t2 − t1)

(
sup
k∈N
|λk|

)√
‖x− y‖

whenever x, y ∈ B and [t1, t2] ⊂ [0, b]. This proves that Fλk
∈ F(B × [0, b], h, ω) with

h(t) = t

(
sup
k∈N
|λk|

)(
sup
x∈B

√
‖x‖+ 1

)
and ω(r) =

√
r, and shows that Theorem 4.2 is no longer true in infinite dimension.

The following lemma will be needed in the proof of our continuous dependence theorem.

Lemma 4.6. Let B ⊂ X, G = B × [a, b], and consider a sequence of functions Fk : G→ X, k ∈ N0, such
that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0, where h is left-continuous and limv→0+

∫ u
v

dr
ω(r) = ∞ for

every u > 0. Suppose that for every k ∈ N0, xk : [a, b]→ B satisfies

dxk
dτ

= DFk(xk, t), t ∈ [a, b], xk(a) = x̃k,

where limk→∞ x̃k = x̃0. Then {xk}∞k=1 is uniformly convergent to x0 on [a, b].
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Proof. For every s ∈ [a, b] and k ∈ N, the integral
∫ b
a
DFk(x0(τ), t) exists by Lemma 2.7, and we obtain

‖x0(s)− xk(s)‖ ≤ ‖x̃0 − x̃k‖+

∥∥∥∥∫ s

a

DF0(x0(τ), t)−
∫ s

a

DFk(xk(τ), t)

∥∥∥∥
≤ ‖x̃0 − x̃k‖+

∥∥∥∥∫ s

a

DF0(x0(τ), t)−
∫ s

a

DFk(x0(τ), t)

∥∥∥∥+

∥∥∥∥∫ s

a

DFk(x0(τ), t)−
∫ s

a

DFk(xk(τ), t)

∥∥∥∥ .
Choose an arbitrary ε > 0. There exists a k0 ∈ N such that ‖x̃0 − x̃k‖ < ε/2 and∥∥∥∥∫ s

a

DF0(x0(τ), t)−
∫ s

a

DFk(x0(τ), t)

∥∥∥∥ < ε/2

for every k ≥ k0 (the second statement follows from Lemma 2.9). These facts together with Lemma 2.4
imply that

‖x0(s)− xk(s)‖ ≤ ε+

∫ s

a

ω(‖x0(t)− xk(t)‖) dh(t), k ≥ k0, s ∈ [a, b].

By letting ψk(s) = ‖x0(s)− xk(s)‖, s ∈ [a, b], the last inequality can be rewritten as

ψk(s) ≤ ε+

∫ s

a

ω(ψk(t)) dh(t), k ≥ k0, s ∈ [a, b].

For an arbitrary u0 > 0, the function

Ω(u) =

∫ u

u0

1

ω(r)
dr, u ∈ (0,∞),

is continuous, increasing, α = limu→0+ Ω(u) = −∞, and β = limu→+∞ Ω(u) ≤ ∞. Hence, the inverse
function Ω−1 is increasing on its domain (−∞, β). Without loss of generality, we can assume that ε is so
small that Ω(ε) + h(b)− h(a) < β. It follows from Theorem 2.13 that

ψk(s) ≤ Ω−1(Ω(ε) + h(s)− h(a)) ≤ Ω−1(Ω(ε) + h(b)− h(a)), s ∈ [a, b], k ≥ k0.

For ε→ 0+, we have Ω(ε)+h(b)−h(a)→ −∞, and therefore Ω−1(Ω(ε)+h(b)−h(a))→ 0; this completes
the proof.

We now proceed to an infinite-dimensional counterpart to Theorem 4.2. In comparison with that
theorem, we restrict ourselves to the case limv→0+

∫ u
v

dr
ω(r) = ∞ for every u > 0; by Theorem 2.14, this

guarantees uniqueness of solutions. The proof is similar to the proof of Theorem 8.6 in [32], but the part
which was originally based on Helly’s selection theorem is now different and uses Lemma 4.6 instead.
Also, the new Theorem 3.2 is needed in the proof. Again, the conclusion is stronger than in the original
finite-dimensional version (we get uniform convergence of solutions instead of pointwise convergence).

Theorem 4.7. Let B ⊂ X, G = B × [a, b], and consider a sequence of functions Fk : G → X, k ∈ N0,
such that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ G.

Assume that Fk ∈ F(G, h, ω) for every k ∈ N0, where h is left-continuous and

lim
v→0+

∫ u

v

dr

ω(r)
=∞ (4.8)

for every u > 0. Let x0 : [a, b]→ B satisfy

dx0

dτ
= DF0(x0, t), x0(a) = x̃0.

Finally, assume there exists a ρ > 0 such that ‖y − x0(s)‖ < ρ implies y ∈ B whenever s ∈ [a, b].
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Then, given an arbitrary sequence x̃k ∈ X, k ∈ N, such that limk→∞ x̃k = x̃0, there is a k0 ∈ N and
a sequence of functions xk : [a, b]→ B, k ≥ k0, which satisfy

dxk
dτ

= DFk(xk, t), t ∈ [a, b], xk(a) = x̃k.

Moreover, the sequence {xk}∞k=k0
is uniformly convergent to x0 on [a, b].

Proof. It follows from the assumptions that

‖Fk(x̃k, a+)− Fk(x̃k, a)− Fk(x̃0, a+) + Fk(x̃0, a)‖ ≤ ω(‖x̃k − x̃0‖)(h(a+)− h(a))→ 0

for k →∞. According to Lemma 2.8, we have Fk(x̃0, a+)→ F0(x̃0, a+) for k →∞. Therefore, we get

Fk(x̃0, a+)− Fk(x̃0, a)→ F0(x̃0, a+)− F0(x̃0, a),

and consequently

lim
k→∞

(x̃k + Fk(x̃k, a+)− Fk(x̃k, a)) = x̃0 + F0(x̃0, a+)− F0(x̃0, a) = x0(a+) (4.9)

(the last equality follows from Lemma 2.10).
Choose a δ > 0 such that h(a+ δ)− h(a+) < ρ/2. If y ∈ X satisfies ‖y − x0(a+)‖ < ρ/2, then

‖y − x0(a+ δ)‖ ≤ ‖y − x0(a+)‖+ ‖x0(a+)− x0(a+ δ)‖ < ρ/2 + h(a+ δ)− h(a+) < ρ,

and therefore y ∈ B, i.e., the ρ/2-neighborhood of x0(a+) is contained in B. This observation together
with (4.9) imply the existence of a k0 ∈ N such that the values

x̃k + Fk(x̃k, a+)− Fk(x̃k, a), k ≥ k0,

together with their ρ/4-neighborhoods, are contained in B. Moreover, we can assume that x̃k ∈ B for all
k ≥ k0. By Theorem 3.2, there exist a ∆ > 0 and a sequence of functions xk : [a, a + ∆] → B, k ≥ k0,
such that

dxk
dτ

= DFk(xk, t), t ∈ [a, a+ ∆], xk(a) = x̃k, k ≥ k0 (4.10)

(note that Theorem 3.2 requires the set B to be open; if necessary, we can replace our B by the open
ρ-neighborhood of x0). According to Lemma 4.6, the sequence {xk}∞k=k0

is uniformly convergent to x0.
Up to this point, we have verified the statement of the theorem on the interval [a, a+ ∆]. For contra-

diction, assume that the theorem does not hold on the whole interval [a, b], i.e., there exists a c ∈ (a, b)
such that the theorem holds on [a, d] for every d < c, but not on [a, d] with d > c. For every k ≥ k0, it
follows from Lemma 2.3 that

‖xk(v)− xk(u)‖ ≤ h(v)− h(u), [u, v] ⊂ [a, c), k ∈ N.

Now, the existence of lims→c− h(s) implies the existence of lims→c− xk(s) for every k ∈ N. By letting
xk(c) = xk(c−), we see that for all k ≥ k0, Eq. (4.10) has a unique solution defined on the closed interval
[a, c]. According to the Moore-Osgood theorem, we also have limk→∞ xk(c) = lims→c− x0(s) = x0(c). We
can now follow the argumentation from the first part of the present proof with a replaced by c to conclude
that the theorem holds on an interval [a, d] with d > c, which is a contradiction.

We conclude our discussion of continuous dependence theorems for generalized differential equations
with two remarks:

• In this section, we were interested in continuous dependence theorems for sequences of equations
where all the right-hand sides Fk : G→ X, k ∈ N0, are elements of the same class F(G, h, ω). In the
finite-dimensional case, there exist theorems applicable in the situation when Fk ∈ F(G, hk, ω) and
the sequence {hk}∞k=0 satisfies some additional conditions; see [32, Theorem 8.5], [32, Theorem 8.8],
[15, Theorem 2.4], and [15, Theorem 2.6]. Therefore, it is natural to ask whether these results
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remain valid in infinite dimension. It is not difficult to check that the answer is affirmative in case
of [32, Theorem 8.5] and [15, Theorem 2.4], which are similar to Theorem 4.1, and their original
proofs are still applicable without any changes. On the other hand, [32, Theorem 8.8] and [15,
Theorem 2.6], which are similar to Theorem 4.2, are not true in infinite dimension; again, the reason
is that the assumption Fk ∈ F(G, hk, ω) no longer guarantees local existence of solutions when
ω : [0,∞) → [0,∞) is an arbitrary increasing continuous function (cf. Example 4.5). We leave it as
an open problem to find out whether the infinite-dimensional counterparts of these two theorems are
valid under the additional assumption limv→0+

∫ u
v

dr
ω(r) =∞.

• In his recent book [21], J. Kurzweil considered abstract nonlinear generalized equations of the form

x(s) = x(a) +

∫ s

a

DF (x(τ), τ, t), s ∈ [a, b], (4.11)

where the integral on the right-hand side is the strong Kurzweil integral (see [21, Chapter 14]). On
one hand, his equations are more general because F can depend explicitly on τ . On the other hand,
strong Kurzweil integrability is a more restrictive property that ordinary Kurzweil integrability.

In [21, Lemma 23.8], we find a continuous dependence theorem for equations of the form (4.11). In
the special case when the right-hand side F does not depend on τ , J. Kurzweil’s four conditions
(23.2)–(23.5) reduce to the two inequalities

‖F (x, t2)− F (x, t1)‖ ≤ (1 + ‖x‖)(Φ(t2)− Φ(t1)), x ∈ B, [t1, t2] ⊂ [a, b], (4.12)

‖F (x, t2)−F (x, t1)−F (y, t2)+F (y, t1)‖ ≤ ‖x−y‖(Φ(t2)−Φ(t1)), x, y ∈ B, [t1, t2] ⊂ [a, b], (4.13)

where Φ : [a, b] → R is a nondecreasing left-continuous function. Note that the theorem in [21] is
stated for B = X, but remains valid for any B ⊂ X. For example, an ordinary differential equation
with a locally Lipschitz-continuous right-hand side is equivalent to a generalized differential equa-
tion whose right-hand side F satisfies (4.13) only locally. Also, solutions of generalized differential
equations are regulated, and therefore bounded on compact intervals. Thus, the situation when B
is bounded is quite natural. In this case, it is not difficult to check that the conditions (4.12), (4.13)
hold if and only if F ∈ F(B × [a, b], h, ω1), where ω1(r) = r for all r ≥ 0. Therefore, J. Kurzweil’s
theorem is seemingly similar to our Theorem 4.7 with ω = ω1, but its precise formulation is different:
The theorem starts with two right-hand sides F1, F2 : B × [a, b]→ X satisfying the inequality

‖F1(x, t2)− F1(x, t1)− F2(x, t2) + F2(x, t1)‖ ≤ (1 + ‖x‖)(Φ∗(t2)− Φ∗(t1)),

for all x ∈ B and [t1, t2] ⊂ [a, b], where Φ∗ : [a, b] → R is a nondecreasing left-continuous function.
Then, assuming that x1, x2 : [a, b] → X satisfy dxi

dτ = DFi(xi, t) and x1(a) = x2(a), the theorem
provides an estimate of the form ‖x1 − x2‖∞ ≤ C(Φ∗(b)− Φ∗(a)).

5 Measure functional differential equations

As an application of our results for abstract differential equations, let us study the well-posedness for
measure functional differential equations of the form

y(t) = y(t0) +

∫ t

t0

f(ys, s) dg(s), t ∈ [t0, t0 + σ], (5.1)

where y and f take values in Rn, and the integral on the right-hand side is the Kurzweil-Stieltjes integral
with respect to a nondecreasing function g : [t0, t0 + σ] → R. These equations generalize other types of
functional equations, such as classical functional differential equations, impulsive functional differential
equations, or functional dynamic equations on time scales (see [10, 11]). In [10], it was shown that
there is a one-to-one correspondence between measure functional differential equations with finite delay
and generalized ordinary differential equations whose solutions take values in certain infinite-dimensional
spaces. In [37], this correspondence was extended to equations with infinite delay and axiomatically
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described phase space. For simplicity, we do not discuss general phase spaces as in [27, 37], but restrict
ourselves to the phase space G((−∞, 0],Rn).

The correspondence between measure functional differential equations and generalized ordinary differ-
ential equations is constructed as follows: We take B ⊂ Rn, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B),
and consider a function f : P×[t0, t0+σ]→ Rn (note that xt ∈ P whenever x ∈ O and t ∈ [t0, t0+σ]). Now,
under certain assumptions, Eq. (5.1) is equivalent (in a sense described below) to the abstract generalized
ordinary differential equation

dx

dτ
= DF (x, t), t ∈ [t0, t0 + σ], (5.2)

in the Banach space X = G((−∞, t0 + σ],Rn), where the solution x takes values in O ⊂ X, and the
function F : O × [t0, t0 + σ]→ X is given by

F (x, t)(ϑ) =


0, −∞ < ϑ ≤ t0,∫ ϑ
t0
f(xs, s) dg(s), t0 ≤ ϑ ≤ t ≤ t0 + σ,∫ t

t0
f(xs, s) dg(s), t ≤ ϑ ≤ t0 + σ

(5.3)

for every x ∈ O and t ∈ [t0, t0 + σ].
At this moment, we need the following conditions concerning the function f :

(A) The integral
∫ t0+σ

t0
f(yt, t) dg(t) exists for every y ∈ O.

(B) There exists a function M : [t0, t0 + σ]→ [0,∞), which is Kurzweil-Stieltjes integrable with respect
to g, such that ∥∥∥∥∥

∫ b

a

f(yt, t) dg(t)

∥∥∥∥∥ ≤
∫ b

a

M(t) dg(t), y ∈ O, [a, b] ⊆ [t0, t0 + σ].

(C) There exists a function L : [t0, t0 + σ] → [0,∞), which is Kurzweil-Stieltjes integrable with respect
to g, and a continuous increasing function ω : [0,∞)→ [0,∞) such that ω(0) = 0,∥∥∥∥∥

∫ b

a

(f(yt, t)− f(zt, t)) dg(t)

∥∥∥∥∥ ≤
∫ b

a

L(t)ω(‖yt − zt‖∞) dg(t), y, z ∈ O, [a, b] ⊆ [t0, t0 + σ].

The next lemma is a straightforward generalization of [37, Lemma 3.4], which corresponds to the special
case ω(r) = r.

Lemma 5.1. Assume that B ⊂ Rn, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B), g : [t0, t0 + σ] → R is
a nondecreasing function, f : P × [t0, t0 + σ] → Rn satisfies conditions (A), (B), (C). Then, the function
F : O × [t0, t0 + σ] → G((−∞, t0 + σ],Rn) given by (5.3) is an element of F(O × [t0, t0 + σ], h1, h2, ω),

where h1(t) =
∫ t
t0
M(s) dg(s) and h2(t) =

∫ t
t0
L(s) dg(s) for all s ∈ [t0, t0 + σ].

Proof. Condition (A) guarantees that the integrals in the definition of F exist. When [s1, s2] ⊂ [t0, t0 +σ],
we have

F (y, s2)(τ)− F (y, s1)(τ) =


0, −∞ < τ ≤ s1,∫ τ
s1
f(ys, s) dg(s), s1 ≤ τ ≤ s2,∫ s2

s1
f(ys, s) dg(s), s2 ≤ τ ≤ t0 + σ

for every y ∈ O. Using condition (B), we get

‖F (y, s2)− F (y, s1)‖∞ = sup
τ∈[s1,s2]

‖F (y, s2)(τ)− F (y, s1)(τ)‖ =

= sup
τ∈[s1,s2]

∥∥∥∥∫ τ

s1

f(ys, s) dg(s)

∥∥∥∥ ≤ ∫ s2

s1

M(s) dg(s) = h1(s2)− h1(s1).
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Similarly, condition (C) implies that for every y, z ∈ O, we have

‖F (y, s2)− F (y, s1)− F (z, s2) + F (z, s1)‖∞

= sup
τ∈[s1,s2]

‖F (y, s2)(τ)−F (y, s1)(τ)−F (z, s2)(τ) +F (z, s1)(τ)‖ = sup
τ∈[s1,s2]

∥∥∥∥∫ τ

s1

(f(ys, s)− f(zs, s)) dg(s)

∥∥∥∥
≤
∫ s2

s1

L(s)ω(‖ys − zs‖∞) dg(s) ≤ ω(‖y − z‖∞)

(∫ s2

s1

L(s) dg(s)

)
= ω(‖y − z‖∞)(h2(s2)− h2(s1)).

The next two theorems describe the precise relationship between solutions of the measure functional
differential equation (5.1) and solutions of the generalized differential equation (5.2).

The proofs for the special case ω(r) = r can be found in [37]. In the general case, the proofs require
some small modifications that are described below.

Theorem 5.2. Assume that B ⊂ Rn is open, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B), φ ∈ P ,
g : [t0, t0 +σ]→ R is a nondecreasing function, f : P × [t0, t0 +σ]→ Rn satisfies conditions (A), (B), (C),
and F : O × [t0, t0 + σ]→ G((−∞, t0 + σ],Rn) is given by (5.3).

If y ∈ O is a solution of the measure functional differential equation

y(t) = y(t0) +

∫ t

t0

f(ys, s) dg(s), t ∈ [t0, t0 + σ],

yt0 = φ,

then the function x : [t0, t0 + σ]→ O given by

x(t)(ϑ) =

{
y(ϑ), ϑ ∈ (−∞, t],
y(t), ϑ ∈ [t, t0 + σ]

is a solution of the generalized ordinary differential equation (5.2).

Proof. A proof for the special case ω(r) = r can be found in [37, Theorem 3.6]. In the general case, it is
enough to modify the proof from [37] as follows:

Given an ε > 0, there exists an r0 > 0 such that ω(r) ≤ ε for all r ∈ [0, r0]. The function h(t) =∫ t
t0
M(s) dg(s) has only finitely many points t ∈ [t0, t0 + σ] such that ∆+h(t) ≥ r0; denote these points by

t1, . . . , tm. Find a gauge δ : [t0, t0 + σ]→ R+ such that

δ(τ) < min

{
tk − tk−1

2
, k = 2, . . . ,m

}
, τ ∈ [t0, t0 + σ],

δ(τ) < min {|τ − tk|; k = 1, . . . ,m} , τ ∈ [t0, t0 + σ]\{t1, . . . , tm},∫ tk+δ(tk)

tk

L(s)ω(‖ys − x(tk)s‖∞) dg(s) <
ε

2m+ 1
, k ∈ {1, . . . ,m},

‖y(ρ)− y(τ)‖ ≤ r0, τ ∈ [t0, t0 + σ]\{t1, . . . , tm}, ρ ∈ [τ, τ + δ(τ)).

Then proceed as in [37] with obvious modifications.

Theorem 5.3. Assume that B ⊂ Rn is open, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B), φ ∈ P ,
g : [t0, t0 +σ]→ R is a nondecreasing function, f : P × [t0, t0 +σ]→ Rn satisfies conditions (A), (B), (C),
and F : O × [t0, t0 + σ]→ G((−∞, t0 + σ],Rn) is given by (5.3).

If x : [t0, t0 +σ]→ O is a solution of the generalized ordinary differential equation (5.2) with the initial
condition

x(t0)(ϑ) =

{
φ(ϑ− t0), ϑ ∈ (−∞, t0],

φ(0), ϑ ∈ [t0, t0 + σ],
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then the function y ∈ O defined by

y(ϑ) =

{
x(t0)(ϑ), ϑ ∈ (−∞, t0],

x(ϑ)(ϑ), ϑ ∈ [t0, t0 + σ]

is a solution of the measure functional differential equation

y(t) = y(t0) +

∫ t

t0

f(ys, s) dg(s), t ∈ [t0, t0 + σ],

yt0 = φ.

Proof. A proof for the special case ω(r) = r can be found in [37, Theorem 3.7]. In the general case, it is
enough to modify the proof from [37] in the same way as described in the proof of Theorem 5.2, except
that the last condition on the gauge δ should be replaced by

|h(ρ)− h(τ)| ≤ r0, τ ∈ [t0, t0 + σ]\{t1, . . . , tm}, ρ ∈ [τ, τ + δ(τ)).

Then proceed as in [37] with obvious modifications.

We now present an Osgood-type existence theorem for measure functional differential equations with
infinite delay based on Theorem 3.2. Our result generalizes [10, Theorem 5.3] and [37, Theorem 3.12],
which corresponds to the special case ω(r) = r. Even in that case, our theorem provides more information
since it specifies a lower bound for the length of the interval where the solution is guaranteed to exist.

Theorem 5.4. Assume that B ⊂ Rn is open, O = G((−∞, t0+σ], B), P = G((−∞, 0], B), g : [t0, t0+σ]→
R is nondecreasing and left-continuous function, and f : P × [t0, t0 + σ] → Rn satisfies conditions (A),
(B), (C), where the function ω : [0,∞)→ [0,∞) is such that

lim
v→0+

∫ u

v

dr

ω(r)
=∞

for every u > 0.
If φ ∈ P is such that φ(0) + f(φ, t0)∆+g(t0) ∈ B, then the initial-value problem

y(t) = y(t0) +

∫ t

t0

f(ys, s) dg(s), t ∈ [t0, t0 + σ], yt0 = φ, (5.4)

has a unique local solution defined on a right neighborhood of t0.
Moreover, if ∆ > 0 is such that the closed ball

{x ∈ Rn; ‖x− (φ(0) + f(φ, t0)∆+g(t0))‖ ≤
∫ t0+∆

t0+

M(s) dg(s)} (5.5)

is contained in B, the solution is guaranteed to exist on [t0, t0 + ∆].

Proof. According to Lemma 5.1, the function F given by (5.3) is an element of F(O× [t0, t0 +σ], h1, h2, ω),

where h1(t) =
∫ t
t0
M(s) dg(s) and h2(t) =

∫ t
t0
L(s) dg(s). Since g is left-continuous, h1 and h2 have the

same property.
By Theorems 5.2 and 5.3, the initial-value problem (5.4) is equivalent to

dx

dτ
= DF (x, t), t ∈ [t0, t0 + σ], x(t0) = x0, (5.6)

where x0 equals

x0(ϑ) =

{
φ(ϑ− t0), ϑ ∈ (−∞, t0],

φ(0), ϑ ∈ [t0, t0 + σ].
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The function F is regulated with respect to the second variable (this follows from the fact that F(O ×
[t0, t0 + σ], h1, h2, ω), where h1 is regulated). Thus for every t ∈ [t0, t0 + σ), the right-sided limit F (x, t+)
exists and F (x, t+)(ϑ) = limδ→0+ F (x, t + δ)(ϑ). Using Theorem 2.12 and the definition of F given in
(5.3), we obtain

(F (x, t+)− F (x, t))(ϑ) =

{
0, ϑ ∈ (−∞, t],
f(xt, t)∆

+g(t), ϑ ∈ (t, t0 + σ].

By Theorem 3.2, Eq. (5.6) has a unique local solution if x0 + F (x0, t0+)− F (x0, t0) ∈ O. Since

(x0 + F (x0, t0+)− F (x0, t0))(ϑ) =

{
φ(ϑ− t0), ϑ ∈ (−∞, t0],

φ(0) + f(φ, t0)∆+g(t0), ϑ ∈ (t0, t0 + σ],

the condition is satisfied if and only if φ(0) + f(φ, t0)∆+g(t0) ∈ B.
For every x ∈ O and t ∈ [t0, t0 + σ], F (x, t) vanishes on (−∞, t0]. Thus, the solution of (5.6) can never

leave the set
Y = {x ∈ G((−∞, t0 + σ],Rn); x(ϑ) = φ(ϑ− t0) for ϑ ∈ (−∞, t0]}.

By Remark 3.3, the solution is guaranteed to exist on [a, a+ ∆] if the following statements hold:

• If x ∈ Y and t ∈ [t0, t0 + ∆), then x+ F (x, t+)− F (x, t) ∈ Y .

• If x ∈ Y and ‖x− (x0 + F (x0, t0+)− F (x0, t0))‖ ≤ h1(t0 + ∆)− h1(t0+), then x ∈ O.

The first condition is clearly satisfied, because F (x, t+) − F (x, t) equals zero on (−∞, t0]. Also, we have

h1(t0 + ∆)− h1(t0+) =
∫ t0+∆

t0+
M(s) dg(s) and

(x− (x0 + F (x0, t0+)− F (x0, t0)))(ϑ) =

{
0, ϑ ∈ (−∞, t0],

x(ϑ)− (φ(0) + f(φ, t0)∆+g(t0)), ϑ ∈ (t0, t0 + σ],

for every x ∈ Y . Hence, the second condition is satisfied if the closed ball (5.5) is contained in B.

Let us proceed to continuous dependence of solutions to nonlinear measure functional differential equa-
tions. The only theorem available in the literature is [10, Theorem 6.3], which applies to equations with
finite delay and is similar in spirit to Theorem 4.3 (i.e., it states that under certain assumptions, the limit
of solutions is a solution again). The next result for measure functional differential equations with infinite
delay is based on Theorem 4.7. Therefore, it is new even in the special case when the delay is finite and
ω(r) = r.

Theorem 5.5. Assume that B ⊂ Rn, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B), g : [t0, t0 + σ]→ R is
a nondecreasing left-continuous function, and fk : P × [t0, t0 +σ]→ Rn, k ∈ N0, is a sequence of functions
satisfying the following conditions:

1. The integral
∫ t0+σ

t0
fk(yt, t) dg(t) exists for every k ∈ N0, y ∈ O.

2. There exists a function M : [t0, t0 + σ] → [0,∞), which is Kurzweil-Stieltjes integrable with respect
to g, such that∥∥∥∥∥

∫ b

a

fk(yt, t) dg(t)

∥∥∥∥∥ ≤
∫ b

a

M(t) dg(t), k ∈ N0, y ∈ O, [a, b] ⊆ [t0, t0 + σ].

3. There exists a function L : [t0, t0+σ]→ [0,∞), which is Kurzweil-Stieltjes integrable with respect to g,
and a continuous increasing function ω : [0,∞) → [0,∞) such that ω(0) = 0, limv→0+

∫ u
v

dr
ω(r) = ∞

for every u > 0, and∥∥∥∥∥
∫ b

a

(fk(yt, t)− fk(zt, t)) dg(t)

∥∥∥∥∥ ≤
∫ b

a

L(t)ω(‖yt−zt‖∞) dg(t), k ∈ N0, y, z ∈ O, [a, b] ⊆ [t0, t0+σ].
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4. For every y ∈ O,

lim
k→∞

∫ t

t0

fk(ys, s) dg(s) =

∫ t

t0

f0(ys, s) dg(s)

uniformly with respect to t ∈ [t0, t0 + σ].

Suppose that φ0 ∈ P and y0 : (−∞, t0 + σ]→ B satisfies

y0(t) = y0(t0) +

∫ t

t0

f0((y0)s, s) dg(s), t ∈ [t0, t0 + σ], (y0)t0 = φ0.

Also, assume there exists a ρ > 0 such that ‖y − y0(s)‖ < ρ implies y ∈ B whenever s ∈ (−∞, t0 + σ].
Then, given an arbitrary sequence φk ∈ P , k ∈ N, such that limk→∞ ‖φk − φ0‖∞ = 0, there are a k0 ∈ N
and a sequence of functions yk : (−∞, t0 + σ]→ B, k ≥ k0, which satisfy

yk(t) = yk(t0) +

∫ t

t0

fk((yk)s, s) dg(s), t ∈ [t0, t0 + σ], (yk)t0 = φk. (5.7)

Moreover, the sequence {yk}∞k=k0
is uniformly convergent to y0 on (−∞, t0 + σ].

Proof. For every k ∈ N0, let the function Fk : O × [t0, t0 + σ]→ G((−∞, t0 + σ],Rn) be given by

Fk(x, t)(ϑ) =


0, −∞ < ϑ ≤ t0,∫ ϑ
t0
fk(xs, s) dg(s), t0 ≤ ϑ ≤ t ≤ t0 + σ,∫ t

t0
fk(xs, s) dg(s), t ≤ ϑ ≤ t0 + σ

for every x ∈ O and t ∈ [t0, t0 + σ]. According to Lemma 5.1, we have Fk ∈ F(O × [t0, t0 + σ], h1, h2, ω),
where h1, h2 are left-continuous functions. Moreover, it follows from assumption 4 that

lim
k→∞

Fk(x, t) = F0(x, t), (x, t) ∈ O × [t0, t0 + σ].

For every k ∈ N0, let x̃k ∈ O be defined as

x̃k(ϑ) =

{
φk(ϑ− t0), ϑ ∈ (−∞, t0],

φk(0), ϑ ∈ [t0, t0 + σ].

By Theorem 5.2, the function x0 : [t0, t0 + σ]→ O given by

x0(t)(ϑ) =

{
y0(ϑ), ϑ ∈ (−∞, t],
y0(t), ϑ ∈ [t, t0 + σ]

satisfies
dx0

dτ
= DF0(x0, t), t ∈ [t0, t0 + σ], x0(t0) = x̃0.

Also, note that limk→∞ x̃k = x̃0. Hence, by Theorem 4.7, there is a k0 ∈ N and a sequence of functions
xk : [t0, t0 + σ]→ O, k ≥ k0, which is uniformly convergent to x0 on [t0, t0 + σ], and

dxk
dτ

= DFk(xk, t), t ∈ [t0, t0 + σ], xk(t0) = x̃k, k ≥ k0.

For every k ∈ N, let yk ∈ O be given by

yk(ϑ) =

{
xk(t0)(ϑ), ϑ ∈ (−∞, t0],

xk(ϑ)(ϑ), ϑ ∈ [t0, t0 + σ].

By Theorem 5.3, the function yk is a solution of the initial-value problem (5.7). Also, since the sequence
{xk}∞k=k0

is uniformly convergent to x0, it follows that {yk}∞k=k0
is uniformly convergent to y0.
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6 Functional differential equations with impulses

In this section, we consider the well-posedness for impulsive functional differential equations of the form

y′(t) = f(yt, t), almost everywhere in [t0, t0 + σ],
∆+y(ti) = Ii(y(ti)), i ∈ {1, . . . ,m},

where the impulses take place at preassigned times t1, . . . , tm ∈ [t0, t0 +σ), and their action is described by
the operators Ii : Rn → Rn, i ∈ {1, . . . ,m}; the solution is assumed to be left-continuous at every point ti,
and absolutely continuous on every interval whose intersection with {t1, . . . , tm} is empty. The equivalent
integral form of the problem is

y(t) = y(t0) +

∫ t

t0

f(ys, s) ds+
∑

i∈{1,...,m},
ti<t

Ii(y(ti)), t ∈ [t0, t0 + σ]. (6.1)

Using the following lemma, it is possible to convert impulsive functional differential equations into
measure functional differential equations. The lemma is a consequence of [11, Lemma 2.4].

Lemma 6.1. Let m ∈ N, a ≤ t1 < t2 < · · · < tm < b, and

g(s) = s+

m∑
i=1

χ(ti,∞)(s), s ∈ [a, b]

(where χA denotes the characteristic function of a set A ⊂ R). Consider an arbitrary pair of functions
f : [a, b]→ R and f̃ : [a, b]→ R such that f̃(s) = f(s) for every s ∈ [a, b]\{t1, . . . , tm}.

Then the integral
∫ b
a
f̃(s) dg(s) exists if and only if the integral

∫ b
a
f(s) ds exists; in that case, we have∫ t

a

f̃(s) dg(s) =

∫ t

a

f(s) ds+
∑

i∈{1,...,m},
ti<t

f̃(ti), t ∈ [a, b].

According to the last lemma, the impulsive equation (6.1) is equivalent to the measure functional
differential equation

y(t) = y(t0) +

∫ t

t0

f̃(ys, s) dg(s), t ∈ [t0, t0 + σ], (6.2)

where g(s) = s+
∑m
i=1 χ(ti,∞)(s) and

f̃(x, s) =

{
f(x, s) for s ∈ [t0, t0 + σ]\{t1, . . . , tm},
Ii(x(0)) for s = ti, i ∈ {1, . . . ,m}.

Now, it is a simple task to obtain an Osgood-type existence theorem for impulsive functional differential
equations with infinite delay.

Theorem 6.2. Let B ⊂ Rn be open, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B), m ∈ N, t0 ≤ t1 < t2 <
. . . < tm < t0 + σ. Consider functions f : P × [t0, t0 + σ] → Rn and I1, . . . , Im : B → Rn such that the
following conditions are satisfied:

1. The integral
∫ t0+σ

t0
f(yt, t) dt exists for every y ∈ O.

2. There exists an integrable function M : [t0, t0 + σ]→ [0,∞) such that∥∥∥∥∥
∫ b

a

f(yt, t) dt

∥∥∥∥∥ ≤
∫ b

a

M(t) dt, y ∈ O, [a, b] ⊆ [t0, t0 + σ].
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3. There exists an integrable function L : [t0, t0 + σ] → [0,∞) and a continuous increasing function
ω : [0,∞)→ [0,∞) such that ω(0) = 0, limv→0+

∫ u
v

dr
ω(r) =∞ for every u > 0, and∥∥∥∥∥

∫ b

a

(f(yt, t)− f(zt, t)) dt

∥∥∥∥∥ ≤
∫ b

a

L(t)ω(‖yt − zt‖∞) dt, y, z ∈ O, [a, b] ⊆ [t0, t0 + σ].

4. There exist constants α1, . . . , αm ≥ 0 such that ‖Ii(x)‖ ≤ αi for i ∈ {1, . . . ,m}, x ∈ B.

5. There exists a constant β > 0 such that ‖Ii(x)− Ii(y)‖ ≤ βω(‖x− y‖) for i ∈ {1, . . . ,m}, x, y ∈ B.

Let φ ∈ P and assume that either t0 < t1, or t0 = t1 and φ(0) + I1(φ(0)) ∈ B. Then, the initial-value
problem

y(t) = y(t0) +

∫ t

t0

f(ys, s) ds+
∑

i∈{1,...,m},
ti<t

Ii(y(ti)), t ∈ [t0, t0 + σ], yt0 = φ. (6.3)

has a unique local solution defined on a right neighborhood of t0.
Moreover, if ∆ > 0 is such that either t0 < t1 and

{x ∈ Rn; ‖x− φ(0)‖ ≤
∫ t0+∆

t0

M(s) ds+
m∑
i=1

αi} ⊂ B,

or t0 = t1 and

{x ∈ Rn; ‖x− (φ(0) + I1(φ(0)))‖ ≤
∫ t0+∆

t0

M(s) ds+

m∑
i=2

αi} ⊂ B,

then the solution is guaranteed to exist on [t0, t0 + ∆].

Proof. It is enough to prove that the equivalent measure functional differential equation (6.2) has a unique
local solution satisfying yt0 = φ. Let us verify that all assumptions of Theorem 5.5 are satisfied.

Assume that [a, b] ⊂ [t0, t0 + σ] and y, z ∈ O. From Lemma 6.1, we obtain

∥∥∥∥∥
∫ b

a

f̃(yt, t) dg(t)

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
∫ b

a

f(yt, t) dt+
∑

i∈{1,...,m},
a≤ti<b

Ii(y(ti))

∥∥∥∥∥∥∥∥ ≤
∫ b

a

M(t) dt+
∑

i∈{1,...,m},
a≤ti<b

αi =

∫ b

a

M̃(t) dg(t),

where

M̃(t) =

{
M(t) for t ∈ [t0, t0 + σ]\{t1, . . . , tm},
αi for t = ti, i ∈ {1, . . . ,m}.

Similarly,

∥∥∥∥∥
∫ b

a

(
f̃(yt, t)− f̃(zt, t)

)
dg(t)

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
∫ b

a

(f(yt, t)− f(zt, t)) dt+
∑

i∈{1,...,m},
a≤ti<b

(Ii(y(ti))− Ii(z(ti)))

∥∥∥∥∥∥∥∥
≤
∫ b

a

L(t)ω(‖yt − zt‖∞) dt+
∑

i∈{1,...,m},
a≤ti<b

βω(‖y(ti)− z(ti)‖)

≤
∫ b

a

L(t)ω(‖yt − zt‖∞) dt+
∑

i∈{1,...,m},
a≤ti<b

βω(‖yti − zti‖∞) =

∫ b

a

L̃(t)ω(‖yt − zt‖∞) dg(t),
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where

L̃(t) =

{
L(t) for t ∈ [t0, t0 + σ]\{t1, . . . , tm},
β for t = ti, i ∈ {1, . . . ,m}.

We have either t0 < t1 and φ(0) + f̃(φ, t0)∆+g(t0) = φ(0) ∈ B, or t0 = t1 and φ(0) + f̃(φ, t0)∆+g(t0) =
φ(0) + I1(φ(0)) ∈ B. Hence, all assumptions of Theorem 5.5 are satisfied.

Finally, the two conditions on the length ∆ follow from the identity∫ t0+∆

t0+

M̃(s) dg(s) =

∫ t0+∆

t0

M(s) ds+
∑

i∈{1,...,m},
t0<ti<t0+σ

αi.

Our last result is a continuous dependence theorem for impulsive functional differential equations with
infinite delay.

Theorem 6.3. Let B ⊂ Rn be open, O = G((−∞, t0 + σ], B), P = G((−∞, 0], B), m ∈ N, t0 ≤ t1 <
t2 < . . . < tm < t0 + σ. Consider sequences of functions fk : P × [t0, t0 + σ] → Rn, k ∈ N0, and
Ik1 , . . . , I

k
m : B → Rn, k ∈ N0, which satisfy the following conditions:

1. The integral
∫ t0+σ

t0
fk(yt, t) dt exists for every k ∈ N0, y ∈ O.

2. There exists an integrable function M : [t0, t0 + σ]→ R+ such that∥∥∥∥∥
∫ b

a

fk(yt, t) dt

∥∥∥∥∥ ≤
∫ b

a

M(t) dt, k ∈ N0, y ∈ O, [a, b] ⊆ [t0, t0 + σ].

3. There exist a continuous increasing function ω : [0,∞) → [0,∞) and an integrable function L :
[t0, t0 + σ]→ R+ such that∥∥∥∥∥
∫ b

a

(fk(yt, t)− fk(zt, t)) dt

∥∥∥∥∥ ≤
∫ b

a

L(t)ω(‖yt − zt‖∞) dt, k ∈ N0, y, z ∈ O, [a, b] ⊆ [t0, t0 + σ]

and limv→0+

∫ u
v

dr
ω(r) =∞ for every u > 0.

4. For every y ∈ O,

lim
k→∞

∫ t

t0

fk(ys, s) ds =

∫ t

t0

f0(ys, s) ds

uniformly with respect to t ∈ [t0, t0 + σ].

5. There exists a constant α > 0 such that ‖Iki (x)‖ ≤ α for every i ∈ {1, . . . ,m}, k ∈ N0 and x ∈ B.

6. There exists a constant β > 0 such that ‖Iki (x) − Iki (y)‖ ≤ βω(‖x − y‖) for every i ∈ {1, . . . ,m},
k ∈ N0 and x, y ∈ B.

7. For every x ∈ B and k ∈ {1, . . . ,m}, limk→∞ Iki (x) = I0
i (x).

Suppose that φ0 ∈ P and y0 : (−∞, t0 + σ]→ B satisfies

y0(t) = y0(t0) +

∫ t

t0

f0((y0)s, s) ds+
∑

i∈{1,...,m},
ti<t

I0
i (y0(ti)), t ∈ [t0, t0 + σ], (y0)t0 = φ0.

Also, assume there exists a ρ > 0 such that ‖y − y0(s)‖ < ρ implies y ∈ B whenever s ∈ (−∞, t0 + σ].
Then, given an arbitrary sequence φk ∈ P , k ∈ N, such that limk→∞ ‖φk − φ0‖∞ = 0, there are a k0 ∈ N
and a sequence of functions yk : (−∞, t0 + σ]→ B, k ≥ k0, which satisfy

yk(t) = yk(t0) +

∫ t

t0

fk((yk)s, s) ds+
∑

i∈{1,...,m},
ti<t

Iki (yk(ti)), t ∈ [t0, t0 + σ], (yk)t0 = φk.

Moreover, the sequence {yk}∞k=k0
is uniformly convergent to y0 on (−∞, t0 + σ].
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Proof. Let g(s) = s+
∑m
i=1 χ(ti,∞)(s) and

f̃k(x, s) =

{
fk(x, s), s ∈ [t0, t0 + σ]\{t1, . . . , tm},
Iki (x(0)), s = ti, i ∈ {1, . . . ,m}

for every k ∈ N0. Then

yk(t) = yk(t0) +

∫ t

t0

fk((yk)s, s) ds+
∑

i∈{1,...,m},
ti<t

Iki (yk(ti)), t ∈ [t0, t0 + σ]

holds if and only if

yk(t) = yk(t0) +

∫ t

t0

f̃k((yk)s, s) dg(s), t ∈ [t0, t0 + σ].

Hence, the statement of our theorem follows from Theorem 5.5 once we verify that all its assumptions are
satisfied. The validity of assumptions 1 and 4 is a straightforward consequence of Lemma 6.1.

As in the proof of Theorem 6.2, one can verify that∥∥∥∥∥
∫ b

a

f̃k(yt, t) dg(t)

∥∥∥∥∥ ≤
∫ b

a

M̃(t) dg(t), [a, b] ⊂ [t0, t0 + σ],

∥∥∥∥∥
∫ b

a

(
f̃k(yt, t)− f̃k(zt, t)

)
dg(t)

∥∥∥∥∥ ≤
∫ b

a

L̃(t)ω(‖yt − zt‖∞) dg(t),

which means that assumptions 2 and 3 are satisfied, too.

7 Conclusion

The results obtained in this paper are also applicable to abstract dynamic equations on time scales, as
well as (impulsive) functional dynamic equations on time scales. As shown in [10, 11, 36], these types of
equations can be transformed to measure (functional) differential equations. Thus, one can easily obtain
Osgood-type theorems and continuous dependence theorems for these equations.
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