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Abstract. We investigate a puzzle involving the winning probabilities in a duel of two players.
The problem of calculating limiting probabilities leads to the summation of a divergent infinite
series. The solution admits a generalization that applies to a wide class of duels.

There is a wealth of literature dealing with mathematical duels and their three-person
versions called truels, see for example [4, 5, 6] and the references therein. The basic
form of a duel is the simple sequential duel, where two players fight against each
other. They share a single gun, which they exchange after each unsuccessful shot,
until one player finally eliminates the opponent. Another version is the random duel,
where the player who is going to shoot is chosen at random in each round. In any case,
the problem is to calculate the winning probabilities for both players. Truels are even
more interesting, since each player can either choose the target at random, or adopt
some deterministic strategy. For example, if all three players have different shooting
skills, it is natural for each of them to aim at the stronger of the two opponents. In this
case, it is known that the worst player is most likely to win the truel.

In the present paper, we begin by investigating a specific sequential duel proposed
by Paul Nahin. The problem of calculating limiting winning probabilities leads to the
evaluation of a certain Abel sum, and we will accomplish this task by finding the
Cesàro sum of a divergent series. Thus, a problem in recreational mathematics leads
naturally to some basic concepts of summability theory. Finally, we will show that the
solution admits a generalization to a wide class of sequential duels.

One of Paul Nahin’s enjoyable books, Duelling Idiots and Other Probability Puz-
zlers, contains the following amusing exercise [8, p. 20]: Players A and B have one gun
– a revolver with six chambers – and one bullet. Inserting it into the gun’s cylinder,
A will spin the cylinder and shoot at B (who is impossible to miss). If the gun doesn’t
fire then A will give the gun to B, who will spin the cylinder and then shoot at A. If
the gun doesn’t fire, B spins the cylinder again and gets a second try. If the gun still
doesn’t fire, B gives the gun to A, who gets a maximum of three trigger pulls (with
a spin of the cylinder between pulls). The duel continues in a similar way, and each
player gets an extra trigger pull for each turn, until the gun eventually fires. What is
the probability that A wins the duel?

We generalize the problem by considering a revolver with n chambers. The proba-
bility that any player’s shot will be successful is 1/n. Note that A can win after shot 1,
or after shots 4, 5, 6, then after shots 11, 12, 13, 14, 15, etc. Thus, the winning proba-
bility of A is
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We factor 1/n out of the whole sum, and observe that the infinite series is divided
into groups containing powers of 1 − 1/n. The numbers of terms in these groups
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are 1, 3, 5, etc.; in general, the m-th group has 2m − 1 terms for each m ∈ N. The
exponents of the first terms in each group are 0, 1 + 2, 1 + 2 + 3 + 4, etc.; the first
exponent in the m-th group is

∑2m−2
i=1 i = (2m− 1)(m− 1). In this way, we rewrite

the winning probability of A in the form
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Nahin considers only the case n = 6 and evaluates the sum numerically to a high
precision (25 digits), saying it is “a number I feel safe in saying has never appeared in
print before until now” [8, p. 85].

Indeed, it seems difficult to find the value of the sum analytically, so let us stick
with numerical calculations. Table 1 shows that for small integers n, the probability
that A wins the duel is greater than 1/2. We also see that it decreases with n, and
seems to approach 1/2 for n → ∞. An intuitive explanation might be that for large n,
the probability that A wins in the first round will be negligible, and there is no major
advantage in being the first player. Our goal is to supply a rigorous calculation of the
limiting probability.

n P

2 0.610322
3 0.557085
4 0.538937
5 0.529620
6 0.523919
7 0.520065
8 0.517283
9 0.515180

10 0.513533
Table 1. Winning probabilities for player A and revolver with n chambers.

Among mathematicians, the person who is most famous for being seriously in-
volved in duels is Évariste Galois, but our problem is closer to the work of his contem-
porary Niels Henrik Abel, and boils down to an interesting exercise in the summability
of divergent infinite series.

We denote q = 1− 1/n to simplify the formula for the winning probability of A:

P (q) =
∞∑

m=1

q(2m−1)(m−1)
(
1− q2m−1

)
. (1)

In fact, if we forget about the revolver having n chambers, we can assume that q is the
probability that a player misses the opponent (for whatever reason), and this version
of the problem makes sense not just for q of the form 1− 1/n, but for any q ∈ (0, 1).
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Figure 1: The probability P (q) as a function of q.

In his review [1] of Nahin’s book, Michael Fox pointed out that one can obtain the
result (1) in a simpler way: q(2m−1)(m−1) is the probability that the gun does not fire
during the first (2m− 1)(m− 1) shots, and 1− q2m−1 is the probability that it fires
during the subsequent 2m− 1 shots.

The first few terms of the infinite series (1) are

q0 − q1 + q3 − q6 + q10 − q15 + · · · ,

which suggests that the sum can be written in the alternative form

P (q) =
∞∑
k=0

(−1)kq
1
2k(k+1). (2)

Indeed, this power series has radius of convergence 1, and the sum of two adjacent
terms corresponding to k = 2m− 2 and k = 2m− 1, m ∈ N, is

(−1)2m−2q
1
2 (2m−2)(2m−1) + (−1)2m−1q

1
2 (2m−1)2m = q(m−1)(2m−1) − q(2m−1)m,

which agrees with the terms of the series (1).
Plotting the values of P (q) given by the power series (2) for q ∈ [0, 1), we obtain

the graph in Figure 1, which provides further evidence that P (q) tends to 1/2 for
q → 1− (note that this corresponds to n → ∞ in our earlier calculation). Thus, our
goal is to show that

lim
q→1−

(
∞∑
k=0

(−1)kq
1
2k(k+1)

)
=

1

2
.

The infinite series (2) is divergent for q = 1, which makes it impossible to calculate
the limit using Abel’s theorem. However, given a power series of the form

∑∞
k=0 akx

k

with radius of convergence 1, the limit

lim
x→1−

(
∞∑
k=0

akx
k

)
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ak 1 −1 0 1 0 0 −1 0 0 0 1 0 0 0 0
sk 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1

Table 2. The sequence {ak}∞k=0 and its partial sums {sk}∞k=0.

(provided it exists) is called the Abel sum of the series
∑∞

k=0 ak. Thus, we are trying
to calculate the Abel sum of the series whose terms are

ak =

{
(−1)j if k = j(j+1)

2
for some j ∈ N ∪ {0},

0 otherwise.

One possible way of calculating an Abel sum is to recall an old result by Georg
Frobenius, which says that if an infinite series has a Cesàro sum, then its Abel sum
exists and has the same value (see [2] or [3, Section 5.12]). The Cesàro sum is defined
as

lim
N→∞

∑N
k=0 sk

N + 1
,

where sk =
∑k

j=0 aj , k ∈ N ∪ {0}, are the partial sums of
∑∞

k=0 ak.
The first few partial sums of our series are given in Table 2. Since the nonzero

terms of
∑∞

k=0 ak alternate between 1 and −1, the partial sums alternate between 1

and 0. The changes occur at positions k = j(j+1)

2
, j ∈ N ∪ {0}. If j is even, then a

block of ones starts at position k; if j is odd, there is a block of zeros beginning at
position k. The lengths of the blocks are 1, 2, 3, 4, 5, etc. At the beginning of each
block containing ones, the average value

σN =

∑N
k=0 sk

N + 1
,

of the partial sums begins to increase with N , and reaches a local maximum at the end
of that block. Similarly, at the beginning of each block of zeros, σN begins to decrease
with N , and reaches a local minimum at the end of the block. Let us calculate the
values of these maxima and minima.

The end of the l-th block of ones, counting from l = 0, occurs at position

N =
(2l + 1)(2l + 2)

2
− 1 = (l + 1)(2l + 1)− 1,

and the total number of ones until that point is 1 + 3 + · · · + (2l + 1) = l(l + 1).
Hence, at this point, we have

σN =
l(l + 1)

(l + 1)(2l + 1)
=

l

2l + 1
.

The end of the l-th block of zeros occurs at position

N =
(2l + 2)(2l + 3)

2
− 1 = (l + 1)(2l + 3)− 1,
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and the total number of ones until that point is still l(l + 1). Hence, at this point, we
have

σN =
l(l + 1)

(l + 1)(2l + 3)
=

l

2l + 3
.

For l → ∞, the values of these local maxima and minima tend to 1/2. This proves
that the Cesàro sum is

lim
N→∞

σN =
1

2
,

and consequently limq→1− P (q) = 1/2, as we wished to prove.
Observe that if we denote

A = {k ∈ N ∪ {0} : sk = 1},

then
∑N

k=0 sk = |A ∩ {0, . . . , N}|, and the Cesàro sum

lim
N→∞

σN = lim
N→∞

|A ∩ {0, . . . , N}|
N + 1

is simply the density of the set A in N ∪ {0}. Thus, the key point of the previous
calculation was to verify that the density of the set {0, 3, 4, 5, 10, . . . }, containing the
numbers of all rounds in which A is the active player (counting the rounds from 0),
is 1/2.

Let us consider a more general version of the original problem, namely a duel in
which the numbers of shots for the two players are no longer given by the sequence
1, 2, 3, 4, . . . , but by a sequence of positive integers

a1, b1, a2, b2, . . . . (3)

The winning probability for player A is now given by

P (q) = (1− q)
∞∑

m=0

q
∑m

i=1(ai+bi)(1 + q + · · ·+ qam+1−1)

=
∞∑

m=0

q
∑m

i=1(ai+bi)(1− qam+1)

= q0 − qa1 + qa1+b1 − qa1+b1+a2 + qa1+b1+a2+b2 − · · · . (4)

The existence as well as the value of limq→1− P (q) now depend on the choice of the
sequence (3). For example, it is known that

lim
q→1−

(
∞∑

n=0

(−1)nq2
n

)
does not exist [3, Section 4.10]; hence, if we choose (3) in such a way that a1 = 2,
a1 + b1 = 22, a1 + b1 + a2 = 23, etc., then

P (q) = 1−
∞∑

n=0

(−1)nq2
n

,
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Figure 2: A duel where limq→1− P (q) does not exist.

and limq→1− P (q) does not exist, see Figure 2. This example also shows that P need
not be a monotonic function of q.

However, using the relation between the Abel and Cesàro sums as before, we arrive
at the following result.

Theorem 1. In a duel where the numbers of shots for the two players are given by
the sequence (3), the winning probability of player A satisfies limq→1− P (q) = α,
provided that the set

{0, . . . , a1 − 1, a1 + b1, . . . , a1 + b1 + a2 − 1, a1 + b1 + a2 + b2, . . .} (5)

has density α in N ∪ {0}.

A simple example, also considered by Nahin in [8, Chapter 2], is the duel where
the players always alternate after one shot, i.e., an = bn = 1 for all n ∈ N; this is
the basic sequential dual. Then limq→1− P (q) = 1/2, because the set {0, 2, 4, . . .}
has density 1/2. Alternatively, one can observe that P (q) =

∑∞
m=0(−1)mqm, and

limq→1− P (q) equals the Cesàro sum of Grandi’s series
∑∞

m=0(−1)m, which is 1/2.
In general, the density of the set (5) might be difficult to calculate. Therefore, we

propose yet another method of finding limq→1− P (q). It is based on the next result,
which follows from a corollary given in [7].

Proposition 2. If {λn}∞n=0 is a strictly increasing sequence of nonnegative integers
such that

lim
n→∞

λn+1

λn

= 1 and lim
n→∞

λ2n+1 − λ2n

λ2n+2 − λ2n

= α, (6)

then

lim
s→0+

(
∞∑

n=0

(−1)ne−λns

)
= α. (7)

Although the result in [7] assumes that λn are positive, it remains true even if
λ0 = 0, because neither the assumptions in (6) nor the limit in (7) depend on λ0 (the
limit of the zeroth term of the series, i.e., lims→0+ e−λ0s, is always 1). The basic idea
of the proof presented in [7] is to write

∞∑
n=0

(−1)ne−λns =
∞∑

n=0

∫ λ2n+1

λ2n

se−sx dx =

∫ ∞

0

(
se−sx

∞∑
n=0

1[λ2n,λ2n+1](x)

)
dx,
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integrate by parts, and calculate the limit for s → 0+ using the dominated convergence
theorem (the assumptions from (6) are needed to determine the limit of the integrand).

To see why Proposition 2 is useful in connection with duels, substitute s = − ln q,
where q ∈ (0, 1). This transforms the relation (7) into

lim
q→1−

(
∞∑

n=0

(−1)nqλn

)
= α,

which is exactly the type of a limit we are interested in. Returning to the probability
P (q) given by (4), we see that we need to take

λ0 = 0,

λ1 = a1,

λ2 = a1 + b1,

λ3 = a1 + b1 + a2,

λ4 = a1 + b1 + a2 + b2,

etc., which is a strictly increasing sequence of nonnegative integers as required by
Proposition 2. Next, we calculate

λn+1

λn

=

{
1 +

ak+1

a1+b1+···+ak+bk
if n = 2k,

1 +
bk+1

a1+b1+···+ak+bk+ak+1
if n = 2k + 1.

Consequently, the first assumption in (6) will be satisfied if

lim
k→∞

ak+1

a1 + b1 + · · ·+ ak + bk
= 0 (8)

and

lim
k→∞

bk+1

a1 + b1 + · · ·+ ak + bk + ak+1

= 0. (9)

As for the second assumption, we have

λ2n+1 − λ2n

λ2n+2 − λ2n

=
an+1

an+1 + bn+1

,

and therefore we need

lim
n→∞

an+1

an+1 + bn+1

= α. (10)

To sum up, we have proved the following result.

Theorem 3. In a duel where the numbers of shots for the two players are given by
the sequence (3), the winning probability of player A satisfies limq→1− P (q) = α,
provided that (8), (9) and (10) hold.
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As a quick check, observe that the original version of the duel corresponds to an =
2n− 1 and bn = 2n for all n ∈ N (or λk = k(k+1)

2
for each k ∈ N ∪ {0}). The two

conditions (8) and (9) are satisfied, and the relation (10) holds with α = 1/2. This
confirms our earlier result limq→1− P (q) = 1/2.

The simple sequential duel with an = bn = 1 for all n ∈ N is even more trivial,
since (8), (9), and (10) are satisfied with α = 1/2.

On the other hand, one can easily find sequences (3) for which the limiting prob-
ability is no longer 1/2. For example, if we choose any two numbers p, q ∈ N and
let an = p and bn = q for all n ∈ N, then conditions (8), (9), and (10) are satisfied
with α = p

p+q
. In this way, we can achieve the limiting probability to be any rational

number from (0, 1).
We leave it up to the reader to find sequences (3) for which the limiting proba-

bilities are irrational. Another exercise is to check that conditions (8), (9), and (10)
hold if an and bn are given by polynomials in n with nonnegative coefficients, and to
determine the corresponding limit α.

Once we have Theorem 3, we may combine it with Theorem 1 to calculate densities
of various sets having the form (5). A set of nonnegative integers can be written in this
form if i) it contains zero, ii) it is infinite, and iii) its complement in N ∪ {0} is also in-
finite. The numbers a1, a2, . . . simply correspond to the lengths of successive blocks of
integers that are included in the set, while b1, b2, . . . are the lengths of gaps. In view of
this, condition (10) is quite natural, and if it holds together with conditions (8) and (9)
(e.g., if an and bn are polynomials in n with nonnegative coefficients), then the density
of the set (5) is α. The previously mentioned conditions i)–iii) are not restrictive: We
can always include zero in a set without changing its density, a finite set has density 0,
and a set whose complement is finite has density 1.

The results obtained in this paper apply not only to duels in Nahin’s sense, but also
to all kinds of sequential two-player knock-out games where both players have the
same winning probability 1 − q in each round. We leave it as an exercise to extend
Theorem 1 to the case of multiple-player sequential games, such as sequential truels
in which three players alternate after prescribed numbers of shots. In this situation, the
limit of each player’s winning probability for q → 1− equals the density of the set
containing numbers of all rounds in which he/she is the active player.
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