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Abstract

We study the asymptotic behavior of bounded solutions to the one-dimensional diffusion (heat)
equation with discrete space and continuous time. We show that a bounded solution approaches the
average of the initial values if the average exists, and provide estimates in the situation when it does
not exist.
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1 Introduction

In this paper, we focus on the semidiscrete diffusion equation (also known as the semidiscrete heat equation
or the lattice diffusion equation)

∂u

∂t
(x, t) = a(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)), x ∈ Z, t ≥ 0, (1.1)

where a > 0 is the strength of the diffusion. One way to obtain Eq. (1.1) is to begin with the classical

one-dimensional diffusion equation ∂u
∂t (x, t) = a∂2u

∂x2 (x, t), and discretize the spatial variable. However, the
semidiscrete equation is of independent interest, and it arises in several applications:

• Eq. (1.1) describes a continuous-time symmetric random walk on Z, where a is the intensity of
transitions between two neighboring integers. The value u(x, t) is the probability that the random
walk visits point x at time t; cf. [6, Section 4].

• Eq. (1.1) describes the flow of a chemical in an infinite system of tanks arranged in a row, where each
two neighbors are connected by pipes. The value u(x, t) is the amount of the chemical in tank x at
time t; cf. [10, Section 3].

• Eq. (1.1) describes the dynamics of an infinite chain of cars, each of them being coupled to its two
neighbors. The value u(x, t) is the displacement of car x at time t from its equilibrium position;
cf. [5, Example 1].

In general, initial-value problems for Eq. (1.1) do not have unique solutions (see [13, pp. 531–532]).
However, for bounded initial data, there exists a unique globally bounded solution (see [13, Theorem 3.5]),
which can be expressed by as follows. The fundamental solution v(x, t) = e−2atIx(2at), where Ix is the
modified Bessel function of the first kind of order x, satisfies v(x, 0) = 1 if x = 0, and v(x, 0) = 0 otherwise
(see [14, Example 3.1]). Now, given a bounded sequence {ck}k∈Z, the unique bounded solution of Eq. (1.1)
satisfying u(x, 0) = cx for all x ∈ Z is given by the superposition formula

u(x, t) = e−2at
∑
k∈Z

ckIx−k(2at), x ∈ Z, t ≥ 0, (1.2)

where the infinite series is absolutely convergent (see [13, Corollary 3.8 and the proof of Theorem 3.7]).
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We are interested in the asymptotic behavior of u(x, t) as t → ∞. We will show that if the average

of the initial values limk→∞
1

2k+1

∑k
l=−k cl exists and equals d, then limt→∞ u(x, t) = d for each x ∈ Z.

Under additional assumptions, the limit is uniform with respect to x. On the other hand, our main result
is more general and provides information on the limit superior and limit inferior of u(x, t) as t→∞ even
in the case when the average of the initial values does not exist.

The corresponding results for the classical one-dimensional diffusion equation ∂u
∂t (x, t) = a∂2u

∂x2 (x, t) are
well known; see e.g. [15, 16] and the references therein. Interestingly, a detailed analysis of the asymptotic
behavior in the semidiscrete case is missing, and the goal of our paper is to fill this gap. We are aware of
the following existing results: 1) Section 4 in [14] provides information on the asymptotic behavior of the
fundamental solution. 2) Theorem 4 in [5] shows that for initial data in `2(Z), the solution always tends to
zero uniformly with respect to x, and provides a sufficient condition for initial data in `∞(Z) guaranteeing
that the solution tends uniformly to zero. On the other hand, our results apply to arbitrary initial data
in `p(Z) as well as in `∞(Z), which is a natural phase space for the diffusion equation (for example, the
simple case of a constant initial condition, which leads to a constant solution, is included in `∞(Z)).

2 Main results

We begin with a few lemmas that will be needed in the proof of our main result. Most importantly, we
use summation by parts to derive an alternative formula for the solution (1.2).

Throughout this section, we use the fact that the modified Bessel functions of the first kind satisfy
I−k(t) = Ik(t) for each k ∈ Z and t ≥ 0 (see formula 10.27.1 in [9]).

Lemma 2.1. Let {ck}k∈Z be an arbitrary real sequence. Then for each N ∈ N and t ≥ 0, we have

N∑
k=−N+1

ckIk(t) =

N−1∑
k=0

(Ik(t)− Ik+1(t))

k∑
l=−k

cl + IN (t)

N∑
k=−N+1

ck.

Proof. Consider the sequence {dk}k∈Z such that d0 = c0 and dk = dk−1 + ck for each k ∈ Z. Note that for

each pair i, j ∈ Z with i > j, we have di − dj =
∑i

k=j+1(dk − dk−1) =
∑i

k=j+1 ck.
Using the summation by parts formula and performing some manipulations, we get

N∑
k=−N+1

ckIk(t) =

N∑
k=−N+1

(dk − dk−1)Ik(t) = dNIN+1(t)− d−NI−N (t)−
N∑

k=−N

dk(Ik+1(t)− Ik(t))

= dNIN+1(t)− d−NIN (t)− dN (IN+1(t)− IN (t))−
N−1∑
k=−N

dk(Ik+1(t)− Ik(t))

= IN (t)(dN − d−N )−
N−1∑
k=−N

dk(Ik+1(t)− Ik(t))

= IN (t)

N∑
k=−N+1

ck −
−1∑

k=−N

dk(Ik+1(t)− Ik(t)) +

N−1∑
k=0

dk(Ik(t)− Ik+1(t))

= IN (t)

N∑
k=−N+1

ck −
N∑

k=1

d−k(I−k+1(t)− I−k(t)) +

N−1∑
k=0

dk(Ik(t)− Ik+1(t))

= IN (t)

N∑
k=−N+1

ck −
N∑

k=1

d−k(Ik−1(t)− Ik(t)) +

N−1∑
k=0

dk(Ik(t)− Ik+1(t))

= IN (t)

N∑
k=−N+1

ck −
N−1∑
k=0

d−k−1(Ik(t)− Ik+1(t)) +

N−1∑
k=0

dk(Ik(t)− Ik+1(t))

= IN (t)

N∑
k=−N+1

ck +

N−1∑
k=0

(dk − d−k−1)(Ik(t)− Ik+1(t)),
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which completes the proof since dk − d−k−1 =
∑k

l=−k cl.

The next lemma provides the promised alternative formula for the solution (1.2), and shows the explicit
dependence of the solution on the sums (or, equivalently, averages) of the initial values.

Lemma 2.2. Let {ck}k∈Z be a bounded real sequence. Then the unique bounded solution to the initial-value
problem

∂u

∂t
(x, t) = a(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)), x ∈ Z, t ≥ 0, (2.1)

u(x, 0) = cx, x ∈ Z, (2.2)

is given by the formula

u(x, t) = e−2at
∞∑
k=0

(Ik(2at)− Ik+1(2at))

x+k∑
l=x−k

cl, t ≥ 0.

Proof. Let us verify the result for x = 0. Beginning with the formula (1.2) and using Lemma 2.1, we get

u(0, t) = e−2at
∑
k∈Z

ckIk(2at) = e−2at lim
N→∞

N∑
k=−N+1

ckIk(2at)

= e−2at lim
N→∞

(
N−1∑
k=0

(Ik(2at)− Ik+1(2at))

k∑
l=−k

cl + IN (2at)

N∑
k=−N+1

ck

)
.

Let M ≥ 0 be such that |ck| ≤ M for all k ∈ Z. Then |IN (2at)
∑N

k=−N+1 ck| ≤ IN (2at)2NM . Using the
asymptotic formula (see formula 10.41.1 in [9])

In(x) ∼ 1√
2πn

( ex
2n

)n
for n→∞,

we see that limN→∞ IN (2at)N = 0, and therefore limN→∞ IN (2at)
∑N

k=−N+1 ck = 0, which completes the
proof for x = 0.

For an arbitrary fixed x ∈ Z, note that the function ũ(y, t) = u(y+x, t) is a solution of the semidiscrete
diffusion equation and satisfies ũ(y, 0) = c̃y, y ∈ Z, with c̃y = u(y + x, 0) = cy+x. Thus, we get

u(x, t) = ũ(0, t) = e−2at
∞∑
k=0

(Ik(2at)− Ik+1(2at))

k∑
l=−k

c̃l = e−2at
∞∑
k=0

(Ik(2at)− Ik+1(2at))

x+k∑
l=x−k

cl.

We need the following two results involving the modified Bessel functions of the first kind. The first
one is straightforward, but the second seems to be of independent interest; we were unable to find it in
the literature dealing with Bessel functions.

Lemma 2.3. The following statements hold for each a > 0:

1. For each k0 ∈ N, we have limt→∞ e−2at
∑k0−1

k=0 (Ik(2at)− Ik+1(2at))(2k + 1) = 0.

2. For each t ≥ 0, we have e−2at
∑∞

k=0(Ik(2at)− Ik+1(2at))(2k + 1) = 1.

Proof. For the proof of the first part, we use the asymptotic formula (see formula 10.30.4 in [9])

In(x) ∼ ex√
2πx

for x→∞,

which implies limx→∞ e−xIn(x) = 0 for each n ∈ Z. It follows that for each fixed k ∈ Z, we have

lim
t→∞

e−2at(Ik(2at)− Ik+1(2at))(2k + 1) = 0,
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and the proof of the first statement is complete.
To prove the second statement, observe that the unique bounded solution of Eq. (2.1) with the initial

condition u(x, 0) = 1 for all x ∈ Z is the constant solution u(x, t) = 1 for all x ∈ Z, t ≥ 0. Thus, by
Lemma 2.2, we get

1 = u(0, t) = e−2at
∞∑
k=0

(Ik(2at)− Ik+1(2at))(2k + 1), t ≥ 0.

We are now ready for the main result.

Theorem 2.4. For each bounded real sequence {ck}k∈Z, the unique bounded solution to the initial-value
problem (2.1)–(2.2) has the following properties:

1. For every x ∈ Z,

lim inf
k→∞

1

2k + 1

x+k∑
l=x−k

cl ≤ lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) ≤ lim sup
k→∞

1

2k + 1

x+k∑
l=x−k

cl.

2. If x ∈ Z and limk→∞
1

2k+1

∑x+k
l=x−k cl = d, then limt→∞ u(x, t) = d.

3. If limk→∞
1

2k+1

∑x+k
l=x−k cl = d holds uniformly for all x ∈ Z, then limt→∞ u(x, t) = d uniformly with

respect to x ∈ Z.

Proof. Let M > 0 be such that |ck| ≤M for all k ∈ Z. Choose an arbitrary x ∈ Z, and denote

dk =
1

2k + 1

x+k∑
l=x−k

cl, k ∈ N,

d = lim inf
k→∞

dk, d = lim sup
k→∞

dk.

Using Lemma 2.2, we have

u(x, t) = e−2at
∞∑
k=0

(Ik(2at)− Ik+1(2at))(2k + 1)dk, t ≥ 0.

Given an ε > 0, there exists a k0 ∈ N such that d− ε < dk < d+ ε for all k ≥ k0.
Using the fact that {Ik}∞k=0 is a decreasing sequence on (0,∞) (see [9, Section 10.37]) together with

the first part of Lemma 2.3, we see there exists a t0 > 0 such that

0 < e−2at
k0−1∑
k=0

(Ik(2at)− Ik+1(2at))(2k + 1) < ε, t ≥ t0.

Thus, according to the second part of the same lemma, we get

1− ε < e−2at
∞∑

k=k0

(Ik(2at)− Ik+1(2at))(2k + 1) < 1, t ≥ t0.

Observing that |dk| ≤M for every k ∈ N, we obtain

u(x, t) < εM + (d+ ε)e−2at
∞∑

k=k0

(Ik(2at)− Ik+1(2at))(2k + 1), t ≥ t0.

Depending on whether d + ε is nonnegative or nonpositive, the second term on the right-hand side is
majorized either by d+ ε, or by (d+ ε)(1− ε) = d+ ε− εd− ε2, yielding the estimate

u(x, t) < εM + max(d+ ε, d+ ε− εd− ε2) = d+ εM + ε+ εmax(0,−d− ε), t ≥ t0.
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This proves that lim supt→∞ u(x, t) ≤ d. To prove the remaining part of the first statement, we consider
the lower bound

u(x, t) > −εM + (d− ε)e−2at
∞∑

k=k0

(Ik(2at)− Ik+1(2at))(2k + 1), t ≥ t0.

Depending on whether d − ε is nonnegative or nonpositive, the second term on the right-hand side is
minorized either by (d− ε)(1− ε) = d− ε− εd+ ε2, or by d− ε, yielding the estimate

u(x, t) > −εM + min(d− ε− εd+ ε2, d− ε) = d− εM − ε+ εmin(−d+ ε, 0), t ≥ t0.

This proves that lim inft→∞ u(x, t) ≥ d.
The second statement of the theorem is an immediate consequence of the first one.
The third statement follows from the fact that all the previous estimates are independent of x if

limk→∞
1

2k+1

∑x+k
l=x−k cl = d holds uniformly for all x.

Finally, we derive two useful corollaries of Theorem 2.4.

Corollary 2.5. If {ck}k∈Z is a bounded real sequence such that limk→∞
1

2k+1

∑k
l=−k cl = d, then the unique

bounded solution to the initial-value problem (2.1)–(2.2) satisfies limt→∞ u(x, t) = d for each x ∈ Z.

Proof. It suffices to verify that for each nonzero x ∈ Z, we have limk→∞
1

2k+1

∑x+k
l=x−k cl = d. Suppose

that x is positive; the proof for a negative x is similar. Then

lim
k→∞

1

2k + 1

x+k∑
l=x−k

cl = lim
k→∞

2(k − x) + 1

2k + 1
· lim
k→∞

1

2(k − x) + 1

(−x+k∑
l=x−k

cl +

x+k∑
l=−x+k+1

cl

)
.

Let M > 0 be such that |ck| ≤M for all k ∈ Z. Then |
∑x+k

l=−x+k+1 cl| ≤ 2xM and consequently

lim
k→∞

1

2(k − x) + 1

x+k∑
l=−x+k+1

cl = 0,

lim
k→∞

1

2k + 1

x+k∑
l=x−k

cl = lim
k→∞

1

2(k − x) + 1

−x+k∑
l=x−k

cl = lim
N→∞

1

2N + 1

N∑
l=−N

cl = d.

Corollary 2.6. If {ck}k∈Z is a real sequence such that limk→±∞ ck = d, then the unique bounded solution
to the initial-value problem (2.1)–(2.2) satisfies limt→∞ u(x, t) = d uniformly with respect to x.

Proof. According to the third part of Theorem 2.4, it suffices to show that limk→∞
1

2k+1

∑x+k
l=x−k cl = d

uniformly with respect to x.
Since limk→∞ ck = d, we get limk→∞

1
k+1

∑x+k
l=x cl = d uniformly with respect to x; this follows from

the fact that each convergent sequence is almost convergent to the same limit (see [8, Theorem 1]). But

since limk→∞
k+1
2k+1 = 1

2 , we get limk→∞
1

2k+1

∑x+k
l=x cl = d

2 uniformly with respect to x.

Similarly, since limk→−∞ ck = d, we get limk→∞
1
k

∑x−1
l=x−k cl = d uniformly with respect to x. But

since limk→∞
k

2k+1 = 1
2 , we get limk→∞

1
2k+1

∑x−1
l=x−k cl = d

2 uniformly with respect to x.
Consequently,

lim
k→∞

1

2k + 1

x+k∑
l=x−k

cl = lim
k→∞

1

2k + 1

x+k∑
l=x

cl + lim
k→∞

1

2k + 1

x−1∑
l=x−k

cl =
d

2
+
d

2
= d

uniformly with respect to x.

Remark 2.7. Inspecting the proof of Corollary 2.6, we can obtain the following more general result: If
{ck}k∈Z is almost convergent to d1 for k →∞ and to d2 for k → −∞, then the unique bounded solution
to the initial-value problem (2.1)–(2.2) satisfies limt→∞ u(x, t) = (d1 + d2)/2 uniformly with respect to x.

Remark 2.8. If {ck}k∈Z ∈ `p(Z) for an arbitrary p ∈ [1,∞), then limk→±∞ ck = 0, and Corollary 2.6
yields limt→∞ u(x, t) = 0 uniformly with respect to x. This generalizes a result from [5, Theorem 4] dealing
with the case p = 2.
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3 Conclusion

We conclude the paper with a few suggestions for further research:

• Investigate the asymptotic behavior of solutions to the N -dimensional semidiscrete diffusion equation
∂u
∂t (x, t) =

∑N
i=1 au(x+ei, t)−2aNu(x, t)+

∑N
i=1 au(x−ei, t), x ∈ ZN , t ≥ 0, where e1, . . . , eN is the

canonical basis of RN . For any bounded initial data {ck}k∈ZN , the unique bounded solution satisfying
u(x, 0) = cx for all x ∈ ZN is u(x, t) =

∑
k∈ZN ckv(x − k, t), x ∈ ZN , t ≥ 0 (see [12, Theorem 2.5]),

where v(x, t) = e−2aNt
∏N

i=1 Ixi
(2at) is the fundamental solution (see [14, Section 5.2]). For the

asymptotic behavior of solutions to the N -dimensional diffusion equation with continuous time and
space, see [2, 7] and the references therein.

• Investigate the asymptotic behavior of solutions to the one-dimensional purely discrete equation
∆u(x, t) = a(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)), x ∈ Z, t ∈ N0, where ∆u(x, t) = u(x, t+ 1)− u(x, t).
For any bounded initial data {ck}k∈Z, the unique solution satisfying u(x, 0) = cx for all x ∈ Z is
u(x, t) =

∑x+t
k=x−t ck ·w(x−k, t), where w is the fundamental solution (see [11, Section 4]). If a 6= 1/2,

then w(x, t) = (1 − 2a)tI2a/(1−2a)|x| (t), where Ix is the discrete modified Bessel function of the first

kind of order x (see [11, Theorem 4.1] for this formula, as well as [1] for more information on discrete
Bessel functions).

• Investigate the asymptotic behavior of solutions to the one-dimensional semidiscrete diffusion equa-
tion with the discrete fractional Laplacian. For more details and explicit solutions to initial-value
problems with bounded initial data, see [4]. Additional information on the discrete Laplacian and
its fractional counterpart may be found in [3].
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