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Outline: (note the rapidly decreasing amount of rigour)

@ Persistent modules and Carlsson’s decomposition theorem
(some real mathematics),

@ Methodology of using persistent homology to discover
topological features of point clouds (a legit method of data
mining),

© The experiment of Carlsson et al. - topological features of the
space of 3x3 patches of natural images (some proper
shamanism).
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Persistent modules

Let k be a field and (P, <) a totally ordered set with a dense
countable subset (in our applications, typically either N or R with
the usual order).
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Persistent modules

Let k be a field and (P, <) a totally ordered set with a dense
countable subset (in our applications, typically either N or R with

the usual order).
A (P-)persistent module M is a funtor from P to the category of
k-vector spaces. (Here, poset P is viewed naturally as a category.)
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Persistent modules

Let k be a field and (P, <) a totally ordered set with a dense
countable subset (in our applications, typically either N or R with
the usual order).
A (P-)persistent module M is a funtor from P to the category of
k-vector spaces. (Here, poset P is viewed naturally as a category.)
Explicitly: Data for M consist of vector spaces V,,,p € P and
k-linear maps fp’\g : Vp — Vg for all p < g, together with
conditions:

° fp";’ = idvp forall p e P,

° fq"r”oqu:quforallquSrEP.
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Interval modules

A subset | of (P, <) is an interval if p < r < g € P, where
p,q € I, implies that r € .
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Interval modules

A subset | of (P, <) is an interval if p < r < g € P, where
p,q € I, implies that r € /.
We can assign a P-persistent module M, to [ in the following way:

o M(p) = {

k,pel
O,pgl

Idkvpaq el

e Mi(p<gq)=
P <a) {0,0thewrise 1
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Carlsson’'s Theorem

A P-persistent module M is pointwise finite, if M(p) is finite
dimensional for each p € P.
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Carlsson’'s Theorem

A P-persistent module M is pointwise finite, if M(p) is finite
dimensional for each p € P.

Theorem (Carlsson, Crawley-Boevey)

Under certain mild conditions for finiteness of M (satisfied e.g.
when M is pointwise finite), any P-persistent module M is
isomorphic direct sum of interval modules.
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Carlsson’'s Theorem

A P-persistent module M is pointwise finite, if M(p) is finite
dimensional for each p € P.

Theorem (Carlsson, Crawley-Boevey)

Under certain mild conditions for finiteness of M (satisfied e.g.
when M is pointwise finite), any P-persistent module M is
isomorphic direct sum of interval modules.

What does isomorphic mean?
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Let M, N be P-persistent modules. A homomorphism f: M — N
of P-persistent modules is a collection of k-linear maps

wp : M(p) — N(p) such that the following diagram commutes for
any p< q € P:
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Let M, N be P-persistent modules. A homomorphism f: M — N
of P-persistent modules is a collection of k-linear maps

wp : M(p) — N(p) such that the following diagram commutes for
any p< q € P:

fN
N(p) —— N(q)
In fancy words, ¢ : M — N is a natural transformation of functors
N and M.
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Let M, N be P-persistent modules. A homomorphism f: M — N
of P-persistent modules is a collection of k-linear maps

wp : M(p) — N(p) such that the following diagram commutes for
any p< q € P:

N
N(p) —" N(q)
In fancy words, ¢ : M — N is a natural transformation of functors
N and M.
We say that ¢ is an isomorphism of persistent modules if ¢(p) is
an isomorphism for each p € P.
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Carlsson’'s Theorem

A P-persistent module M is pointwise finite, if M(p) is finite
dimensional for each p € P.

Theorem (Carlsson, Crawley-Boevey)

Under certain mild conditions for finiteness of M (satisfied e.g.
when M is pointwise finite), any P-persistent module M is
isomorphic direct sum of interval modules.

What is a direct sum?
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Let M;,i € | be a collection of P-peristent modules. Then we
define the direct sum ;. M; to be the P-persistent module
defined as follows:

° @ie/ MI(P) = @ie/ Mi(P):
o D Mi(p<q) =B Mi(p<q).
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Methodology

Let X be a point cloud - a finite subset of RY.
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Methodology

Let X be a point cloud - a finite subset of RY.

@ Choose a method of turning X into a simplicial complex -
Cech complex, Vietoris-Rips, witness...
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Methodology

Let X be a point cloud - a finite subset of RY.

@ Choose a method of turning X into a simplicial complex -
Cech complex, Vietoris-Rips, witness...

e Compute the simplicial complex C.(X) for each parameter
e > 0 (well, not really of course)
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Methodology

Let X be a point cloud - a finite subset of RY.

@ Choose a method of turning X into a simplicial complex -
Cech complex, Vietoris-Rips, witness...

e Compute the simplicial complex C.(X) for each parameter
e > 0 (well, not really of course)

e X is finite, so there is only finitely many steps, in which the
complex changes.
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Methodology

Let X be a point cloud - a finite subset of RY.

@ Choose a method of turning X into a simplicial complex -
Cech complex, Vietoris-Rips, witness...

e Compute the simplicial complex C.(X) for each parameter
e > 0 (well, not really of course)

e X is finite, so there is only finitely many steps, in which the
complex changes.

0 Llet 0 =¢y < €1 <--- < €p < €pgp1 = 00 be parameters such
that C,(X) = Gs(X) for any €; < d < €jy1 and i < n+ 1.
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Ca(X) = C4(X)
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@ Rename G = C,(X).
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@ Rename G = C,(X).
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@ Rename G = C(X).

@ We obtain an increasing sequence of complexes

Co— G == Chpr.
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@ Rename G = C,(X).

@ We obtain an increasing sequence of complexes

Co— G == Chpr.

@ By functoriality, this filtration yields maps on k-th homologies
for each k > 0:

Hk(Co) — Hk(Cl) — s = Hk(Cn-i-l)'
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@ Rename G = C,(X).

@ We obtain an increasing sequence of complexes

CG—= G == Chpa.

@ By functoriality, this filtration yields maps on k-th homologies
for each k > 0:

Hk(Co) — Hk(Cl) — s = Hk(Cn-i-l)'

@ Thus, we get for each kK > 0 an N-persistent module Hj.
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@ By Carlsson’s Theorem, H, decomposes into a direct sum of
interval modules @!_; M(1;).
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@ By Carlsson’s Theorem, Hj decomposes into a direct sum of
interval modules @!_; M(I;).

@ The intervals /;, a priori intervals of N, are interpreted as
intervals of R with borders from {eg, €1,...,€nt1}.
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@ By Carlsson’s Theorem, Hj decomposes into a direct sum of
interval modules @!_; M(I;).

@ The intervals [;, a priori intervals of N, are interpreted as
intervals of R with borders from {eg, €1,...,€nt1}.

e Each interval I; = (¢j, ¢j) corresponds to a "birth" of a
non-trivial homology cycle (think of a “hole”) at parameter ¢;,
and its “death” at parameter ¢;.
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Barcodes

Complete topological information obtained by this method in each
homological dimension is given by a multiset of intervals. We call
this multiset a barcode.
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Barcodes

Complete topological information obtained by this method in each
homological dimension is given by a multiset of intervals. We call
this multiset a barcode.

M
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3x3 patches of natural imag_

In what follows, “they”=Carlsson et al.:
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3x3 patches of natural images

In what follows, “they”=Carlsson et al.:

@ Input data: Large collection of grayscale natural images.
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3x3 patches of natural images

In what follows, “they”=Carlsson et al.:
@ Input data: Large collection of grayscale natural images.

@ From each image, they choose 5000 random 3x3-pixel
patches. This gives a point cloud in R?.
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3x3 patches of natural images

In what follows, “they”=Carlsson et al.:
@ Input data: Large collection of grayscale natural images.

@ From each image, they choose 5000 random 3x3-pixel
patches. This gives a point cloud in R?.

@ Compute a “"D-norm” of each patch measuring its contrast
(certain quadratic form of logs of intensities of pixels).
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3x3 patches of natural images

In what follows, “they”=Carlsson et al.:
@ Input data: Large collection of grayscale natural images.
@ From each image, they choose 5000 random 3x3-pixel
patches. This gives a point cloud in R?.

Compute a “D-norm” of each patch measuring its contrast
(certain quadratic form of logs of intensities of pixels).

Keep for each image only those patches being in the top 20%
with respect to D-norm.
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@ Mean center the data - substract a mean of intensity from
each pixel. That is, two patches are now considered identical
if their “brightness” differ by a constant. This puts all the
patches into a 8-dimensional subspace of R?.
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@ Mean center the data - substract a mean of intensity from
each pixel. That is, two patches are now considered identical
if their “brightness” differ by a constant. This puts all the
patches into a 8-dimensional subspace of R?.

e Normalize with respect to the D-norm (normalize the
contrast). That is, two patches are now considered identical if
they only differ by “turning up contrast”. This puts the data
on a 7-dimensional ellipsoid inside R,
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@ Mean center the data - substract a mean of intensity from
each pixel. That is, two patches are now considered identical
if their “brightness” differ by a constant. This puts all the
patches into a 8-dimensional subspace of R?.

e Normalize with respect to the D-norm (normalize the
contrast). That is, two patches are now considered identical if
they only differ by “turning up contrast”. This puts the data
on a 7-dimensional ellipsoid inside R,

@ Do a coordinate change in order to make this ellipsoid into a
7-sphere S’. Our data now is a point cloud M of approx. 4
millions points on S”.
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Analysis

How does M sit in S7?

e Further heuristic: dx(x) is the distance of x from the k-th
closest point of M to x.
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Analysis

How does M sit in S7?

e Further heuristic: dx(x) is the distance of x from the k-th
closest point of M to x.

o Mk, T]={xe M|
dk(x) is among the T% lowest values of dx on M}.
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Analysis

How does M sit in S7?

e Further heuristic: dx(x) is the distance of x from the k-th
closest point of M to x.

o Mk, T]={xe M|
dk(x) is among the T% lowest values of §x on M}.

o For computational reasons, take samples of size approx. 10*
from M, and construct simplicial complexes using the witness
method.
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Analysis

How does M sit in S7?

e Further heuristic: dx(x) is the distance of x from the k-th
closest point of M to x.

o Mk, T]={xe M|
dk(x) is among the T% lowest values of §x on M}.

o For computational reasons, take samples of size approx. 10*
from M, and construct simplicial complexes using the witness
method.

@ Compute the persistent homology barcodes with coefficients
in Zy using the PLEX package.
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Barcodes

Barcode in homological dimension 0 of M(15,30]:

[] 0.05 o1 015 02 0.25

Interpretation: M is connected (has one component).

Michal Hrbek Persistent Homology |1



Barcodes

Barcode in homological dimension 1 of M][300,30] (very crude
approximation):

Interpretation: M in this detail has “1 hole” - simplest explanation
is, that it looks like a circle.
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Barcodes

Barcode in homological dimension 1 of M(300, 30] (very crude
approximation):

Interpretation: M in this detail has “1 hole" - simplest explanation
is, that it looks like a circle.

The picture below gives such an explanation.
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Barcodes

Barcode in homological dimension 1 of M][15, 30]:

Il
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Barcodes

Barcode in homological dimension 1 of M][15, 30]:

It L

Interpretation: M actually has more 1-holes - the first Betti
number seems to 5.
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Barcodes

Barcode in homological dimension 1 of M][15, 30]:

It L

Interpretation: M actually has more 1-holes - the first Betti
number seems to 5.
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Carlsson et al. propose the following “3-circle” model:

The green and the red circle both intersect
the black one in two points. The red and the green circle are
disjoint.

First Betti number = #arcs - #vertices + #components
=8-4+1=5
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Again, a sort of explanation:

EEE

= Prvary ) g
. S
L] I
I{seconparv)ll
N
T |

Primary circle corresponds to “linear patches”. Two secondary
circles correspond to “horizontally/vertically aligned patches”.
Take polynomial in 2 variables, and evaluate on set
{-1,0,1} x {—1,0,1}. Linear, quadratic patches...
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Klein bottle

Klein bottle is a 2-surface defined as a topological quotient of a
square:

g
4 - 4

P\ /
A |
1 T

i N ¥
R - s

Klein bottles does not embed into R3, but it does embed into R*.
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The 3-circle model embeds into the Klein bottle:

—

A Y

Y
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@ What now? Meddle with the parameters until we find the
Klein bottle.
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@ What now? Meddle with the parameters until we find the
Klein bottle.

@ The Betti numbers with coefficients in Z, of the Klein bottle
are fo=1,p1=2,0=1, B; =0 fori>2.
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@ What now? Meddle with the parameters until we find the
Klein bottle.

@ The Betti numbers with coefficients in Z, of the Klein bottle
are fo=1,p1=2,0=1, B; =0 fori>2.

@ While changing parameter k, we unfortunately always get zero
second Betti number.
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@ What now? Meddle with the parameters until we find the
Klein bottle.

@ The Betti numbers with coefficients in Z, of the Klein bottle
are fo=1,p1=2,0=1, B; =0 fori>2.

@ While changing parameter k, we unfortunately always get zero
second Betti number.

@ More heuristic to the rescue... Authors argue that their
method has preference for linear and vertically/horizontally
aligned patches. They add a certain set of points Q from M
not in M[100, 30] of pure quadratic character.
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Barcodes for M[100,30] U Q:

-
31 >
@
0 005 01 015 02 025 03 035 04 045
20
£ 10
3
o
o : . . . : = . . .
0 005 01 o015 02 025 03 035 04 045
10 —
-~ p—
& sp —
1 1 L L L L L -l L
04 0.45

0
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Interpretation: Point cloud M[100,30] U Q “looks like” something
with Betti numbers 5o = 1,51 =2,08, = 1.
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More handwaving: There are two 2-surfaces with Betti numbers
mod 2 being Sy = 1,61 = 2,82 = 1 - Klein bottle and the torus.
Their homology groups differ mod 3 though, and the authors claim
to have done the corresponding persistent homology computation,
and that it is in the favor of the Klein bottle...
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