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Basic definitions

Every structure in this talk will be a commutative one.

Definition

A quadruple (S ; ·,≤, 1) is called a partially ordered monoid, or
shortly a pomonoid, if the reduct (S ; ·, 1) is a commutative monoid
and ≤ is a partial order on S , such that x ≤ y implies xz ≤ yz for
all x , y , z ∈ S .

If ≤ is a total order, then (S ; ·,≤, 1) is called a totally ordered
monoid, or shortly a tomonoid,

A pomonoid S is negative if x ≤ 1 for all x ∈ S ,

togroup - a tomonoid, where (S ; ·, 1) is a group.
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Examples

(with an usual addition) N, Z, Q, R, T n lexicographically,

standard MV-algebra, Chang’s MV-algebra,

t-norms.
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T-norms

Definition

A t-norm is a function � : [0, 1]× [0, 1]→ [0, 1] which satisfies for
all x , y , z ,w ∈ [0, 1]

x � y = y � x ,

x � y ≤ z � w if x ≤ z and y ≤ w ,

x � (y � z) = (x � y)� z ,

x � 1 = x .

Examples - Gödel, product,  Lukasiewitz.
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Homomorphisms of pomonoids

Definition

By a homomorphism ϕ of pomonoids
(E ; ·E ,≤E , 1E ), (S ; ·S ,≤S , 1S), resp. of tomonoids, we mean an
order preserving homomorphism of monoids ϕ : E → S , i.e.
x ≤E y implies ϕ(x) ≤S ϕ(y) for all x , y ∈ E .
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Coextensions

Definition

Let (E ; ·E , 1E ) and (S ; ·S , 1S) be monoids such that there exists a
surjective homomorphism π : E → S . Then we call E a monoid
coextension of S .

Definition

Let (E ; ·E ,≤E , 1E ) and (S ; ·S ,≤S , 1S) be pomonoids, resp.
tomonoids, such that there exists a surjective pomonoid
homomorphism π : E → S . Then we call E a pomonoid
coexstension , resp. tomonoid coextension of S . In that case π is
called a natural projection of coextension E onto S .
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A direct system

Definition

Let (S ,≤) be a directed set. Let M = (Ma)a∈S be a set of objects
and let f = {f ab : Ma → Mb | a ≤ b, a, b ∈ S} be a set of
homomorphisms such that

(i) f aa = idMa ,

(ii) f ac = f bc ◦ f ab
for every a, b, c ∈ S , a ≤ b ≤ c. Then the pair (M, f ) is called a
direct system over (S ,≤).
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A natural order

Definition

On every monoid (S ; ·, 1), we can define a natural preoder ≤H by

a ≤H b if there exists c ∈ S , such that a = bc. (1)

If a pomonoid (S ; ·,≤, 1) is negative, then x ≤H y implies x ≤ y
and ≤H is a partial order.
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Marcel-Paul Schützenberger

Let S be a semigroup.

H-class H – a congruence class H of congruence ∼H induced
by a natural preoder ≤H,

a Schützenberger group H of H-class H – group of all
transformations on H induced by elements t ∈ S1 such that
tH ⊆ H.
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Coextension by a direct system of groups

Definition

Let (S ; ·, 1) be a monoid such that ≤H is a partial order and
(G , γ) a direct system of groups over (S ,≤H). A monoid
coextension E of a S by the direct system of groups (G , γ)
consists of a monoid coextension E of S and for each a ∈ S an
action · of Ga on congruence class Ea such that

(i) for any x , y ∈ Ea, there exists unique g ∈ Ga such that
g · x = y and

(ii) for any x ∈ Ea, y ∈ Eb and g ∈ Ga it holds
(g · x) + y = γab(g) · (x + y).
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An unordered case

Theorem

Let (S ; ·, 1) be a commutative monoid, (G , ϕ) be a direct system
of groups over (S ,≤H) and σ = (σa,b)a,b∈S where σa,b ∈ Gab and

σa,b = σb,a (2)

ϕab
abcσa,b + σab,c = σa,bc + ϕbc

abcσb,c (3)

for all a, b, c ∈ S . Let E [G , σ] be a set of all ordered pairs (a, x)
with a ∈ S , x ∈ Ga, with multiplication

(a, x)(b, y) = (ab, ϕa
abx + ϕb

aby + σa,b). (4)

Then E [G , σ] is a coextension of S by the direct system of groups
(G , ϕ) with a factor set σ.
If conversely E is a coextension of S by some direct system of
groups (G , ϕ) with a factor set σ, then E is equivalent to E [G , σ].
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Definition

Let (G ; +,≤, 0) be a togroup. We say that G is Archimedean if for
any x , y ∈ G such that 0 < x , y , there exists n ∈ N such that
x ≤ ny .
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An ordered case - groups

Let S = (S ; ·,≤, 1) be a negative pomonoid. Let (G , ϕ) be a direct
system of togroups on (S ,≤H), such that for every a ∈ S , Ga is
Archimedean. For every a, b ∈ S , let us have σa,b ∈ Gab and let
E [S ,G , σ] be the set of all ordered pairs (a, x), x ∈ Ga, a ∈ S . Let
us define an operation

(a, x)(b, y) := (ab, ϕa
ab(x) + ϕb

ab(y) + σa,b)

and a relation ≤E lexicographically i.e.

(a, x) ≤E (b, y) if a ≤ b or a = b and x ≤a y .
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An ordered case - groups

Theorem

A set E [S ,G , σ] with the defined operation is a pomonoid
coextension of S if and only if for all a, b, c ∈ S the following
conditions are satisfied

(1) σa,b = σb,a,

(2) ϕab
abcσa,b + σab,c = σa,bc + ϕbc

abcσb,c ,

(3) G1 = {0},

(4) if a < b and ca = cb then ϕa
ca = ϕb

cb = 0 and σa,c ≤ab σb,c .
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An ordered case - groups

Definition

Let (S ; ·,≤, 1) be a pomonoid and (G , γ) a direct system of
togroups over (S ,≤H). A pomonoid coextension E of a S by a
direct system of togroups (G , γ) is a monoid coextension E of S
by direct system of groups (G , γ) such that E is a pomonoid
coextension of S .

Theorem

Let S be a commutative pomonoid and E [S ,G , σ] be a pomonoid
coextension of S . Then E [S ,G , σ] is a pomonoid coextension of S
by a direct system of togroups (G , ϕ). On the other side, every
pomonoid coextension E ′ of S ′ by a direct system of togroups
(G ′, ϕ′) is isomorphic to one given by construction from the
previous theorem, i.e E [S ′,G ′, σ′].
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An example

Example

Let S = L4, i.e. L4 = {0,−1,−2,−3} with the operation
a +L4 b := (a + b) ∨ −3.

Let G be given by G0 = G−3 = {0} and Ga = R otherwise
considered with the usual multiplication and order of reals.

The only homomorphism we can choose is ϕ−1
−2.

The only admissible nonzero σa,b is σ−1,−1 and it can be
chosen in an arbitrary way.
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A coextension of pomonoid by system of tomonoids

Let S = (S ; ·,≤, 1) be a negative pomonoid. Let (M, ϕ) be a
direct system of tomonoids over (S ,≤H), σ = (σa,b)a,b∈S where
σa,b ∈ Mab.
We define E [S ,M, σ] as a set of all ordered pairs (a, x),
x ∈ Ma, a ∈ S with operation given for every
(a, x), (b, y) ∈ E [S ,M, σ] by

(a, x)(b, y) := (ab, ϕa
ab(x) + ϕb

ab(y) + σa,b) (5)

and a relation ≤E lexicographically i.e.

(a, x) ≤E (b, y) if a ≤ b or a = b and x ≤a y . (6)
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A coextension of pomonoid by system of tomonoids

Theorem

Then E [S ,M, σ] is a negative pomonoid coextension of S if and
only if the following conditions are satisfied for all a, b, c ∈ S

(M1) σa,b = σb,a,

(M2) ϕab
abcσa,b + σab,c = σa,bc + ϕbc

abcσb,c ,

(M3) σ1,a = 0,

(M4) M1 is negative tomonoid,

(M5) if a < b and ca = cb, then ϕa
ca(x) + σa,c ≤ca ϕ

b
cb(y) + σa,b.
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The example of the pomonoid coextension

Example

Let S = L5, i.e. L5 = {0,−1,−2,−3,−4} with
a +L5 b := (a + b) ∨ −4.

Let M be given by M−4 = {0} and Ma = (0, 1] ⊆ R for all
a ∈ S −{−4} considered with the usual multiplication of reals.

We chose the homomorphisms as identity embeddings, i.e.
ϕa
b : (0, 1]→ (0, 1], ϕa

b(x) = x for all
x ∈ Ma, a ∈ S , b ∈ S − {−4}, a ≤ b and ϕa

−4 = 0.

For every σ such that E [S ,M, σ] is pomonoid coextension it
holds σ0,a = 0 and σ−2,−2 = σ−2,−3 = σ−3,−3 = σ−3,−4

= σ−4,−4 ∈ M−4 = {0}. The only admissible nonzero σa,b are
σ−1,−1 and σ−1,−2, which can be chosen in an arbitrary way
from M−2, resp. M−3.

Let us choose σ−1,−1 := 1
2 and σ−1,−2 := 1

4 .
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An example - Schreier coextension

Let (S , ·, 1) be a monoid and ρ ⊆ S × S a congruence relation on
S . Let N1 be a congruence class of ρ containing a neutral element
1. We call ρ a normal if each of its congruence class is in the form
aN1 for some a ∈ S where a acts simply on N1. Let us define a
Schreier coextension Sch[S ,M] of monoid S by monoid M as a
monoid coextension Sch[S ,M] of S such that the congruence
ρ, Sch[S ,M]/ρ = S is a normal with congruence class N1 being
submonoid isomorphic to M.
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An example - Schreier coextension

Theorem

Let (S ; ·,≤S , 1), (M; +,≤M , 0) be a disjoint commutative
tomonoids and let Sch[S ,M] their Schreier coextension with partial
order ≤ on Sch[S ,M] such that (Sch[S ,M]; ·,≤, (1, 0)) is a
negative tomonoid, ≤|M=≤M , and natural projection
π : Sch[S ,M]→ S is isotone mapping. Then Sch[S ,M] can be
described as a coextension E [S ,M, σ] ∼= Sch[S ,M] of S by system
M = {Ma}a∈S where Ma

∼= M for all a ∈ S .

Corollary

Let (S ; ·S ,≤S , 1), (M; +,≤M , 0) be a commutative negative
tomonoids. A Schreier coextension Sch[S ,M] can be organized into
a tomonoid with respect to partial order ≤ such that ≤|M=≤M

and natural projection π is isotone if and only if for any a, b, c ∈ S ,
a <S b and ca = cb holds x + σa,c ≤M y + σa,b for all x , y ∈ M.
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Thank you for your attention!
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