Secure multiparty computation-Part 1
Lucie Deptova

November 16, 2014

@ Survey of criminal justice
@ Millionaire's problem

@ Privite bidding in auctions

Lucie Deptova

=

z 9ac
Secure multiparty computation

What is secure multiparty computation?

MPC:

@ Set of parties, each has some secrete input
@ Function of all their inputs
@ How to solve this? Thrusted party X MPC protocol

Formally introduced as 2PC in 1982 by Andrew Yao
The word 'secure’:

@ Computation without revealing intputs
@ Providing security properties
@ Some parties may be corrupted, malicious

[m] [= =) C
3 Lucie Deptovi Secure multiparty computation

What do we expect?

We want these security properties:
@ Privacy
@ Correctness
@ Independence of inputs
@ Fairness
@ Guaranteed output delivery

For example secure auction

o = = = = 9ac
4 Lucie Deptovd Secure multiparty computation

How do we define security?

This point of view is problematic:

@ Auction—a list of concerns, Elections—a list of concerns...

@ Every application—a new definition

@ Are all concerns covered?

An alternative point of view:

@ Defining generally, capturing all security demands:

@ Well-defined adversary model
© Well-defined execution setting

o

=

Lucie Deptovi Secure multiparty computation

Model of adversary

@ Who is adversary?

@ How does he behave?
@ Semi-honest
@ Malicious

o Covert
@ What is his power?

@ Polynomial-time
¢ Unbounded

Lucie Deptova

=] = = = z 9ac
Secure multiparty computation

Types of models
Corruption strategy
@ Static: easier one

@ Adaptive : much harder
Execution setting

@ Stand-alone: helpful techniques and tools
constructions

@ Concurrent general composition: realistic, very important, goal for

Lucie Deptova

=

Secure multiparty computation

QR

Basic definitions and notation

@ Security parameter n: if large enough, security is ensured for all
inputs of arbitrarily length

@ X(a, n):=random variable, which represents an output of protocol
execution with input a and security parameter n

o {X(a, n)}:=infinite serie, we will usually index by n implicitly

@ We call function p negligible if: Vp polynomial
AN :¥n > N p(n) < 5

=] = = = = DA
8 Lucie Deptovi Secure multiparty computation

Basic definitions and notation

@ X ={X(a,n)} and Y = {Y(a,n)} are computationally
indistinguishable (denote X = Y) if for all polynomial-time
distinguisher D there exists a negligible function u such that for all a
and for all large enough n is :
|Pr{D(X(a, n)) = 1] = Pr[D(Y (a, n)) = 1]| < p(n)

@ If D has unbounded power, X and Y are statistically close

@ Let's have m parties, x = (xq, ..., Xm) is input vector, fi(x), ..., fm(x)
are random variables then we call f = (fi, ..., fn) a (probabilistic)
functionality, we denote
(X1y ooy Xm) = (F(X1, ey Xm)y <oy Fen(X1y ey Xim))-

We don’t have to compute the same function for all parties.

9 Lucie Deptova Secure multiparty computation

Feasability results

@ If we assume an honest majority any functionality can be securely
computed even if an adversary has unbounded power.

@ Without an honest majority we can’t achieve fairness generally but
any functionality can be computed securely without it.

[m] [=
10

:f v/') Q (:w
Lucie Deptova Secure multiparty computation

Zero knowledge proof

@ Prover P, verifier V, language L
@ P wants to prove x € L to V without revealing anything else about
x e.g. 26781 (=113x237) is not a prime
@ The proof has to satisfy 3 properties:
o Completeness: V accepts if honest P and V interact and x € L
@ Soundness: For any P* V accepts if x ¢ L only with negligible
probability
@ Zero-knowledge: For every V* there exists a simulator S that given
x can produce a transcript which ‘looks the same’ as the interaction

between P and V*.

11 Lucie Deptova Secure multiparty computation

Security for semi-honest adversary

@ Our protocol runs as it should — output, transcript of protocol
execution

@ What does an adversary have?
@ Can he learn something more?
9@ We simulate the adversary's view of a protocol execution from given
input and output
An exact definition:

@ A protocol is secure for semi-honest adversary if for every
semi-honest adversary A there exists a simulator S such that for
every set of corrupted parties / and for every input vector x the two
following sequences are close:

@ The output of A and the outputs of honest parties
@ The output of S given x; an fj(x) for all i € I and the outputs of
honest parties

12 Lucie Deptova Secure multiparty computation

Security for semi-honest adversary

@ What does ‘close’ mean?

o Computational security
o Statistical security
@ Perfect security

@ To simulate an adversary it’s sufficient to simulate the transcript
from communication with adversary

@ The joint distribution-example
@ Deterministic functionalities
@ Didn't we break our security properties?

@ Privacy, corectness, independence of inputs ect.

[m] [= =

13 Lucie Deptova Secure multiparty computation

