
Secure multiparty computation-Part 1
Lucie Deptová

November 16, 2014

Motivation

Survey of criminal justice

Millionaire’s problem

Privite bidding in auctions

2 Lucie Deptová Secure multiparty computation

What is secure multiparty computation?

MPC:

Set of parties, each has some secrete input

Function of all their inputs

How to solve this? Thrusted party X MPC protocol

Formally introduced as 2PC in 1982 by Andrew Yao
The word ‘secure’:

Computation without revealing intputs

Providing security properties

Some parties may be corrupted, malicious

3 Lucie Deptová Secure multiparty computation

What do we expect?

We want these security properties:

Privacy

Correctness

Independence of inputs

Fairness

Guaranteed output delivery

For example secure auction

4 Lucie Deptová Secure multiparty computation

How do we define security?

This point of view is problematic:

Auction→a list of concerns, Elections→a list of concerns...

Every application→a new definition

Are all concerns covered?

An alternative point of view:

Defining generally, capturing all security demands:
1 Well-defined adversary model
2 Well-defined execution setting

5 Lucie Deptová Secure multiparty computation

Model of adversary

Who is adversary?

How does he behave?

Semi-honest
Malicious
Covert

What is his power?

Polynomial-time
Unbounded

6 Lucie Deptová Secure multiparty computation

Types of models

Corruption strategy

Static: easier one

Adaptive : much harder

Execution setting

Stand-alone: helpful techniques and tools

Concurrent general composition: realistic, very important, goal for
constructions

7 Lucie Deptová Secure multiparty computation

Basic definitions and notation

Security parameter n: if large enough, security is ensured for all
inputs of arbitrarily length

X (a, n):=random variable, which represents an output of protocol
execution with input a and security parameter n

{X (a, n)}:=infinite serie, we will usually index by n implicitly

We call function µ negligible if: ∀p polynomial
∃N : ∀n > N : µ(n) < 1

p(n)

8 Lucie Deptová Secure multiparty computation

Basic definitions and notation

X = {X (a, n)} and Y = {Y (a, n)} are computationally
indistinguishable (denote X ≈ Y) if for all polynomial-time
distinguisher D there exists a negligible function µ such that for all a
and for all large enough n is :
|Pr [D(X (a, n)) = 1]− Pr [D(Y (a, n)) = 1]| < µ(n)

If D has unbounded power, X and Y are statistically close

Let’s have m parties, x = (x1, ..., xm) is input vector, f1(x), ..., fm(x)
are random variables then we call f = (f1, ..., fm) a (probabilistic)
functionality, we denote
(x1, ..., xm) → (f1(x1, ..., xm), ..., fm(x1, ..., xm)).
We don’t have to compute the same function for all parties.

9 Lucie Deptová Secure multiparty computation

Feasability results

If we assume an honest majority any functionality can be securely
computed even if an adversary has unbounded power.

Without an honest majority we can’t achieve fairness generally but
any functionality can be computed securely without it.

10 Lucie Deptová Secure multiparty computation

Zero knowledge proof

Prover P , verifier V , language L

P wants to prove x ∈ L to V without revealing anything else about
x e.g. 26781 (=113x237) is not a prime

The proof has to satisfy 3 properties:

Completeness: V accepts if honest P and V interact and x ∈ L

Soundness: For any P
∗

V accepts if x /∈ L only with negligible
probability
Zero-knowledge: For every V

∗ there exists a simulator S that given
x can produce a transcript which ‘looks the same’ as the interaction
between P and V

∗.

11 Lucie Deptová Secure multiparty computation

Security for semi-honest adversary

Our protocol runs as it should → output, transcript of protocol
execution

What does an adversary have?

Can he learn something more?

We simulate the adversary’s view of a protocol execution from given
input and output

An exact definition:

A protocol is secure for semi-honest adversary if for every
semi-honest adversary A there exists a simulator S such that for
every set of corrupted parties I and for every input vector x the two
following sequences are close:

The output of A and the outputs of honest parties
The output of S given xi an fi (x) for all i ∈ I and the outputs of
honest parties

12 Lucie Deptová Secure multiparty computation

Security for semi-honest adversary

What does ‘close’ mean?

Computational security
Statistical security
Perfect security

To simulate an adversary it’s sufficient to simulate the transcript
from communication with adversary

The joint distribution-example

Deterministic functionalities

Didn’t we break our security properties?

Privacy, corectness, independence of inputs ect.

13 Lucie Deptová Secure multiparty computation

