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Bertrand’s postulate

Postulate

For every n ≥ 1, there is some prime number p with n < p ≤ 2n.

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001, . . .

Bertrand verified it for n < 3 000 000.



More people



The proof, part 1

Claim ∏
p≤n

p ≤ 4n−1

We’ll proof this claim by induction. For n = 2, it holds. Further it
suffices to prove just for odd n since there is no bigger even prime.
So, let n = 2m + 1.

First, observe that every prime p, m + 1 < p ≤ 2m + 1 divides(2m+1
m+1

)
exactly once. Hence,

∏
p≤2m+1

p =
∏

p≤m+1

p ·
∏

m+1<p≤2m+1

p ≤ 4m
(

2m + 1

m + 1

)



The proof, part 1.1

We have ∏
p≤2m+1

p ≤ 4m
(

2m + 1

m + 1

)
.

For the upper bound on the right-hand-side observe that(
2m + 1

m

)
+

(
2m + 1

m + 1

)
≤ 22m+1

Hence (
2m + 1

m + 1

)
≤ 22m,

and this completes the proof of the claim:
∏

p≤n p ≤ 4x−1



Intermezzo

The binomial coeficient
(2n
n

)
is the largest of 2n + 1 values(

2n

2n

)
+

(
2n

0

)
,

(
2n

1

)
, . . . ,

(
2n

2n − 1

)
,

(
2n

2n

)
Hence (

2n

n

)
≥ 22n

2n
=

4n

2n
.



The proof, part 2

What is so great about

(
2n

n

)
?

It’s prime decomposition contains every prime p, n < p ≤ 2n
exactly once, and it does not contain primes p > 2, 2

3n < p ≤ n at
all!

Indeed, if 2
3n < p ≤ n then the denomitor contains factor p twice,

while the numerator contains factors p and 2p and no others.



The proof, part 2.1

Theorem (Legendre’s theorem)

The number n! contains the prime factor p exactly∑
k≥1

⌊
n

pk

⌋
times.

As a corollary
(2n
n

)
contains prime factor p exactly∑

k≥1

⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
times. While each summand is at most 1 since⌊

2n

pk

⌋
− 2

⌊
n

pk

⌋
<

2n

pk
− 2

(
n

pk
− 1

)
= 2.

In particular, if p >
√

2n then the factor p apears at most once.



Louis Legendre



The proof, part 3

Further, let p ≤
√

2n. Then
(2n
n

)
contains factor p at most∑

k≥1

⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
≤ max{r : pr ≤ 2n}

times.

Altogether, (
2n

n

)
≤

∏
p≤
√
2n

2n ·
∏

√
2n<p≤ 2

3
n

p ·
∏

n<p≤2n
p

4n

2n
≤ (2n)

√
2n · 42n/3 ·

∏
n<p≤2n

p

4n/3 ≤ (2n)1+
√
2n ·

∏
n<p≤2n

p



The proof, part 3.1

Suppose there is no prime between n and 2n, hence∏
n<p≤2n p = 1, and consequently

4n/3 ≤ (2n)1+
√
2n

that is eventually (for large enough n) not true!



What does eventually mean?

4n/3 ≤ (2n)1+
√
2n

We will use a famous inequality a + 1 < 2a for a ≥ 2 to get

2n =
(

6
√

2n
)6

<
(

6
√

2n + 1
)6

< 26
6√2n

Then for n ≤ 50, hence 18 < 2
√

2n.

22n ≤ (2n)3(1+
√
2n) < 2

6√2n (18+18
√
2n) < 2

6√2n 20
√
2n = 220(2n)

2/3

So. . .
(2n)1/3 < 20 , and thus n < 4000.

Hence we know that the postulate is true for all n ≥ 4000, but

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001



Thank you for your attention!


