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CSP (Constraint Satisfaction Problem)

satisfiability of a list of constraints
(x, y, z) ∈ R
(x, x, u) ∈ S
u ∈ T
R, S, T - relations on a domain D
x, y, z, u - variables in X
f : X → D is a solution if it satisfies all the constraints
(f(x), f(y), f(z)) ∈ R
(f(x), f(x), f(u)) ∈ S
f(u) ∈ T
Decision: Does a solution exist?
Search: Find a solution.

D - finite set of relations on a domain D
CSP (D) - restriction of CSP to instances in which the domain is D
and all constraint relations are from D
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CSP

homomorphism problem

E = (E;S1, S2, . . . , Sn)

D = (D;R1, R2, . . . , Rn)

}
similar relational structures

h : E → D is a homomorphism from E to D if
(a1, a2, . . . , ak) ∈ Si ⇒ (h(a1), h(a2), . . . , h(ak)) ∈ Ri

Decision: Given E is there a homomorphism E → D?
Search: Find a homomorphism.

The two definitions are equivalent.

Kristina Asimi Infinity Is Relevant April 2019 3 / 17



CSP

homomorphism problem

E = (E;S1, S2, . . . , Sn)

D = (D;R1, R2, . . . , Rn)

}
similar relational structures

h : E → D is a homomorphism from E to D if
(a1, a2, . . . , ak) ∈ Si ⇒ (h(a1), h(a2), . . . , h(ak)) ∈ Ri

Decision: Given E is there a homomorphism E → D?
Search: Find a homomorphism.

The two definitions are equivalent.

Kristina Asimi Infinity Is Relevant April 2019 3 / 17



CSP

homomorphism problem

E = (E;S1, S2, . . . , Sn)

D = (D;R1, R2, . . . , Rn)

}
similar relational structures

h : E → D is a homomorphism from E to D if
(a1, a2, . . . , ak) ∈ Si ⇒ (h(a1), h(a2), . . . , h(ak)) ∈ Ri

Decision: Given E is there a homomorphism E → D?
Search: Find a homomorphism.

The two definitions are equivalent.

Kristina Asimi Infinity Is Relevant April 2019 3 / 17



CSP

homomorphism problem

E = (E;S1, S2, . . . , Sn)

D = (D;R1, R2, . . . , Rn)

}
similar relational structures

h : E → D is a homomorphism from E to D if
(a1, a2, . . . , ak) ∈ Si ⇒ (h(a1), h(a2), . . . , h(ak)) ∈ Ri

Decision: Given E is there a homomorphism E → D?
Search: Find a homomorphism.

The two definitions are equivalent.

Kristina Asimi Infinity Is Relevant April 2019 3 / 17



Example - 3-SAT

example: ϕ = (x ∨ y ∨ z) ∧ (¬z ∨ u ∨ v) ∧ (¬u ∨ x ∨ y)
list of constraints
(x, y, z) ∈ S000, S000 = {0, 1}3\{(0, 0, 0)}
(z, u, v) ∈ S100, S100 = {0, 1}3\{(1, 0, 0)}
(u, x, y) ∈ S100
3-SAT is equivalent to CSP (D3SAT ) with D3SAT = {0, 1} and
D3SAT = {Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3\{(i, j, k)}
homomorphism problem:
E = {x, y, z, u, v}
R1 = {(x, y, z)}
R2 = {(z, u, v), (u, x, y)}
E = (E;R1, R2)
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Examples

3-SAT (NP-complete)
1-in-3-SAT (NP-complete)
1-in-3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})
NAE-3-SAT (NP-complete)
NAE-3 = ({0, 1}; {0, 1}3\{(0, 0, 0), (1, 1, 1)})
3-coloring of a graph (NP-complete)
({0, 1, 2}; 6=)

2-coloring of a graph (P)
({0, 1}; 6=)

system of linear equations over Z5 (P)
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Selected results

CSP (A), |A| = 2, is in P or NP -complete [Schaefer ’78]

H - undirected graph
H bipartite⇒ H-coloring ∈ P
otherwise⇒ H-coloring is NP -complete [Hell, Nešetřil ’90]

CSP (A), A - finite, is in P or NP -complete [Bulatov ’17];[Zhuk ’17]
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Examples of CSPs over infinite templates

(Z; {(x, y, z) : x+ y + z = 1}) (P)
(Q\{13}; {(x, y, z) : x+ y + z = 1}) (P)
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PCSP (Promise CSP)

PCSP (A,B)
A,B - relational structures, A → B
Search: Given X such that X → A find X → B.
PCSP (A,A) = CSP (A)
(A,B), (A′,B′) - PCSP templates
A′ → A,B → B′ ⇒ PCSP (A′,B′) ≤ PCSP (A,B)
examples:

6-coloring of a 3-colorable graph
PCSP (1-in-3,NAE-3)

Kristina Asimi Infinity Is Relevant April 2019 8 / 17



PCSP (Promise CSP)

PCSP (A,B)
A,B - relational structures, A → B
Search: Given X such that X → A find X → B.
PCSP (A,A) = CSP (A)
(A,B), (A′,B′) - PCSP templates
A′ → A,B → B′ ⇒ PCSP (A′,B′) ≤ PCSP (A,B)
examples:

6-coloring of a 3-colorable graph
PCSP (1-in-3,NAE-3)

Kristina Asimi Infinity Is Relevant April 2019 8 / 17



PCSP (Promise CSP)

PCSP (A,B)
A,B - relational structures, A → B
Search: Given X such that X → A find X → B.
PCSP (A,A) = CSP (A)
(A,B), (A′,B′) - PCSP templates
A′ → A,B → B′ ⇒ PCSP (A′,B′) ≤ PCSP (A,B)
examples:

6-coloring of a 3-colorable graph
PCSP (1-in-3,NAE-3)

Kristina Asimi Infinity Is Relevant April 2019 8 / 17



PCSP (Promise CSP)

PCSP (A,B)
A,B - relational structures, A → B
Search: Given X such that X → A find X → B.
PCSP (A,A) = CSP (A)
(A,B), (A′,B′) - PCSP templates
A′ → A,B → B′ ⇒ PCSP (A′,B′) ≤ PCSP (A,B)
examples:

6-coloring of a 3-colorable graph
PCSP (1-in-3,NAE-3)

Kristina Asimi Infinity Is Relevant April 2019 8 / 17



PCSP (Promise CSP)

PCSP (A,B)
A,B - relational structures, A → B
Search: Given X such that X → A find X → B.
PCSP (A,A) = CSP (A)
(A,B), (A′,B′) - PCSP templates
A′ → A,B → B′ ⇒ PCSP (A′,B′) ≤ PCSP (A,B)
examples:

6-coloring of a 3-colorable graph
PCSP (1-in-3,NAE-3)

Kristina Asimi Infinity Is Relevant April 2019 8 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



PCSP (1-in-3,NAE-3)

find a valid NAE-3-SAT assignment to a 1-in-3 satisfiable instance
P

(x, y, z) x+ y + z = 1

(u, y, x) u+ y + x = 1

}
over Z

The obtained system is solvable.
Finding a solution to a system of linear equations over Z is in P.
[Grötschel, Lovász, Schrijver ’93]
φ - solution to the system

ψ(x) =

{
0, φ(x) ≤ 0

1, φ(x) > 0
- a valid NAE-3-SAT assignment

Kristina Asimi Infinity Is Relevant April 2019 9 / 17



alternatively, solve the system over Q\{13}
P

ψ(x) =

{
0, φ(x) < 1

3

1, φ(x) > 1
3

Both polynomial algorithms transfer the original problem over a
finite domain to a problem over an infinite domain.
1-in-3→ C
C →NAE-3
PCSP (1-in-3,NAE-3) ≤ CSP (C)
This finite-to-infinite transition is unavoidable.
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Main theorem

Theorem (Barto)
Let C be a finite relational structure such that 1-in-3→ C and
C →NAE-3. Then CSP (C) is NP-complete.
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Preliminaries

Definition
Let C be a CSP template. s : Cn → C is a polymorphism of C if for
each relation R in Ca11...

am1

 ∈ R, . . . ,
a1n...
amn

 ∈ R⇒
 s(a11, . . . , a1n)...
s(am1, . . . , amn)

 ∈ R.
Definition
s : Cn → C is cyclic if

s(a1, a2, . . . , an) = s(a2, . . . , an, a1)

Theorem (Barto, Kozik ’12)
Let C be a finite CSP template. If CSP (C) is not NP-complete, then C
has a cyclic polymorphism of arity p for every prime number p > |C|.
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Infinity is necessary

Theorem
Let C = (C;R) be a finite relational structure with ternary R ⊆ C3 such
that 1-in-3→ C and C →NAE-3. Then CSP (C) is NP-complete.
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Sketch of the proof

assume CSP (C) is not NP-complete
g : C →NAE-3
s - cyclic polymorphism of prime arity p > 60|C|
t(x11, x12, . . . , x1p, x21, x22, . . . , x2p, . . . , xp1, xp2, . . . , xpp) =
s(s(x11, x21 . . . , xp1), s(x12, x22, . . . , xp2) . . . , s(x1p, x2p, . . . , xpp))

t


x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

. . .
...

xp1 xp2 . . . xpp
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Definition
Let X = (xij), Y be p× p zero-one matrices. The area of X is

λ(X) =

(∑
i,j
xij

)
/p2.

X and Y are g-equivalent, denoted X ∼ Y , if g(t(X)) = g(t(Y )).
X is tame if

X ∼ 0p×p if λ(X) < 1/3

and X ∼ 1p×p if λ(X) > 1/3.
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Resuming the proof sketch

show that t is cyclic
show 0p×p � 1p×p

Definition
Let 1 ≤ k1, . . . , kp ≤ p. By [k1, . . . , kp] we denote the matrix whose i-th
column begins with ki ones followed by (p− ki) zeroes.
An almost rectangle is [k, . . . , k, l, . . . , l] where 0 ≤ k − l ≤ 5|C|.

show that almost rectangles are tame
construct two almost rectangles X1 and X2 such that λ(X1) < 1/3
and λ(X2) > 1/3, but t(X1) = t(X2)

X1 ∼ 0p×p and X2 ∼ 1p×p

X1 � X2

Contradiction!
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Thanks for your attention!
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