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Basic model

Le� and right action
Let G be a group. We have the canonical left and right action on G,

Lд(д′) = дд′, Rд(д′) = д′д, ∀д,д′ ∈ G.
I The left and right actions commute, Lд1 ◦ Rд2 = Rд2 ◦ Lд1 .
I These two actions are balanced, i.e. the left action exhausts the full

set of commuting maps for the right action and vice versa.

Coset space
Further let H ≤ G be a subgroup and consider the left coset space
M = G/H together with the canonical projection p : G→ M.
I The left action Lд projects down yielding Lд : M→ M.
I The right action Rд does not project down to M.
I H acts simply transitively on the cosets дH from the right.

If we consider (G→ M, Rд for д ∈ G) to be the “given structure” on M
then the left action Lд gives all its symmetries (≡ automorphisms).
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Smooth manifolds
Let M be a smooth manifold. We have:
I The associative and commutative algebra C(M) of smooth

(≡ in�nitely di�erentiable) real functions on M.
I The C(M)-module X(M) of vector �elds ≡ derivations in C(M)
≡ R-linear maps X : C(M) → C(M) satisfying the Leibniz rule,

X (f f ′) = X (f ) f ′ + f X (f ′), ∀f , f ′ ∈ C(M).

I At each point x ∈ M the vector space Tx (M) of tangent vectors
≡ R-linear maps v : C(M) → R satisfying the Leibniz rule at x ,

v(f f ′) = v(f ) f ′(x) + f (x)v(f ′), ∀f , f ′ ∈ C(M).
We identify the “geometric” notion of tangent vector with the
corresponding directional derivative.

I Evaluating a vector �eld X at x yields a tangent vector Xx ,

Xx (f ) = (X (f ))(x), ∀f ∈ C(M).
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Lie groups and infinitesimal actions

Tangent map
From now on we assume all manifolds and maps between them smooth.
The tangent map (≡ di�erential) of a map F : M→ N is a collection of
linear maps between the tangent spaces dFx : Tx (M) → TF (x )(N),

(dFx (v))(f ) = v(f ◦ F ), ∀x ∈ M,v ∈ Tx (M), f ∈ C(N).

Lie group
≡ a smooth manifold G with a smooth group structure. Let us denote
I g = Te (G), the tangent space at the identity element e ∈ G,
I and further consider a left action λ : G ×M→ M.

Now we di�erentiate the partially evaluated map λ(·,x) : G→ M and
de�ne the in�nitesimal action as a linear map λ′ : g→ X(M),

λ′(V )x = dλ(·,x)e (V ), ∀V ∈ g,x ∈ M.
Similarly we de�ne ρ ′ : g→ X(M) for a right action ρ : M × G→ M.
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Lie algebras
≡ A vector space a with a bilinear bracket [, ] : a × a → a which is

1. alternating and hence anti-commutative,

[a,a] = 0, =⇒ [a,b] = −[b,a], ∀a,b ∈ a;
2. and satis�es the Jacobi identity,

[a, [b, c]] + [c, [a,b]] + [b, [a, c]] = 0, or equivalently,
[a, [b, c]] = [[a,b], c] + [b, [a, c]], ∀a,b, c ∈ a.

Note how the second form of the identity resembles the Leibniz rule.

Examples

I An associative algebra A equipped with the commutator,

[a,b] = a b − b a, ∀a,b ∈ A.
I The space Der(A) of derivations in any algebra A, in particular,

the vector �elds X(M) on a smooth manifold M.
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Invariant vector fields

Let G be a Lie group and recall the left and right actions of G on itself.
We consider the in�nitesimal actions L′, R′ : g→ X(G) which assign
vector �elds to each V ∈ g.
I The left and right actions commute hence R′(V ) is preserved by Lд .
⇒ We call the vector �elds R′(V ) left-invariant and vice versa.
⇒ The left and right invariant �elds themselves commute.

I Moreover, R′(g) are all the vector �elds invariant with respect to Lд
and the invariance is preserved by the bracket in X(G).

⇒ g becomes a Lie algebra by pulling back the bracket from X(G),

[U ,V ]g = R′−1([R′(U ),R′(V )]X), ∀U ,V ∈ g.
called the Lie algebra of G.

I Any in�nitisemal right action ρ ′ : g→ X(M) preserves the bracket
≡ ρ ′ is a Lie algebra homomorphism.

⇒ In particular, the conjugation in G induces the so called adjoint
representation Ad: G→ Aut(g) of G on g.
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Principal bundles
Let M be a manifold and H be a Lie group. An H-principal bundle over M
is a manifold P together with

1. a projection p : P→ M such that dpu is surjective for all u ∈ P;
2. a simple right action Rh of H on P such that the orbits of Rh are

exactly the �bers Px = p−1(x), x ∈ M.
Note that P→ M is a generalization of the left coset space G → G/H.

Tensorial quantities
Let P→ M be an H-principal bundle and λ : H→ AutR(V) a representation
of H on a vector space V. We consider H-invariant V-valued functions on P,

C(P,V)H = { f : P→ V | f ◦ R−1h = λ(h) ◦ f , ∀h ∈ H}.
Such functions correspond to “tensorial quantities of type λ” on M.
I An element u ∈ Px can be understood as a frame of reference
≡ an in�nitesimal coordinate system at x ∈ M.

I This corresponds to the classical description of tensors as quantities
which transform in an appropriate way under coordinate change.
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Cartan geometries
Let H be a Lie group, h its Lie algebra and g another Lie algebra such that
h ≤ g is its subalgebra. A Cartan geometry of type (g,H) on M is a triple
(M,P, r ) where

1. P is a principal H-bundle over M with right action Rh ;
2. r : g→ X(P) is a R-linear map such that
3. the corestriction on Tu (P) is a linear isomorphism for each u ∈ P;
4. it is transformed by Rh according to the adjoint representation

dRh(r (V )u ) = r (Ad(h)−1V )Rh (u), ∀V ∈ g,h ∈ H,u ∈ P;
5. and its restriction on h is just the in�nitesimal action R′.

The homogeneous model is the quotient G→ G/H with the in�nitesimal
right action of g where G is a suitable Lie group with Lie algebra g.

I This notion covers a wide class of su�ciently rigid geometric
structures, e.g. Riemannian, conformal or projective geometry.

I The vector �elds r (V ) are not projectable down to M.
I On the homogeneous model r is a Lie algebra homomorphism.



Cartan geometries
Let H be a Lie group, h its Lie algebra and g another Lie algebra such that
h ≤ g is its subalgebra. A Cartan geometry of type (g,H) on M is a triple
(M,P, r ) where

1. P is a principal H-bundle over M with right action Rh ;
2. r : g→ X(P) is a R-linear map such that
3. the corestriction on Tu (P) is a linear isomorphism for each u ∈ P;
4. it is transformed by Rh according to the adjoint representation

dRh(r (V )u ) = r (Ad(h)−1V )Rh (u), ∀V ∈ g,h ∈ H,u ∈ P;
5. and its restriction on h is just the in�nitesimal action R′.

The homogeneous model is the quotient G→ G/H with the in�nitesimal
right action of g where G is a suitable Lie group with Lie algebra g.
I This notion covers a wide class of su�ciently rigid geometric

structures, e.g. Riemannian, conformal or projective geometry.
I The vector �elds r (V ) are not projectable down to M.
I On the homogeneous model r is a Lie algebra homomorphism.



Tractors

The condition that r is an isomorphism on the �bers allows us to identify
the vector �elds ξ ∈ X(P) with functions f ∈ C(P, g),

ξu = r (f (u))u , ∀u ∈ P.
I We call the inverses ωu = (ru )−1 : Tu (G) → g Cartan connection.
I The vector �elds on P which are projectable down to M are exactly

the subspace A(M) = X(P)H ≤ X(P) of Rh-invariant vector �elds.
I These invariant vector �elds are tensorial of type Ad, they are called
adjoint tractors.

I The tangent vector �elds X(M) on the base X are tensorial of type
Ad : H→ AutR(g/h).

I We have a projection Π : A(M) → X(M) given by dp. On the �bers it
corresponds to the canonical projection π : g→ g/h.

I In general, tractors are tensorial quantities of type λ : H→ AutR(V )
such that λ′ : h→ EndR(V) can be extended to the whole g.
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