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Abstract. This contribution addresses the problem of curve and surface evo-
lution. We explain a general framework for the evolution-based approximation
of a given set of points by a curve. Then we apply this method to surfaces.
We show the sequential evolution of curves and surfaces on some concrete ex-
amples. We apply the curve evolution as a solving method in statistical data
analysis. Our aim is to use closed B-spline curves for the description of data
sets related to the local density of the data sample. The result is a contour ful-
filling some predefined statistical criterion. We also explain the notion of data
depth. We also use the surface evolution for the surface reconstruction from
point clouds. We describe the digital reconstruction problem and the methods
of surface reconstruction. For the implementation of evolution algorithms we
use the interactive environment MATLAB.
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Introduction

Shape fitting is useful tool in many scientific branches. There is a wide range of
possible applications of the shape fitting methods. In our research we deal with the
digital reconstruction problem and the methods of surface reconstruction, see [8].
We explore the steps which are necessary to convert a physical model or some real
object into a computer model. The surface reconstruction is a natural extension
of the curve reconstruction. We want to develop some new methods of surface
reconstruction especially in the context of the architectural objects. We focus on
methods which are based on the sequential evolution. Both - curve and surface
evolution is available. Of course, curve evolution is simpler case so that we explain
this problem for curves then we apply it to surfaces.

We also apply a curve evolution as a solving method in statistical data analysis.
One notion of shape estimation of a set of points in the plane can be their depth.
Data depth has been used in statistics as the way to identify the centre of a bivariate
distribution. This leads to a natural centre-outward ordering of the sample points.
Then we can estimate important characteristics of the data. The set of depth
contours of a set of points can be used in various applications.

We apply the curve evolution to finding the depth contour. The input is a finite
set of points in the plane and our aim is to obtain the description of a data set by
using closed B-spline curves. We have some initial closed B-spline curve. This curve
moves and modifies in time such that finally we obtain depth contour fulfilling some
predefined statistical criterion. One of the strength of this method is the possibility
of obtaining both convex and non convex shapes of contours.

The remainder of this paper is organized as follows. The section 1 is devoted
to the curve and surface fitting based on the sequential evolution. The notion of
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data depth and various definitions of statistical depth are given in section 2. In
the section 3 we introduce our method for statistical data analysis and describe
the implementation of the algorithm. Finally we present some examples of depth
contours obtained using closed B-spline curve evolution – convex and non convex
shapes.

1. Shape fitting

The specific task we solve is given by unorganized finite set of points in the space
(point cloud). The output is the reconstructed surface so that the points of the
input set lie on or close to surface. We assume that the input set corresponds with
the real surface, no other information are given.

The input data can consist of a large number of points. Real data may contain
over million points. Ideally, these data are precise coordinates of points on the
surface of the object. But in real applications there will be measurement errors, we
have to deal with. In the point cloud there may be redundant data, some points are
useless, don’t contain any new or important information or some points are very
close to one another. For that reason these redundant data points will be removed.
There exist several removal criteria which depend on the underlying application;
more detailed information are in [3].

In the subsequent polygon phase, a triangle mesh is computed that approximates
the given data points. This procedure is very difficult and no general method is
available. In the polygon phase we obtain a first surface representation of the
object. Several known algorithms for computing triangle mesh are for example
alpha-shapes, crust algorithm, cocone algorithm which are based on spatial subdi-
vision (on the dividing of the three-dimensional space). More detailed information
can be found in [2, 6].

The final shape phase isn’t necessary for the pure visualization but it will be
crucial for architecture. We have to convert the triangle mesh into a CAD rep-
resentation which is appropriate for further processing. This phase includes edge
and feature line detection and decomposition into parts of different nature and ge-
ometry - for example planar parts, cylindrical patches, conical patches, freeform
patches. This process is called segmentation. Then we have to approximate the
data regions using surfaces of the correct type which we identified in the segmen-
tation. For example, a region identified as being planar in the segmentation phase
will be approximated by part of a plane. Computing such an approximation plane
is simple task. This process is known as surface fitting. More detailed information
can be found in [7].

We introduce some new methods of surface reconstruction which are based on
the sequential evolution. We explain generally the principle of the curve and surface
evolution.

1.1. Curve evolution. The principle of curve evolution is sequential modifying of
planar parametric curve from some initial position and shape. The evolution will
be stopped if some condition is satisfied. In our case if the final curve has minimal
distance (in theory) or sufficiently small (in practical implementations) from the
given data.

We identify a curve that approximates a given set of data points {pj}j=1...N in
the least square sense. We consider a planar parametric curve
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s(t0) = (s1(t0), s2(t0), . . . , sn(t0))

s(t1) = (s1(t1), s2(t1), . . . , sn(t1))

s(t2) = (s1(t2), s2(t2), . . . , sn(t2))

s(t3) = (s1(t3), s2(t3), . . . , sn(t3))

s(t∞) = (s1(t∞), s2(t∞), . . . , sn(t∞))

Figure 1. Curve evolution in time. First picture shows initial
position and shape of the curve and the input set of points, last
picture shows the final curve.

(1.1) c(u) =
m

∑

i=0

βi(u) · Vi,

where u is the curve parameter, Vi are control points and βi are basis functions.
We are looking for the curve such that

(1.2)

N
∑

j=i

min
xj∈c

‖pj − xj‖
2
−→ min,
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where xj are points on the curve. If we denote cs(u) := c(s, u) then two different
kinds of parameters appear in the representation of the curve; the curve parame-
ter u and a vector of shape parameters s = (s1, s2, . . . , sn) where sj denotes the
coordinates of control points. It means that we are looking for the vector of shape
parameters that defines the curve. We let the shape parameters s depend smoothly
on an evolution parameter t, s(t) = (s1(t), s2(t), . . . , sn(t)). The parameter t can
be identified with the time. Starting with certain initial values, these parameters
are modified continuously in time such that a given initial curve moves closer to the
data points. Figure 1 shows the curve evolution in time. For each point {pj}j=1...N

we compute the closest points fj = c(uj) on the initial curve. During the evolution
of a curve cs(t)(u) each point fj travels with the velocity

(1.3) vs(uj) = ċs(uj) =

n
∑

i=1

∂cs(uj)

∂si

ṡi

or with the normal velocity

(1.4) (vs(uj))
T

ns(uj) =

n
∑

i=1

(

∂cs(uj)

∂si

ṡi

)T

ns(uj).

The dot denotes the derivative with respect to the time variable t, ns(uj) denotes
the unit normal of the curve in the point cs(uj). We set dj := pj −fj. If the closest
point is one of the two boundary points then we consider the velocity (1.3). We
can compute for each point fj the velocity or normal velocity on the one hand and
the expected velocity on the other hand. The following condition has to satisfy

(1.5)

N
∑

j=1

uj 6∈{a,b}

∥

∥

∥
(vs(uj) − dj)

T
ns(uj)

∥

∥

∥

2

+

N
∑

j=1

uj∈{a,b}

(vs(uj) − dj)
2
−→ min

ṡ
.

We compute (ṡ1, ṡ2, . . . , ṡn) and update the vector of shape parameters using
the Euler-steps (s1 + εṡ1, s2 + εṡ2, . . . , sn + εṡn). More detailed information can
be found in [1].

Figure 2. The input set of data points in the space.
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1.2. Surface reconstruction. We can indeed the methods of shape evolution to
surfaces. The principle of the surface evolution is the same. We assume that a set
of data points {pj}j=1...N in the space is given, see Figure 2. We identify a surface
that approximates a given set of data points in the least square sense. Surface
evolution in time is shown in Figure 3.

Figure 3. Surface evolution in time. First picture shows initial
position and shape of the surface and the input set of points, last
two pictures show the final surface and the final surface with con-
trol points which are modified in time.
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1.3. Example of the curve evolution. In this part we demonstrate curve fitting
based on the sequential evolution. We apply curve evolution to closed B-spline
curves. We consider closed B-spline as a planar parametric curve which is modified
by the evolution process. Our implementation is applicable to both convex and non
convex shape. We choose MATLAB for implementation of this algorithm. Figure
4 illustrates the outputs of our algorithm.

Figure 4. Examples of curve fitting based on the sequential evolution.

2. The notion of data depth

The notion of data depth generalizes the median to higher dimensions. The mo-
tivation and necessity in statistics to generalize the median is very natural. Various
depth measures have been proposed to analyze a given theoretical distribution of
a set of data points in the plane. The concept of data depth is based on ordering of
points. The principle of ordering is intuitively very simple. In general, the greater
the depth of a point, the more densely it is surrounded by other points of the input
set. But in some examples the deep point is not itself in a dense region, but if we
travel from infinity to the point we are forced cross regions with high density. We
can compute over this depth measure the point in the plane with the maximum
depth - the deepest point. It is analogous to the median in R and we will keep
this name. We can also find the regions of all points with depth greater than some
assigned value k. These regions are sometimes called tolerance regions. It is quite
natural to suppose that their boundaries are isolines of the density function. The
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way we add the real numbers (the data depth) to points is described by so called
depth function.

There are many different definitions of data depth measure, each approaching the
problem in different way. These definitions vary in their efficiency and applicability
to more or less general data or distributions. Typically, they restrict themselves to
the cases where the depth contours are convex. Usually the following properties
are required (see [4, 5, 10])

1. affine invariance,
2. maximality at centre,
3. monotonicity relative to deepest point,
4. vanishing at infinity.

While the first and the last properties are very general and acceptable, the
conditions 2 and 3 suggest the convexity of the data and uniqueness of the depth
centre.

The most well known are convex hull peeling, simplicial depth, half-space depth.
This depth measures were introduced in our contribution last year. See [9].

3. Statistical data analysis

In this part we present our method for statistical data analysis and show some
examples produced by our algorithm. We apply a curve evolution to finding the
depth contours. The input is in principle a two dimensional statistical distribution,
which is practical examples represented by a sampled data set.

We consider closed cubic B-spline as a planar parametric curve which will be
modified by the evolution process. The evolution is guided by two forces acting
simultaneously on the curve. First one forces the curve to enclose a prescribed
Euclidean area. The area can be computed from the control point via the well
known integral formula. It is not linear, but similarly to the shape fitting, the
derivative of this formal is linear with respect to the derivatives of the control points.
This force will act on the curve with a rather great weight coefficient. Consequently,
the curve during it evolution will almost keep the prescribed enclosed area.

Second force is given by the principle which is very similar to the one used for the
shape fitting. For a sequence of points (sensors) along the moving curve we estimate
a real number which represents the force by which should be the corresponding
point attracted to the interior of the curve. The force is evaluated in every step of
curve evolution and is inverse proportional to the density function. For concrete
probability statistical data we estimate the density function and the force from the
number of points lying in a suitable neighborhood of the sensor. It means, the
more densely the point on the curve is surrounded by other points of the input
set, the smaller the force of point on the curve. The part of the curve on which
the points have great data density moves less. The evolution is stopped when it
reaches a stationary position, in practice when in last steps its modification was
very small. As a result we obtain a region of a prescribed Euclidean area which
has (locally) maximal probabilistic measure (in practice number of data points).
Then we can define some new value of the prescribed Euclidean area continue the
evolution towards a new depth contour.

The shape of these contours can be convex or non convex. Our method is already
reliable for convex shape. For non convex shapes of the contours we obtained some
promising first results. Due to the higher degrees of freedom we have to do more
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Figure 5. Input data (left) consisting of 1000 points and com-
puted contours (right) which are convex (top) or non-convex (bot-
tom).

experiments with setting the coefficients guiding the evolution in order to obtain
more reliable results. The implementation was realized in the program MAPLE.

Conclusion

Our contribution focused on various applications of the shape evolution. We
explained the general framework for the evolution-based approximation of a given
set of points by a curve. Then we applied it to surfaces. We suggested the algorithm
for curve fitting based on the sequential evolution and showed several examples of
the outputs of our algorithm. We also applied curve evolution as a solving method
to finding the depth contours in statistical data analysis. In our future work we
will focus on the improvement of the implementation of our algorithms, which we
apply to real data.
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