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Abstract. Recently, the support function representation of hyper-
surfaces has been introduced into CAGD. This representation is very
useful in computation of convolutions of hypersurfaces. However,
for a given hypersurface (represented parametrically or implicitly)
it is not always possible to represent it via support function. In
this paper we introduce the so-called implicit support function (ISF)
representation which removes this main disadvantage. We show how
ISF representation can be used in computation of rational convolutions
of hypersurfaces, i.e., how to identify that the convolution is rational
and how to find its rational parameterization.

Keywords: Convolution hypersurfaces, support function representation,
implicit support function representation, rational parameterizations.

1 Introduction
Convolution of hypersurfaces is a fundamental operation in Computer
Aided Geometric Design (CAGD) which provides one of the main chaleng-
ing problems. Since convolutions with spheres correspond to classical
offsets and convolutions with arbitrary surfaces represent the so-called
general offsets, operation of convolution is especially useful in machining
– they provide paths for cutting tools.

Since CAGD most often uses a parametric description of hypersur-
faces (typically curves and surfaces), one of the tasks is to find a rational
parameterization of the convolution hypersurface, if it exists. In such a
case, the convolution curve/surface can be represented again in the stan-
dard (NURBS) form. The classical offsets have been studied intensively
in recent years (see e.g. [2, 3, 9]), there are also some papers related to
general offsets (see e.g. [6, 7, 10]).

Nevertheless, a parametric or implicit representation of hypersurfaces
seems to be not very suitable for the operation of convolution and that
is why “better” representations w.r.t the convolution are looked for. Re-
cently, the support function representation of hypersurfaces has been in-
troduced into CAGD (see [4, 11]). This representaiton is very suitable
for describing convolutions of hypersurfaces as this operation corresponds
to the sum of the associated support functions. The main drawback of
this representation is that not all hypersurfaces (given parametrically or
implicitly) can be represented via support function.

This paper is devoted to the representation of hypersurfaces which is
based on the support function representation and removes the main dis-
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advantage of the SF representation, i.e., it is available for all algebraic
hypersurfaces with non-degenerated Gauss image. We call it implicit sup-
port function representation as it is closely related to the SF represen-
tation but, in fact, this is a dual representation of a given hypersurface.
We show how to find ISF representation for parametrically or implicitly
given hypersurface and how this representation can be used for deciding
rationality of the convolution and for finding rational parametrizations of
the convolutions.

The remainder of the paper is organized as follows: Section 2 is devoted
to the convolution of hypersurfaces, Section 3 introduces implicit support
function representation, gives some basic properties and also algorithms
for computing ISF for parametric and implicit hypersurfaces. Section 4
uses ISF representation for computation of rational parameterizations of
convolution curves/surfaces. Finally, Section 5 concludes the paper.

2 Convolutions of hypersurfaces
The notion of convolution hypersurfaces (especially curves or surfaces) are
used in various fields of mathematics and there are also many applications
in the technical praxis. Let us start with the definition.

Definition 2.1 Let A and B be smooth hypersurfaces in the affine space
Rn+1. The convolution hypersurface C = A ⋆ B is defined

C = {a + b |a ∈ A,b ∈ B and na ‖ nb}, (1)

where na and nb are the normal vectors of A and B at points a ∈ A and
b ∈ B. The points a, b are called corresponding points.

Let us look at this problem from the point of view of parameteriza-
tions of hypersurfaces A and B. Let a(u1, . . . , un) and b(s1, . . . , sn) be
parameterizations of hypersurfaces A and B, respectively. For the sake of
brevity, we denote ū = (u1, . . . , un) etc.

There are two main tasks concerning the computation of parameter-
izations of convolution hypersurfaces. First, we want to decide if the
convolution C = A ⋆ B is rational, and second, we want to compute the
rational parameterization of the convolution hypersurface using the pa-
rameterizations a(ū) and b(s̄) of A and B, respectively, if it is possible.
Basically, we have two possibilities how to solve these problems. We can

1. find a rational reparameterization ū 7→ φ(s̄) such that the parame-
terizations a(φ(s̄)),b(s̄) fulfill the convolution condition (for a given
s̄0 normal vectors at a(φ(s̄0)),b(s̄0) are parallel), or

2. find suitable rational parameterizations ã(t̄), b̃(t̄) of both hypersur-
faces which fulfill the convolution condition described above, or di-
rectly find rational parametrization c(t) without rational φ.
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Since the first approach was thorougly studied in [7], we focus on the
second approach in the rest of this paper. This approach, which is based
on the implicit support function representation, is useful especially in case
when we are not able to decide rationality of a convolution and/or find a
rational reparameterization φ. In curve/surface case, we can always give
an answer for the first question – is the convolution rational? Moreover,
in the curve case (and sometime also in the surface case) we can find the
rational parameterization of the convolution curve/surface.

3 Implicit support function representation
In this part, we use a hypersurface representation outgoing from the so-
called support function representation of hypersurfaces (cf. [11, 4]). The
support function representation is a certain kind of a dual representation,
most widely used as a tool in the convex geometry for the representation
of convex bodies, see e.g. [5]. Recently, this concept has been extended
to the so-called quasi-convex hypersurfaces [11].

A hypersurface is described as the envelope of its tangent hyperplanes

Tn := {x : n · x = h(n)}, (2)

where the support function (SF) h(n) is a function defined on the unit
sphere Sn (or its suitable subset). This representation is very suitable for
describing convolutions of hypersurfaces as this operation corresponds to
the sum of the associated support functions, i.e.,

hC = hA + hB. (3)

However, given a parametric or implicit representation of a hypersurface,
it is not always possible to represent it via SF – mainly due to the fact,
that for each vector n only one value of h is possible.

Further, we use a hypersurface representation which removes this main
drawback of the support function representation, i.e., it is available for all
algebraic hypersurfaces with non-degenerated Gauss image. A hypersur-
face is here represented as an envelope of tangent hyperplanes (2) where
n and h satisfy the implicit polynomial equation

D(n, h) = 0, (4)

i.e., from now h(n) does not have to be a function defined only on the
unit sphere Sn.

To emphasize the connection between the standard one-valued SF rep-
resentation and (generally) multi-valued SF representation (4), we will call
D(n, h) = 0 the implicit support function (or shortly ISF ) representation
of a hypersurface. Since D(n, h) = 0 is a dual representation of a given
hypersurface we immediately obtain:
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Lemma 3.1 For the implicit support function D(n, h) = 0 of a hypesur-
face A, it holds:

1. D(n, h) is a homogeneous polynomial in n1, . . . , nn, h.
2. A is irreducible iff D(n, h) is irreducible.

The connection between the rationality of a given hypersurface and
the associated ISF representation is expressed as follows:

Lemma 3.2 There exists a rational representation of a hypersurface if
and only if the zero locus of the corresponding implicit support function
D = 0 is rational.

Proof. See [8]. �

Implicit support function can be easily obtained from a parametric
or implicit representation of an arbitrary hypersurface just by applying
suitable elimination method, e.g. Gröbner basis method (cf. [1]) – see
Algorithm 1 and Algorithm 2.

Input: Parameterization
x : Rn → Rn+1 : (u1, . . . , un)→ (x1, . . . , xn+1)

Output: ISF D(n, h) = 0
begin

I ←− 〈n · ∂x
∂u1

, . . . ,n · ∂x
∂un

,n · x− h, 1− wh||au × av||2〉;
≺ ←− a term order such that w and each ui is greater than any
ni and h;
G ←− a Gröbner basis of I w.r.t ≺;
D ←− G ∩ k[n1, . . . , nn+1, h];
return D

end
Algorithm 1: Finds ISF for a hypersurface given parametrically.

Input: Polynomial F (x1, . . . , xn+1)
Output: ISF D(n, h) = 0
begin

I ←− 〈F, ∂F
∂x1
− λn1, . . . ,

∂F
∂xn+1

− λnn+1,n · x− h, 1− wh〉;
≺ ←− a term order such that w, λ and each xi is greater than
any ni and h;
G ←− a Gröbner basis of I w.r.t ≺;
D ←− G ∩ k[n1, . . . , nn+1, h];
return D

end
Algorithm 2: Finds ISF for a hypersurface given implicitly.
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Figure 1: The Enneper surface.

Example 3.3 The Enneper surface (see Fig. 1) can be given either in
the implicit form

F (x, y, z) = −64z9 + 1152z7 + 432x2z6 − 432y2z6 + 3888x2z5+
3888y2z5 − 5184z5 + 6480x2z4 − 6480y2z4 + 1215x4z3+
1215y4z3 − 3888x2z3 + 6318x2y2z3 − 3888y2z3+
4374x4z2 − 4374y4z2 − 729x4z − 729y4z + 1458x2y2z+
729x6 − 729y6 + 2187x2y4 − 2187x4y2,

(5)
or in the parametric form

a(u, v) =
(
u− u3

3
+ uv2,−v − u2v +

v3

3
, u2 − v2

)
. (6)

Using Algorithm 1 for the parametric form (6) or Algorithm 2 for the
implicit form (5), we can find the implicit support function representation
of the Enneper surface in the form

D(n1, n2, n3, h) = −4n6
1 + 9h2n4

1 + 4n2
2n

4
1 − 3n2

3n
4
1 − 18hn3n

4
1+

4n4
2n

2
1 − 12hn3

3n
2
1 + 18h2n2

2n
2
1 + 6n2

2n
2
3n

2
1−

4n6
2 + 9h2n4

2 + 12hn2
2n

3
3 − 3n4

2n
2
3 + 18hn4

2n3.

We can also easily switch from ISF representation to the parametric
one. If D(n, h) = 0 (ISF of a hypersurface A) is parameterized by rational
functions in ū

n1(ū), . . . , nn+1(ū), h(ū),

then the tangent hyperplanes of A can be written in the form

n1(ū)x1 + . . .+ nn+1(ū)xn+1 − h(ū) = 0. (7)
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Differentiating (7) with respect to ui, i = 1, . . . , n, gives along with (7)
the system of n+1 linear equations in variables xj , j = 1, . . . , n+1. Using
Cramer’s rule, we obtain a rational parameterization of A.

4 Rational convolutions computation using ISF
In what follows, we want to use ISF representation of hypersurfaces for
computing rational parameterizations of convolution hypersurfaces C =
A ⋆ B (mainly curves and surfaces, here), especially in case when we are
not able to find a direct rational reparameterization of one hypersurface
w.r.t the other one in order to fulfill the convolution condition. To obtain
ISF of a convolution hypersurface C = A⋆B, we have to sum points with
parallel normal vectors on hypersurfaces A and B. Hence, it is enough to
add the equation (3) and eliminate variables hA, hB from the system of
equations

DA(n, hA) = 0, DB(n, hB) = 0, hC − hA − hB = 0, (8)

for more details see Algorithm 3.

Input: ISFs DA(n1, . . . , nn+1, hA) and DB(n1, . . . , nn+1, hB)
representing A and B

Output: ISF DC(n1, . . . , nn+1, hC) of the convolution
hypersurface C = A ⋆ B

begin
I ←− 〈DA, DB, hC − hA − hB〉;
≺ ←− a term order such that hA and hB are greater than hC

and any ni;
G ←− a Gröbner basis of I w.r.t ≺;
DC ←− G ∩ k[hC , n1, . . . , nn+1];
return DC

end
Algorithm 3: Computes ISF of a convolution hypersurface of two
hypersurfaces.

Example 4.1 Let A be the cardioid parameterized by

a(u) =
( −2u4 + 2u2

u4 + 2u2 + 1
,

−4u3

u4 + 2u2 + 1

)⊤

and B be the Tschirhausen cubic parameterized by

b(s) =
(
s2, s− 1

3
s3

)⊤
,
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see Fig. 2. Applying the first approach mentioned in Section 2 we are
not able to find rational reparametrizations u 7→ u(s) and s 7→ s(u) and
rational parameterization of the convolution curve C = A ⋆ B. However,
we know that C is rational because the cardiod is a PH curve (see [3] for
more details on PH curves).

Thus, this is the case when ISF representation is useful. Algorithm 1
yields ISFs of the cardiod and Tschirhausen cubic in the form

DA(n1, n2, hA) = 16h3
A + 24n1h

2
A − 27n2

2hA − 15n2
1hA + 2n3

1, (9)
DB(n1, n2, hB) = 9h2

Bn
2
2 − 12hBn

3
1 − 18hBn1n

2
2 − (10)

−3n2
1n

2
2 − 4n4

2.

Next, applying Algorithm 3 we obtain the ISF representation of C = A⋆B
in the form

DC(n1, n2, hC) = (186624n6
2)h

6
C + (−559872n1n

6
2 − 746496n3

1n
4
2)h

5
C+

+(−878688n8
2− 676512n6

2n
2
1 + 1119744n4

2n
4
1 + 995328n2

2n
6
1)h

4
C+

+(−442368n9
1 + 2072304n8

2n1 + 4944240n6
2n

3
1 + 3297024n24n5

1)h3
C+

+(−663552n10
1 − 3504384n8

1n
2
2 − 4316247n4

1n
6
2 − 6453216n6

1n
4
2−

−63990n2
1n

8
2 + 642033n10

2 )h2
C + (414720n11

1 + +1938816n9
1n

2
2−

−753570n1n
10
2 + 772362n5

1n
6
2 + 2832948n7

1n
4
2 − 1290204n3

1n
8
2)hC+

+(289224n8
1n

4
2 + 458010n4

1n
8
2 − 108387n2

1n
10
2 − 82944n10

1 n
2
2+

+755109n6
1n

6
2 −−55296n12

1 − 128164n12
2 ).

It can be shown that genus(DC) = 0 and thus DC (and also C) is a
rational curve. We use a parameterization algorithm (see e.g. [12]) and
obtain

n1(t) = 6t−20t3+6t5

t6+3t4+16t3+3t2+1 , n2(t) = 1−15t2+15t4−t6

t6+3t4+16t3+3t2+1 ,

hC(t) = − 2
3 · 1−3t−54t5−23t9−54t7−3t11+264t6−23t3−9t4−12t2−9t8−12t10+t12

1+14t3+t12+14t9+6t11+6t−300t6+6t10+111t8+12t7+111t4+12t5+6t2 .

(11)
Then, we can compute an envelope of tangents

n1(t)x + n2(t)y = hC(t)

to get the rational parameterization c(t) of the convolution curve C (which
is too long to include it into the paper).

Moreover, we can find suitable parameterizations ã(t) and b̃(t) of A
and B, respectively, which fulfill the convolution condition, i.e., for a given
t0 the corresponding normal vectors nã(t0) and nb̃(t0) are parallel.

Substituting n1(t), n2(t) into (9) and (10) we arrive at

hA(t) = 16t3

t6+3t4+16t3+3t2+1 ,

hB(t) =
2(t3+3t2−3t−1)2(t6−3t5+3t4+10t3+3t2−3t+1)

3(t3−3t2−3t+1)2(t6+3t4+16t3+3t2+1)
.

(12)
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Figure 2: The cardioid (left) and the Tschirnhausen cubic (right).

Then, we apply the algorithm for computing an envelope of the system of
tangents (7) and find parameterizations

ã(t) =
(

8t2(−6t2+t4+1)

(t2+1)4
, 32(t2−1)t3

(t2+1)4

)⊤
,

b̃(t) =
(

(t3+3t2−3t−1)2

(t3−3t2−3t+1)2 ,
−2(t3+3t2−3t−1)(t6−12t5+3t4+40t3+3t2−12t+1)

3(t3−3t2−3t+1)3

)⊤
.

These parameterizations can be achieved from the original parameteriza-
tions a(u), b(s) by rational reparameterizations φ : Ω→ Da, ψ : Ω→ Db

φ : u =
2t

1− t2 , (13)

ψ : s =
t3 + 3t2 − 3t− 1
t3 − 3t2 − 3t+ 1

, (14)

which are defined for a certain Ω ⊆ Da ∩Db.

5 Conclusion
The paper has been devoted to the problem of finding rational parametriza-
tions of convolution hypersurfaces (mainly curves and surfaces). The
implicit support function representation which is very suitable for de-
scribing the convolutions has been introduced. We have also presented
algorithms for computing ISF of hypersurfaces given parametrically or
implicitly which are based on the Gröbner basis method. Finally, the
algorithm for deciding the rationality of a convolution curve/surface and
(eventually) finding its rational parameterization has been shown.
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[8] Lávička, M., Bastl, B., Š́ır, Z.: Reparameterization of Curves and
Surfaces with Respect to Convolutions, In preparation, 200x.

[9] Pottmann, H.: Rational curves and surfaces with rational offsets,
Computer Aided Geometric Design, Vol. 12, pp. 175–192. Elsevier,
1995.
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