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FITTING OF PIECEWISE POLYNOMIAL
IMPLICIT SURFACES

Abstrakt
In our contribution we discuss the possibility of an efficient
fitting of piecewise polynomial implicit surfaces to given point
sets. We describe a method which uses simultaneous approx-
imation of given (sampled) data points and (estimated) nor-
mals. In particular we analyse the advantages and disadvan-
tages of using tetrahedral and tensor product based piecewise
polynomial implicit functions.
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1 Introduction

Traditionally, most CAD systems rely on parametric representations, such
as NURBS surfaces, which offer a number of benefits, in particular simple
sampling techniques. But the use of implicitly defined surfaces offers also
a number of advantages, for example shape constrains (e.g. convexity) can
be expressed more easily (see e.g. [7]) and solids can be defined simply by
evaluating the sign of the generating real-valued function. Also intersections
of an implicit object with parametric ones (for example with straight lines
in ray-tracing algorithms) can be found in a particularly efficient way.

In order to exploit the potential of implicit representations, methods for
conversion to and from implicit representations are needed. In this paper
we discuss the process of approximate implicitization via surface fitting. The
implicit surface fitting was addressed first by V. Pratt in [9], since the various
methods have been described in the vast literature on the subject - see for
example [1, 11]. Most of these methods use the so–called algebraic distance
and combine it with a suitable normalization of the coefficients. For instance
in [9] the value of one coefficient is kept constant and in [11] the sum of the
squared gradients at the data points is constrained.

As an alternative to the standard approach of a ‘normalization’ in the
coefficient space, we use estimated normals [8], as additional information
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on the shape of the given data. Suppose we are given a set of points
{pi ∈ Ω : i = 1, . . . , N} in a suitable region of interest Ω ⊂ R

3. In some
applications the normals are also available, but in general the unit normals
{ni : i = 1, . . . , N ′} at regular points pi, i = 1, . . . , N ′ must be estimated by
fitting a regression plane to the neighboring points of np. The points for
which the fitting of regression plane fails are considered as singular. The reg-
ular points are organized into segments by a simple region growing process
and the orientation of the estimated normals is propagated.

As a simple example figure 1(a) shows data points lying on a cube. The
points in the interior of each face belongs to the same segment and the
normals have corresponding orientation. The points close to the edges of the
cube are detected as singular and no normals are estimated.

We define point and normal deviation functionals

L(f) =
N
∑

i=1

f(pi)
2, K(f) =

N ′

∑

i=1

‖∇f(pi) − ni‖
2 (1)

and want to minimize the weighted linear combination

F (f) = L(f) + w1K(f) + w2T (f) → min, (2)

where w1, w2 are suitable positive weights and T an additional quadratic
tension term, given for example by

T (c) =

∫∫∫

Ω

f 2
xx + 2 f 2

xy + f 2
yy + 2 f 2

xz + 2 f 2
yz + f 2

zz dx dy dz. (3)

It can be shown, that if w1, w2 are positive, then F is a positive, strictly
convex quadratic functional and therefore restrained to a suitable finite di-
mensional functional space (polynomials, tensor product polynomials, poly-
nomial spline functions) it has one minimum which can be found solving
a system of linear equations. Fitting procedure of polynomial and tensor
product polynomial functions the was studied and tested in [12]. The con-
clusion of this benchmarking reveals, that fitting of one polynomial implicit
surface gives relatively good results for simple data sets. On the other hand
for large input data sets with a possibly complicated topology the approx-
imation by one algebraic surface is not very efficient and often produced
unwanted branches in the region of interest. For this reason we will discuss
a possibility of using tetrahedral and tensor product piecewise polynomial
implicit functions instead of simply polynomial functions.
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2 Tetrahedral piecewise polynomials

Two problems arise immediately considering piecewise polynomial functions
defined in a union of tetrahedral domains. The first one is the geometry of
the segmentation of Ω and the second is the expression of the continuity on
the common boundaries of segments.

2.1 Segmentation of the space

The 3D space can not be filled be regular tetrahedra. Therefore there are
two possible strategies for the segmentation of the domain of interest Ω into
non regular tetrahedra. The first is to make once for ever a choice of the
geometry of tessellation, which will be modified only by scaling and Euclidean
transformations. The drawback of this approach is that the irregularity of
the cells may create conflict with the topology of the data.

The second strategy would be to create a new division of the space for each
input data - see e.g. [6]. This preprocessing step is computationally rather
expensive and leads to relatively complicated expressions of the boundary
continuity of the piecewise polynomials.

2.2 Continuity conditions

Let us suppose, that the region of interest Ω is divided into r tetrahedra.
In each tetrahedron we want to construct a trivariate polynomial of degree
n described in the Bernstein form. In total we thus get r

(

n+3

3

)

coefficients
and the boundary continuity conditions will introduce dependencies among
them.

For example the C0 continuity over the common face of two adjacent
tetrahedra is equivalent to the identity of Bézier ordinates corresponding
to the coinciding Bézier points. Higher order continuity can be expressed
by linear conditions on the coefficients (see for example [5, p. 104]) and
even more relaxed geometrical continuity can still be expressed by linear
conditions [1].

We must then solve the optimization problem (2) subject to the linear con-
straints. Such a problem can be solved using Lagrangian multipliers, which
leads to a huge system of linear equations involving auxiliary unknowns.
Another possibility is to use quadratic programming algorithms, which are
comparatively more expensive than the solution of a linear system of equa-
tions. The last possibility is to use the linear conditions for to substitute for
certain coefficients. The implementation of such substitution process is not
straightforward, considering a variable geometry of the triangulation.
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The space of piecewise polynomials can also be described using suitable
basis functions. This procedure [10], standard for tensor product splines,
is unfortunately rather complicated in the case of tetrahedral splines. The
continuity of the defined basis functions is ensured by use of auxiliary knots
associated with each vertex of the tetrahedralisation. The position of these
knots changes the properties of the basis and it is not obvious how these knots
should be setup. An inappropriate configuration may create basis functions
which have theoretically the required continuity, but which do not look ge-
ometrically continuous, because the curvature is too high. Due to these
difficulties tetrahedral B-splines are rarely used for implicit representations.

2.3 A-patches

Recently Bajaj, Chen and Xu [2] described a new class of algebraic patches
called A-patches. They form a special subclass of surfaces defined implicitly
in a tetrahedron by a trivariate polynomial in the Bernstein form. Certain
restrictions are imposed on the values of the Bézier ordinates in order to
ensure that the surfaces are single sheeted. In several papers (e.g. [3]) the
A-patches were used for the reconstruction of curves and surfaces from the
scattered data, the main technique being a local interpolation and not an
approximation. In fact the inequality conditions associated with A-patches
complicates considerably the optimization problem. In addition as A-patches
are one-sheeted, they can not describe complicated singularities.

3 Tensor product piecewise polynomials

The space can be divided in a natural and symmetrical way in rectangular
boxes, for example in cubes of the same size.

The continuity conditions at the boundaries of the boxes into which the
domain of interest is divided can be handled in a direct way, but this approach
will suffer drawbacks similar to those described in 2.2 for the tetrahedral
piecewise polynomials. On the other hand, for the tensor-product functions
the theory of B-splines basis functions, assuring the desired continuity, is
simple and efficient - see [5].

In order to obtain the knot vectors, we consider a bounding box of the
data, and subdivide a slightly enlarged area in cubic cells of constant size
s. This subdivision induces an equidistant grid on the x, y and z axis. In a
standard way we obtain tensor-product spline functions which are trivariate
polynomials of of degree (n, n, n) in each cubic cell and which are joined with
the n − 1 continuity over the neighboring faces. The domain of interest Ω
does not in fact need to contain all the cells within this grid. Obviously it
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has to contain the cells containing given points. Additionally we consider
neighboring cells. The reason for this is that the resulting surface is likely
to pass through such a cell, and otherwise might be cut away. Due to this
restriction, we only need to take into account the basis functions that do not
vanish on Ω.

Clearly, the partition of the space into rectangular boxes, and hence the
domain Ω of the tensor–product spline function, depend on the choice of
coordinates. A geometrically invariant choice of the coordinate system can
be obtained for example with the help of the eigenvectors of the matrix of
inertia of the given data. Another disadvantage of tensor product B-splines
is a rather high degree 3n of the resulting implicit function.

4 Conclusion

From the previous considerations it follows, that many problems occurring
in the case of tetrahedral piecewise polynomials does not take place if ten-
sor product polynomials are used. This is due to the existence of basis
spline functions, which offer great advantages, including simple implementa-
tion, simple conditions for global smoothness and differentiability and simple
evaluation of functionals (1), (3).

Another advantage of the B-spline representation is that the matrix repre-
senting the minimization problem (2) is sparse, which is due to the restricted
support of the B-spline basis functions. For this reason both the building
of corresponding matrices and solution of the resulting linear system can be
greatly accelerated.

For the mentioned reasons the tensor product B-splines were chosen for
the test implementations, realized within the EU project GAIA II at the
Institute of Applied Geometry of Johannes Kepler University in Linz. Satis-
factory results were obtained even for surfaces involving rather complicated
singularities. For example the figure 1(b) shows a surface implicitized using
a tensor product B-spline of degree (3, 3, 3). The bounding box is divided
into 17 × 17 × 15 cells of which 310 form the domain of interest Ω.

In future we plan to use similar methods method for an implicitization
of offset surfaces and investigate the possibility of a local refinement using
hierarchical B-spline representations (see e.g. [4]), multi degree B-splines or
T-splines.
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(a) Segments and estimated normals. (b) Fitted implicit surface.
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