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1 Introduction

Pythagorean hodograph (PH) curves (see the survey [3] and the refer-
ences cited therein), form a remarkable subclass of polynomial parametric
curves. They have a piecewise polynomial arc length function and, in the
planar case, rational offset curves. These curves provide an elegant solu-
tion of various difficult problems occurring in applications, in particular
in the context of CNC (computer-numerical-control) machining.

Our paper is devoted to the Hermite interpolation by PH curves, which
seems to the most promising among various methods for their construc-
tion. Since it is essentially a local construction, it results in a relatively
reasonable system of nonlinear equations, which can be explicitly solved
in certain cases. Other (global) methods lead typically to a huge system
of nonlinear equation having unclear solvability condition. As an addi-
tional problem it is necessary to make a choice among a great number of
solutions.

After recalling some basic facts about PH curves in Euclidean space we
outline the basic algorithm about C1 interpolation in the plane and our
results about C2 Hermite interpolation in Euclidean space in the context
of other interpolation techniques. Finally we conclude the paper.

2 Euclidean H curves

In this section we summarize some basic properties of Pythagorean Hodo-
graph curves in Euclidean space.

A Bézier curve is called Pythagorean Hodograph (PH) if the length of
its tangent vector, taken in the appropriate metric, depends in a polyno-
mial way on the parameter. In particular

• p(t) = [x(t), y(t)] is called planar PH curve if there exists a polyno-
mial σ(t) such that

x′(t)2 + y′(t)2 = σ2(t), (1)



• p(t) = [x(t), y(t), z(t)] is called a spatial PH curve if there exists a
polynomial σ(t) such that

x′(t)2 + y′(t)2 + z′(t)2 = σ2(t). (2)

The degree of σ(t) equals n − 1, where n is the degree of the PH curve.
The curve h(t) = [x′(t), y′(t){, z′(t)}] is called the hodograph of p(t).

The planar polynomial curve p(t) can be identified with complex val-
ued polynomial p(t) = x(t) + iy(t). The hodograph h(t) = x′(t) + iy′(t)
then satisfy the equation (1) if and only if it is of the form h(t) = w(t)2,
where w(t) = v(t)+iw(t) is a complex valued polynomial called preimage,
[2].

In a similar way, the spatial polynomial curve p(t) can be identified
with pure–quaternion–valued polynomial p(t) = x(t)i+y(t)j+z(t)k. The
hodograph h(t) = x′(t)i + y′(t)j + z′(t)k then satisfy the equation (2) if
and only if it is of the form h(t) = A(t) iA∗(t), where A(t) = u(t)+v(t)i+
p(t)j + q(t)k is a quaternion valued polynomial called preimage, [1].

In the Hermite interpolation one wants to construct a suitable ob-
ject (a PH curve in our case) matching prescribed boundary data. This
data are typically the end point positions and some additional constraints,
which can be analytical (derivative vectors) or geometrical (tangent di-
rections, curvature, etc.) information. In the former case we talk about
C-interpolation, in the latter about G-interpolation.

3 C
1 Hermite interpolation by PH quintics

The following algorithm is based on results from [13].

Algorithm 1 Procedure PHQuintic(P0,V0,P1,V1)
Input: End points P0, P1 and end point derivatives (velocity vectors)
V0, V1. All these data are considered as complex numbers, by identifying
the plane with the Argand diagram.
Output: PH quintic p(τ) defined over the interval [0, 1] and interpolating
the input.

1. Transform the data to a certain canonical position,

Ṽ0 =
V0

P1 − P0

, Ṽ1 =
V1

P1 − P0

.

2. Compute the control points of the so–called preimage:

w0 =
+

√

Ṽ0, w2 =
+

√

Ṽ1.

w1 =
−3(w0+w2)+

+

√

120−15(Ṽ0+Ṽ1)+10w0w2

4
,

where +
√

denotes square root with the positive real part.



3. Compute the control points of the hodograph (i.e., the first derivative
vector) and transform it back to the original position:

h0 = w2

0
(P1 − P0)

h1 = w0w1(P1 − P0)

h2 = (
2

3
w2

1
+

1

3
w0w2)(P1 − P0)

h3 = w1w3(P1 − P0)

h4 = w2

2
(P1 − P0).

4. Compute the control points of the PH interpolant,

p0 = P0, pi = pi−1 +
1

5
hi−1 for i = 1 . . . 5,

and return the PH curve in Bernstein-Bézier representation

p(τ) =
5

∑

i=0

pi

(

5

i

)

τ i(1 − τ)5−i.

Remark 1 It can be verified by a direct computation that the curve p(τ)
interpolates the input data and that it is a PH curve, i.e., its parametric
speed is a (possibly piecewise) polynomial:

||p′(τ)|| = ||w(τ)||2|P1 − P0|,
where

w(τ) = w0(1 − τ)2 + 2w1τ(1 − τ) + w2τ
2

is the so–called preimage.

Remark 2 Algorithm PHQuintic fails for some rare cases of singular
data. First of all the start point P0 and the end point P1 must be different
because of the division in the step 1. Next, the function +

√
is not defined

on the line R
−

0
= {λ + 0i : λ ∈ (−∞, 0]}. In order to compute w0 and

w2 it is therefore necessary that the input tangent vectors V0 and V1 are
non-zero and that they are not opposite to the difference vector P1 −P0.
Finally, we need

120−15(Ṽ0+Ṽ1)+10w0w2 /∈ R
−

0
. (3)

Note, that the vector w0w2 =
+
√

Ṽ0Ṽ1 bisects the angle between Ṽ0 and
Ṽ1 and its length is equal to the geometric average of the lengths of Ṽ0

and Ṽ1. Only input tangent vectors having a certain rare symmetry with
respect to the difference vector P1−P0 and at the same time being much
longer P1 − P0 may violate condition (3). Various sufficient conditions
can be determined for practical purposes in order to satisfy (3), e.g.,

||Vi|| ≤ 3||P1 − P0||, i = 0, 1.



4 C
2 Hermite interpolation in plane and space

Table 1 summarizes the known results about Hermite interpolation in the
Euclidean plane and space. One can observe two facts. First, interpolation
of geometrical data is in principle more complicated then that of analytical
data. Only the G1 construction is available both in space and plane. The
combined G2[C1] interpolation in plane leads to the most complicated
(quartic) equations. Moreover, while the C-interpolation has always a
solution, this is not the case for G-interpolation, where certain conditions
of solvability exist. Second, the space yields more freedom to satisfy the
PH condition and therefore there are more interpolants of the same degree
than in the plane.

Recently we gave new results concerning C2 Hermite interpolation [14]
and [15]. The task is to construct a PH curve p(t) matching given C2

Hermite boundary data: the end points pb, pe, the first derivative vectors
(velocities) vb, ve and the second derivative vectors (accelerations) ab,
ae. This can be done most efficiently by constructing the preimage. If we
work in a suitable polynomial basis (such as Bernstein Bézier basis), the
boundary condition which are linear for the curve p(t) and its hodograph
h(t) become non-linear for the preimage w(t) or A(t). The resulting sys-
tem can be however reduced to successive explicit solution (in quaternions
or complex numbers) of several equations which are quadratic or linear
(see Table 2).

While the complex number equation have a finite number of solution,
the quaternion ones have one dimensional systems of solutions. We thus
obtain a finite number of preimages for the planar case and multidimen-
sional system of preimages in the space case. After eliminating some
redundancies we finally obtain four PH interpolants in the planar case
and a four dimensional system of solutions in the space case. Via an
asymptotical analysis we were able to identify the ”best” solution, which
behaves in a most suitable way, when we interpolate data taken from an
analytical curve and we diminish the step size.

As an example, Figure 1, left shows the system of spatial PH inter-
polants of degree 9 to the data

pb = [0, 0, 0], vb = [3, 0, 0], ab = [0, 1, 0]
pe = [1, 1, 0], ve = [3, 0, 0], ae = [0,−1, 0].

(4)

Note that these data lie in fact in the xy-plane and therefore the four
dimensional system of spatial interpolants must contain the four planar
interpolants (shown on the right figure).

5 Conclusion

The described constructions represent the state of art of the Hermite
interpolation by PH curves. We were able to obtain construction methods



data number of solutions available results
2D-plane

G1 2 solutions, quadratic
equation (Walton and
Meek [12])

One of the solutions has ap-
proximation order 4 at generic
points [12].

C1 4 solutions, quadratic
equations (Farouki and
Neff [6])

The best solution can be iden-
tified via its rotation index
(Moon et al. [13]).

G2[C1] 8 solutions, quartic
equations (Jüttler [9])

One of the solutions has ap-
proximation order 6 at generic
points [9]. Inflections reduce
the approximation order.

C2 4 solutions, quadratic
equations (Farouki et
al. [5])

One of the solutions has ap-
proximation order 6 at all
points (Š́ır and Jüttler [14]).

3D-space

G1 2 solutions, quadratic
equation (Jüttler and
Mäurer [10])

One of the solutions has ap-
proximation order 4 at generic
points (Mäurer and Jüttler
[11]).

C1 2–parametric system
of solutions, quadratic
equations in quater-
nions (Farouki and Neff
[4])

One solution has the best ap-
proximation order 4, preserves
planarity and symmetry of the
data (Š́ır and Jüttler [16]).

C2 4–parametric system
of solutions, quadratic
and linear equations in
quaternions (Š́ır and
Jüttler [15])

One solution has the best ap-
proximation order 6, preserves
planarity and symmetry of the
data [15].

Table 1: Hermite interpolation by Euclidean PH curves.

2D-plane, comp. num. 3D-space, quater.
Equation #Solutions Equation #Solutions

quadratic x2 = a 2 X iX ∗ = A 1-param. sys.
linear xb = a 1 XB = A 1-param. sys.

Table 2: Two types of equation occurring in the C2 Her-
mite interpolation process. The unknowns are x (complex
number) or X (quaternion).
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Figure 1: Left figure shows 64 representants of the four di-
mensional system of PH interpolants of the data (4). Right
figure shows 4 interpolants, which are planar. The ”best”
interpolant is plotted in bold.

along with an analysis of the quality of the solutions. In this way we
described the solution which can be used for example for conversion of
analytical curves into PH splines or (in the Euclidean case) for smoothing
tool paths.
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