CHARLES UNIVERSITY PRAGUE
Faculty of Mathematics and Physics
Department of Geometry

Penrose Transform
for homogeneous spaces of SL(4,C)

Zbynék Sir
Diploma Thesis

Supervisor: Doc. Vladimir Soucek
Branch: Geometry

Prague, April 1995

Typeset by ApS-TEX



I certify that this thesis is all my own work. It is freely available for all who can
use it. I used only the cited literature.

Zbynék Sir



ACKNOWLEDGEMENT

I wish to thank Doc. Vladimir Soucek for his advice and understanding, for his
help and support. Further I would like to thank Dr. Jan Slovak for his fruitful
discussions, and Sue Chinnick, who taught me to use the correct English language.



Contents
1. Introduction . ... oo e 5
2. Generalities ... e 8
3. Generalities about homogeneous case ................oiiiiiiiiiiiiiiaa... 15
4. Principle of Penrose Transform ......... ... ... .. . . 20
5. Objects and computations ......... ...t 22
5.1. Two double fibrations .......... ... i 22
5.2. Twistor space on left ... .o 23
5.3. Ambitwistor space on left ...... ... .. . .. 27
5.4. BGG-resolution and direct images ...........ccoo i 29
5.5. Operators on the Minkowski space ........ ... ... ... . oiiiiiiii. 34
6. Results ... e 41

References . ... 57



INTRODUCTION 5

Chapter 1 - Introduction

The object of this work is the Penrose transform. This transform was developed
as a part of twistor theory. The twistor description of solutions of massless field
equations was one of first motivations for the twistor theory developed by R. Pen-
rose and his school starting from 60’s. It can be understood as a generalization
of the Radon transform for functions to holomorphic setting. The basic geometry
underlying the transform coincides with the geometry in the Helgason’s formula-
tion of the generalized Radon transform which is given by a double fibration of
homogeneous spaces. In the case of the Penrose transform, homogeneous spaces
involved are homogeneous spaces of complex simple Lie groups.

The first versions of the Penrose transform were formulated in physical case,
it means in dimension 4 [Pe]. The corresponding double fibration was formed by
homogeneous spaces of the group G = SL(4, C):

F
n N T
/ \
P3 M

See 5.2. for definitions. Let V be a power of hyperline-section bundle on Pj3.
P, :=n(7~(z)) ~ Py for all x € M. We can understand M as a space of 1-lines in
P3. If w is a 1-form on P3 with values in V', then we can integrate it over each P,
and we obtain a function on M. It was shown, that this function is a solution of
Maxwell equations. On the other hand, [w] is an element of H (P!, O(V)). There
is in fact a correspondence:

P:H'(P',O(V)) = {solutions of Maxwell equations on M’ }
[Pe] [Ea]

The most general situation for which the Penrose Transform was studied is the

following one:
/ \

A X

where F, Z, X are smooth manifolds, 7, 7 smooth submersions and F' T 7% X
an embedding. In addition there is required that:

(1) Z is a complex manifold and n(7~!(x)) is a compact complex submanifold
of Z for each z € X
(2) n has contractible fibres.
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Under this conditions, there is a mechanism, the Penrose transform, which relates
cohomology H"(Z,O(V)) of a holomorphic vector bundle V' on Z to solutions of
systems of linear partial differential equations on X [Bai.

Our work will use method formulated in the book [B-E| by Baston and Eastwood,
where the principle of the transform was formulated for a quite general double

fibration:
/ \

G/R G/P

where G is a semisimple complex Lie group and P, R, () are parabolic subgroups of
G,PNR=Q.

The authors described there a mechanism which relates cohomology of holo-
morphic vector bundle V' on G/R to solutions of certain local linear operators on
G/P. They developed certain machinery (see chapter 4 for brief description of this
method) how to interpret the cohomology groups on G/R by objects on G/P using
suitable spectral sequences. This is a very efficient procedure, nevertheless it loses
character of an integral transformation and identification of objects on X needs
further work. There are also analytical methods developed for certain cases, even
in higher dimensions which give more explicit description of the transform as an
integral transform, including an explicit description of the inverse transform (which
is an additional and valuable information), see e.g. [G-H], [B-S], [Wo].

Here we are going to study here only four-dimensional situation where the double
fibration is given by homogeneous spaces of the group G = SL(4,C). The original
Penrose transform gave interpretation to cohomology groups with values in sections
of holomorphic line bundles. Here we shall concentrate on the four-dimensional sit-
uation and the case of general vector bundles and we discuss also the interpretation
of conformally invariant equations on so called ambitwistor space.

We shall use methods developed in [B-E] and we shall describe the transform
for two geometric situations, for which G/P = M - the complexified compactified
Minkowski space.

In the chapter 2 we review basic definitions and tools : direct and inverse images,
spectral sequences, Cartan B-theorem, Leray theorem, definition of jet bundle and
of local and differential operator.

In chapter 3 we talk about homogeneous spaces G/ P, associated bundles, action
of G and g on sections and cohomological groups, about parabolic subgroups, their
representations, Haas diagram, BGG resolution and BBW theorem for computation
of direct images.
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In chapter 4 we can already give the general principle of computation and see
which conditions must be proved.

The chapter 5 is the longest one. The section 5.1. explains why we restrict our
investigations to two cases only. The twistor geometry of the corresponding double
diagrams is described in coordinates in 5.2. and 5.3. The section 5.4. contains
concrete computations of BGG and of direct images for both cases. In 5.5. we
classify all the G-equivariant differential operators on M.

The chapter 6 contains results of procedure: Theorem 6.1. is the interpretation of
the cohomology groups with value in sections of any homogeneous vector bundle on
the twistor space in terms of kernels of conformally invariant differential operators
on M. The theorem 6.2. gives correspondence for cohomologies for all homogeneous
vector bundles on x—e——x -ambitwistor space. Like image of the correspondence
we obtain solutions of G-equvariant differential operators on M. In 6.4. we show,
that we obtain all the solutions of all the differential operators.

The case of the twistor space P3 was described in [Eal] and the main strategy
of the proof was outlined there. We added here the complete proofs and discussion
of types of differential operators kernels are obtained. The ambitwistor case was
discussed on the level of examples in [Ea2]. A full discussion and all but one proofs
were added. Some subcases need a verification of nontriviality of certain operators
d in the spectral sequence.

We tried to expose clearly all the procedure of Penrose Transform, beginning
by necessary tools, setting the general method and finally applying this method to
concrete situations. We tried to present the results completely and systematically.
The main original contribution consists in investigation of the problem of identifi-
cation of operators, which occur in the transform. We proved carefully, that these
operators are local and equivariant (5.4.6., 6.3.) On the other hand we classified
all the equivariant local operators on M. We was able to identify, which operators
occurred. We showed in 6.4., that kernels of all the differential operators on M were
obtained by Penrose Transform.

We described solutions of all G-equivariant operators on complexified, compact-
ified Minkowski space. The action of G corresponds to the action of the Lorentz
group on classic Minkowski space. We described all the possible physical laws by
this way, even those laws not yet discovered by physics.
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Chapter 2 - Generalities

First let us give several definitions and facts, which will be useful later. We
suppose elementary knowledge about sheaves, presheaves, complex manifolds, and
algebraic topology.

2.1. Definition. Let X,Y be two complex manifolds and Ox, Oy their structural
sheaves. Let F be a sheaf of Ox modules and G a sheaf of Oy modules. Let
f X — Y be holomorphic mapping. Then we define:

(1) sheaf f='G on X by the presheaf
W = G(f(W))

for W open subset of X. This sheaf is called topological pullback of G.
(2) If the mapping f is proper, we define the sheaves f!F on Y for all ¢ € N by
the presheaves:
U— HI(f1(U), F)

for U open subset of Y with the natural restrictions. The sheaf f!F is called
¢'" direct image of the sheaf F.

For details see [W-W, 3.6.6. and 7.1.].

2.2. Theorem. Let X, Y be complex manifolds, f: X — Y a surjective holomor-
phic mapping of mazximal rank, and B a holomorphic vector bundle on X. If, for
some N >0, HP(f~1(x),C) =0 for allp=0,1,...,N and x € X, then there is a
canonical isomorphism

HY(X,0(B)) » HY(Y, [ O(B))
forq=0,1,...,N.
[Bu]
Now we will review some information about spectral sequences which are pow-
erful tools for computing cohomology groups. We will restrict ourselves to the

description of bigraded spectral sequences. For general definition, all proofs and
details see [B-T, 14}, [W-W, 3.6.]

2.3. Definition. A triple (K,d’,d") is called a bicomplex, if K is a module of

the form
[ee]
K = @ KP4,
D,9EZ

where K?'¢ are modules over ring R, KP7 = 0 for p or q negative and d’,d" are
homomorphisms:

d - KP1 5 Kptla

d’ - KP9 s Kpatl
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satisfying (d')? = (d”)? = 0, and d’d"” + d"d’ = 0. Given a bicomplex , we associate
the standard complex to it in the following way. We set

K" = P kv

ptq=r

and
d — d/ _|_ d//

then clearly d? = 0, hence (K*,d) is a complex.

2.4. Definition. Bigraded spectral sequence is a sequence of two-dimensional
arrays (possibly infinite) of modules E,,r = 0,1,2,... over ring R. The groups of
the array are labeled

[P}, p.q € L.

Each array E, is equipped with a differential d,., whereby d, is a homomorphism
which maps the array to itself in a specific fashion and satisfies d?> = 0. Namely, d,.
will map elements in the following manner:

. P9 p+r,gq—r+1
d,: EP7 — EF .

We shall only be concerned with spectral sequences which have EP:4 = 0 for p or
q negative. The first two terms of a spectral sequence are illustrated for p and ¢
below:

EY - EM 5 EY 5 .. o EPYT
EYY - EMY - EX o5 ... o5 EVY
EY - E - EX o5 .. o5 EM o

In the diagram above, the horizontal arrows represent the mappings
dy : EP? — EPTLY

For r = 2 we have

0,q 1, 2, g
E2 E2 El . e E2
0.1 1.1 2.1 p.1
b} b b p’
E2 E2 E2 . e E2
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and we have dy : BP9 — EPY*971 which we recognize as the familiar knight’s move
from chess (two over and one down). The next condition for a spectral sequence is
that the arrays are linked cohomologically from one order to the next. Namely, if
we let H(E,) be the cohomology of the differential module (E,, d,), then one must
have

H(E,) 2 FE,41.

Thus we see that each term of the array is inductively determined from the previous
one with its differential.
Because EP4 = ( for p or q negative, both

. pp—r,g+r—1 D,q
d,: EY — EF

d,: BP9 — Fptra—r+l
* r T
are trivial for r > ro = max(p,q) + 1. So
EP® = ERT for r > 1y
and we define
EDI = P

This summarizes the basic aspects of spectral sequence.

Now we want to show spectral sequences associated with a bicomplex:

2.5. Theorem. Let (K,d',d") be a bicomplex. Then there are two bigraded spec-
tral sequences 'E,.,” E, which converge to global cohomology of K, i.e.:

'EPY = Hy(K*)
"EP9 = Hy(K*)

The convergence means, that there is a filtration of H'(K*):
0=H'),CcH,CHc---CH=H (K"

such that
H /], = B
The first three arrows of these sequences are:
1) 'EPY = KP4
2) 'EVY = H, (KP*)
3) "By = HY (13, (K*))

)
)
1) //Eg,q = K%p
2) "Ep = Hy (K*7)
)

(
(
(
E
(3) "EY = Hb, (HY (K*))
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2.6. Lemma. Let
0SS —>A" s A 5 A2 = .o 5 A", (*)

be an exact sequence of sheaves over a topological space X . Let M be an open
subset of X. Then there is a spectral sequence whose first term is given by

BT = HO(M, ), (4
the operator dy is induced from the mappings of (*) and
EP1 = H'(M,S)

Proof. We construct bicomplex K** = C*(M, A*). There are two standard spectral
sequences (2.5.). The first of them gives HP(K) = HP(M,S) and the second is
exactly (**). For details see [WW, example 3.6.5.] O

2.7. Theorem (Leray spectral sequence). Let X,Y be two complex manifolds and
Ox, Oy their structural sheaves. Let F be a sheaf of Ox modules and let f : X —Y
a proper holomorphic map. Then there exists a spectral sequence E , whose second
term 1is:

By = HY(Y. 17)
and its limit is H' (X, F), i.e.
EPY = H'(X,F)
[W-W,3.6.]

2.8. Theorem (Cartan B). Let X be a complex manifold, X' a Stein subset of X
and F a coherent sheaf over X. Then

HYX',F)=0 for all ¢ > 1.
[G-R, 8.14]

2.9. Lemma. Let f : X — Y be as in 2.7. Let F be a locally free sheaf of Ox
modules. Let Y' CY be open and Stein and X' = f=1Y'. Then

HY(X', F) =" [IF)

Proof. The sheaf fIF is coherent. By 2.8. we have that H?(Y, f1F) = 0 for p > 1.
Thus the spectral sequence from 2.7. satisfies:

ry' flr) forp=0

By = B =
0 forp>1

and this gives our Lemma. [J

Following theorem is important in proof of equivariance of the Penrose transform.
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2.10. Lemma. Let K = 69 KP1 be a bicomplex. Suppose that there is an
action of a Lie group or Lie algebm S on each KP1. Let both horizontal and
vertical operators be S-equivariant. Then the following two properties hold for both
canonical spectral sequences (2.5.) of K :
(1) there is the action of S on EL'? induced from the action on KP9.
(2) all operators dy, of the spectral sequence are equivariant with respect to the
action from (1).

Proof. Denote the horizontal operator by d and the vertical operator by . We will
prove the lemma for the first spectral sequence:

EP?= Ker §/ Im d

the proof for the second one is similar. The elements of E}'? are in fact the
classes:[[...[u]...]], where:
——

k
u € kerd
[u] € kerd,

[[...[u]...]] € kerdg_1
——
k—1

For simplicity we will denote [[...[u]...]] by [u].
——

The proof will be done by infiuction.

(1) ¢ is S-equivariant, and so the action of S on E}'? is induced by quotient.

(2) ¢ > 1 Suppose that on E'? is the action of S induced by quotient. We prove
first that d; : EP? — EPY»97"" 1 is S equivariant. By the [BT] di([b]) = [e]
iff there exist ¢; € KPT797J for j=1...i— 1 so that:

d(b)
0(cj) =d(cjr) for j=1,...,1—2
d(Ci_l)

Let X € S. Because the action on EP'? is given by quotient, we have

X[b] = [Xb]. Let us define c'j = Xc; and this gives us d;([X0]) = [Xe].

Because X|e] = [Xe] we have
d;(X[b]) = Xdi([0]),

which is exactly the invariance of d;. Now we can define the action of S on
E?% by quotient. [

o
—~
o

—
~—
I

€
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2.11. Theorem. Let M be a complex manifold and U = {U, }oca an open cover-
ing of M. Let F be a sheaf on M. If

H?(NierU;, F) =0 forall I C A, | I |<oo,p>1
then
HP(M,F) = HP(U,F) for allp > 1.
[G-R, 6.D.4.]

Now we will define local and differential operator.

2.12. Definition. Let M be a complex manifold, E and F two holomorphic vector
bundles over M. A linear mapping of sheaves

L:0O(E)— O(F)
is called a local operator from E to F iff for any open subset U of M the linear
mapping of sections Ly : I'(U, E) — I'(U, F) is continuous in the following sense:
For any sequence s, € I'(U, F) and s, <0 on U, the sequence Ly (sy,) converges

uniformly to 0 on any V, V C U. We note, that % means uniform convergence for
sections and all their derivations.

Suppose that actions a, (3 of Lie group or Lie algebra S on O(M, E) and O(M, F))
are given. Then the local operator L is called S-equivariant iff

Vse S:Loa(s)=p(s)oL

2.13. Definition. Let £ — M be a holomorphic bundle over a complex manifold.
Let O(F) be the sheaf of holomorphic sections. Let zq,..., 2, be holomorphic
coordinates for a neighbourhood U of a point z € M. For k = 0,1, ... we define the
equivalences ~j on O, (E) by

[f1~k 9],

where f,g are sections defined in a neighbourhood of x € M if and only if

f(@) = g(z) and d' f(z) = d'g(x) for |I| < k

where I € N™ is a multi-index and d’ is a I-partial derivative in coordinates
21y ...y Zm. This definition does not depend on coordinates [Pom, 9.1.]. We define
the space of k-jets as:

Ty E = 05(E)/ ~x
If we set JFE = Usenr JFE, we obtain a holomorphic vector bundle on M and

evidently J°F = E, see [Pom,9.7.].
There are natural projections

e O(E) = J'E

et JRE — JFE
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2.14. Definition. Suppose that M’ is a smooth real manifold and E’ a smooth
vector bundle over M'. The definition 2.13. can be repeated. Starting with the
sheaf £(E’) of smooth section, taking smooth coordinates, we get a smooth vector
bundle J*(E’). See [Pom].

2.15. Remark. Differential operators of order k£ can be identified with homomor-
phisms D : J*E — F, which transform holomorphic sections of J¥E to holomorphic
sections of F', see [Po, 2]. They are examples of local operators in the above sense,
as is shown in the next lemma.

2.16. Lemma. For each homomorphism D : J*E — F transforming holomorphic
sections of J*E to holomorphic sections of F, there is just one local operator L
such that the following diagram is commutative:

oE) —L . owF)

ﬂ,{ lm

Jyp — . F

D
Such a local operator will also be called o differential operator of order k.

Proof. We have only one possibility to define L: If U is an open subset of M, and
s € I'(U, E) then we set

Ly(s) = Dmgs € I'(U, F).

The operator L is clearly well-defined and continuous. [
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Chapter 3 - Generalities about homogeneous case

In this chapter we give the basic facts about homogeneous spaces of Lie group.
We define homogeneous bundle and actions of Lie group and algebra on homo-
geneous space and bundle. Parabolic subalgebras and subgroups are defined and
classified. In the end of this chapter, we cite BGG-resolution and computation of
direct images, which are basic tools in computing the Penrose Transform.

3.1. In this chapter let G be a complex Lie group, g its Lie algebra, P a closed
complex Lie subgroup of G and p the Lie algebra of P. Then G/P is a homogeneous
space of G (action given by g[h] = [gh]), it has a natural structure of a complex
manifold and the action of GG is holomorphic. We have surjective holomorphic
mapping 7 : G — G /P, given by the projection.

3.2. If we have the homogeneous space G/ P and an irreducible representation of P,
¢: P — GL(V)

where V is a finite dimensional complex vector space, then we can construct the
associated homogeneous vector bundle V = G x,V:=G xV/ ~ on G/P.
where ~ is given by: (g,v) ~ (gp, p(p~1)v) for all g € G,v € V,p € P. There is an
action of G on V given by h[(g,v)] := [(hg, v)].

3.3. Definition. Let us define equivariant sections of the trivial bundle GV xV,
where U is an open subset of G/P and GV := 7= 1(U):

r(GY%, V)7 == {f: GY = V holomorphic : Vg € GY,p € P: f(gp) = p(p~")f(9)}
3.4. Lemma. We identify
rGY, VW ~rw,v) ()

via f ~ f', where f'([g]) :== [(g9, f(g)]. If U = G/P then this is an identification of
G-modules.

For proofs of 3.2.,3.3.,3.4. see in [Sl, 2.10.].

3.5. Definition. The action of G on V induces the action of G on O(V): If [f]
is a germ in x € U, f an equivariant section defined in GY, then [hf] is a germ in
hx, hf defined in G"Y by hf(y) := f(h~y).

This action preserves the equivalence relations ~j from 2.13. and so we get
action of G on J*V and 7y, W,’:” are G-equivariant. Clearly a differential operator
L is G-equivariant, if and only if the mapping D from 2.16. is G-equivariant.

3.6. Definition. An action of G on I'(U,G x, V) can be defined only in the case
U = G/P. For a general open set U C G/P, we can define the action ¥ of the
algebra g on the space of sections I'(U, G x, V') - so called infinitesimal action.
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For this we use the identification 3.4.: Let X € g,s € I'(GY, V)Y, m € GY then we
define
d
[P(X)s](m) = - s(exp(tX)m)(0),
where s(exp(tX)m) is defined for t € (—¢,¢€) for some € > 0. The section ¥(X)s is
again an element of I'(GY,V)¥ and it is easy to see that ¥ is an action of g.

3.7. Let us recall the definition of cohomology groups with coefficients in sheaves:
If £/ is a vector bundle over X, then there is an exact sequence of sheaves:

a1 51'—1

goop) & goypy 2 2T eoip) Oy (%)
called the Dolbeault resolution. (£%¢(E) := O(E @ A'T%!)). We define
HYY,E):= Ker 9"/ Im 0" ! (xx)

for Y ¢ X and 0°~', 9" considered on sections over Y.

If E is a homogeneous vector bundle on G/ P, then E® A*T%! is a homogeneous
vector bundle, too. Thus by 3.5. we define action of G' on all sheaves in (x) and
this sequence is G-equivariant.

3.8. Definition. By 3.6. we can define the action of g on £%4(U, E). By (x*) we
get the action of g on H*(U, E).

3.9. Definition. Let () C R C G be three Lie groups. Then there is a nat-
ural mapping n : G/Q — G/R. If E is a homogeneous vector bundle on G/R
then we define using 2.2. the action of G on n~'O(F) and action of g on
Hi(U, 7~ O(E)).

Now we will define distinguished subgroups of GG, which will be of our interest so
called parabolic subgroups. We will also describe their representations. For basic
facts about classification and representations of semisimple Lie groups, see [F-H].
For more details about parabolic subgroups, see [B-E].

3.10. Definition. Let us fix a Borel subalgebra b C g. It is a maximal solvable
subalgebra. Each subalgebra p containing b, i.e. b C p C g is called a parabolic
subalgebra. There is only a finite number of parabolic subalgebras containing a
fixed Borel algebra. All parabolic subalgebras (up to conjugation) are constructed
by a simple procedure:

Let us write n* for the subalgebras generated by the positive or negative root
elements respectively, i.e. n™ = [b, b]. The whole algebra is a sum

563 (Pas) =bhonten —n @b,
a€EA
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Let us fix a set ¥ C Aar of simple roots and write Ay for its span in the set of all
roots. Now we define the subalgebras

(=he (P ga), n= P ga p=l&n

aEAx aEA""\AE

By the definition, p contains the whole Borel algebra b and the algebra g splits as a
vector space direct sum of Lie subalgebras g = n~ @p. The subalgebra [ is reductive,
n is nilpotent. Hence [ is the reductive Levi factor of the parabolic subalgebra p.
The semisimple factor is [[,I] = P e, o and [ = by ® (P,ca,, o) Where by is
the linear subspace in § corresponding to ¥ C h*.

If g is a semisimple Lie algebra and G a simply connected Lie group with g as
Lie algebra. Then p gives rise to a subgroup of G which will be denoted P. The
subgroups which arise this way are called the parabolic subgroups of G.

The parabolic subalgebras in semisimple complex algebras can be effectively
denoted by means of the Dynkin diagrams if we replace by a cross the nodes corre-
sponding to the simple roots which are not in 3. The corresponding Lie subgroups
will be denoted by the same modified Dynkin diagram.

3.11. Representations of parabolic subalgebras. In general, the representa-
tions of the parabolic subalgebras of semisimple algebras need not be completely
reducible. But we shall still restrict ourselves to the irreducible ones. Let us fix
a parabolic algebra p C g and its Levi decomposition p = [ & n corresponding to
a subset X C A(}L as above. If V is a finite dimensional irreducible representation
space of p, then n acts by nilpotent endomorphisms by Engel’s theorem, and so n
acts trivially. The reductive part [ decomposes into the semisimple factor s = [I, []
and the center 3. We can always arrange h = (hNs) @ 3. An irreducible representa-
tion of p is determined by a dominant weight for s and an element from 3* and so
the representation is specified by a weight A for g such that A(H,) is a non-negative
integer for all & € ¥. Such a weight is called dominant for p. More precisely, A
decomposes into a dominant weight A; for s and an element from 3*.

For semisimple g, the classifications of its representations coincides with classi-
fication of representations of group GG. However, if the parabolic p C g corresponds
to P C GG, then in order for an irreducible representation of p to ”exponentiate” to
one for P it is necessary and sufficient that the dominant weight A be integral for
g and not just for p.

Notation. We shall denote by V) the irreducible P module corresponding to a p
module with the highest weight A -integral for g and dominant for p. The associated
vector bundle over G/P will be denoted by V) and the sheaf of sections of this
bundle by O, ().

Let us denote by 0 the weight defined by

0(Hy) =1 for all «
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and 0, the weight defined by

1 foraeX

op(Hy) =
p(Ha) {0 foraeh\X

We shall express the representation determined by a dominant weight A for p by
inscribing the values (A+0)(H, ) on the fundamental coroots over the corresponding
nodes.

3.12. Definition. Let W be the Weyl group of g. Let Q@ C R be two parabolic
subgroups of GG and q, v their Lie algebras. Then we define

i) the Haas diagram W attached to q as the set of all elements w € W which
send weights dominant for g by affine action to weight dominant for g.

ii) the relative Haas diagram W attached to the fibration G/Q — G/R as
the set of all elements w € W which send weights dominant for v by affine
action to weight dominant for g.

[B-E,4.3.]

3.13. Theorem (relative Bernstain-Gelfand-Gelfand resolution). Let G be a
semisimple Lie group , g its Lie algebra, () C R two parabolic subgroups of G
and q,¢ their Lie algebras. If A is a dominant integral weight for R, then there is
an exact G-equivariant resolution

0= 17" 0:(A) = A*(N),

where

APN) = P Oq(w.N)

weW ! l(w)=p

See [BE,theorem 8.4.1,8.7.], for equivariance [Ro|,[S1,8.3.]. We recall, that I(w)
denotes the minimal number of simple reflections necessar to generate w € W.

3.14. Recipe. (The direct images) We will need following recipe for computing
direct images of sheaves of sections of homogeneous bundles. Let P C () be sub-
groups of G. There is natural projection 7 : G/Q — G/P. Let X\ be a weight
dominant and integral for q. Then we have following theorem-recipe for direct
images of O4(\).

Step one: Determine the Haas diagram qu by allowing W, to act on dq4. It is
only necessary to record simple reflection.

Step two: To compute direct images of O4(A), act on A with the graph of simple
reflections constructed in step one.

Step three: If any element of the resulting orbit is repeated, all the direct
images vanish. Otherwise ...
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Step four: Precisely one element of the orbit has positive entries over all nodes
not crossed through in p - it gives a weight dominant integral for p which will be
denoted p. If [ is the number of simple reflections required to produce g then

7.04(A) = Oy ()

and all other direct images vanish. [BE, 5.1.] This computation is g-equivariant, it
means, that the isomorphisms:

(U, 7.0,(\) = H (r71(U), E\) ~ I'(U, Oy (1))

are g-equivariant with respect to actions defined in 3.6. and 3.8.

For concrete applications of recipe and BGG resolution, see Chapter 5.
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Chapter 4 - Principle of Penrose Transform

In this chapter we will describe the general principle of our computations.

Let G = SL(4,C) and P,Q, R be parabolic subgroups of G, Q@ = PN R. We
denote A =G/R,B =G/Q,C = G/P and have double fibration:

B
/ \ (FIB)
A C

We take an open subset C’ of C' and define B’ = 771(C"), A’ = n(B’). We obtain

following restriction of FIB:
B
PN
A C’

Let E) be a homogeneous irreducible vector bundle on A. We proceed by the
following steps:

(1) Using 2.2. we know, that
H"(A',O(E\)) = H"(B',n7'O(E)))

on condition that fibres of n are topologically trivial. This condition is
proved in 5.2.10. and 5.3.6. for a large class of C’, which induces topology
of C.

(2) There is an exact G-equivariant sequence:

0= 57 O(By) — A*(N),

see 3.13.
(3) Following 2.6. we construct the double complex

and by 2.6. there is such a spectral sequence that:
EY = HY(B',A%()))

EP1 = H"(B',n 'O(E)))



PRINCIPLE OF PENROSE TRANSFORM 21
(4) By lemma 2.9. we obtain
HY(B', AP(\)) = I(C', 717 ()

because fibration 7 is proper and C’ will be chosen to be Stein, and sheaves
A are free.
(5) So we have the spectral sequence:

EYT=I'(C",7/AP(N)) (SEQ)

and
EP1 = H"(B',n 'O(E))) = H" (A, O(E,))

(6) We will compute explicitly 7/AP()), see 5.4.2., 5.4.3.,5.4.4.,5.4.5.

(7) Now we would like to determine E?4. For this we must identify the operators
d; in this spectral sequence which are local and G-equivariant by 6.3. We
will use the classification of G-equivariant local operators 5.5.3.

(8) We obtain the identification between H"(A’, O(E))) and Ker D -solution
of some equivariant differential operator , as described later (6.1., 6.2.).

(9) The identification from (8) is g-equivariant, because the resolution A 3.13.,
and the computation of direct images 3.14. are g-equivariant.

(10) We will discuss in 6.3., that solutions of all G-equivariant differential oper-

ators on e——x—e are obtained (see chapter 5 for definition).
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Chapter 5 - Objects and Computations

In this chapter we will describe concrete objects, which will be used in Penrose
Transform, and prove conditions necessar for the working of the Penrose Transform.
We will define and explore two double fibrations, which make the base of Penrose
Transform. We apply theorems 3.13. and 3.14. for computing resolutions and direct
images for the both fibrations. We are interested in Minkowski space e——x—e
and so we classify all the G-equivariant differential operators on it and show, that
any local G-equivariant operator is differential.

5.1. Two double fibrations.

In this and the following chapter, G will denote the group SL(4,C) = e—eo—e .
If we consider the basic representation of G on T = C* and fix a basis {t1, t2, 3,14}
of T', then G is represented by 4 x 4 matrices with determinant equal to 1.

* ok % %
* k% %
G={M=|" " " " det(M)=1}
* ok % %

where stars denote arbitrary complex numbers.

5.1.1. We will work with compact homogeneous spaces G/P. For this it is nec-
essary, that P be parabolic. In the notation from 3.10. there are 8 parabolic
subgroups of e—e—e up to conjugation :

Pi=eo—eo—0 Ps = x—x—o
Py, =x—e—e Py = o—x—x
P;=e—e—x P; =x—e—x
Py=eo—x—e Pg = x—>—x

We will use the same notation for the corresponding homogeneous space. So for
example x—e—e will denote G/P» ,too.[B-E,2]

5.1.2. We are interested in such cases of the Penrose transformation which have
on the right the space G/Py = e—x—se . On the left we must take such G/P
that P ¢ P, and P 2 P, otherwise one of fibrations 7,7 would be trivial and
computation of the Penrose transform, too. So there are three possibilities: P =
P,,P = Psand P = P;. Cases P = P, and P = P3 are symmetric, so we will
restrict ourselves to two cases.
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5.2. Twistor space on left.
Let us explore the double fibration:
G/ Ps
PN

G/ P, G/Py
X—x—e
/ \
X——0 *—X—@
5.2.1. The basic action of G on T induces an action of GG on the projective space

P(T). This action is transitive. We ask what is the stabilizer of the element
[(1,0,0,0)]. It is clearly a matrix of form:

This is

* ok % ok
0 * *x =

A= 0+ & x ,det(A) =1
0 * x x

These matrices form exactly the group x—e—e . So we see that the homogeneous
space x—e—e is in fact P3. The dimension of this complex manifold is 3. There
are homogeneous coordinates on P(T") with respect to the basis {¢} from 5.1.

5.2.2. Now let us define the set M = Gy(T) = {S C T;dimS = 2} so called
Grassmann manifold. This is a complex manifold. We define M! C M by:

M = {S CT;S= span{(l,(),voo,vlo), (07 170017011)}}

where v;; € C for 7,5 € {0,1}. This is a dense open submanifold of M and there is
holomorphic bijection:

x: €22 Mt
zi; — span{ (1,0, zo0, 210), (0,1, 201, 211) }

which gives coordinates on M and so the dimension of M is 4. There is the induced
action of G on M as well. This action is clearly transitive and the stabilizer of
span{(1,0,0,0)(0,1,0,0)} are matrices

A= ,det(A) =1,

O O *x ¥
O O * ¥
* X X %
* X X K

which form exactly the group e——><—e . So the space e—<—e is the Grassma-
nian Gj and is called the complexified compactified Minkowski space.
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5.2.3. There is a subgroup O in Py = e—x—e:

O:{Ot: ,tE(C*}.

t 0 0
0 t 0
00 tt o0
00 o0 !

In fact the group O is the centre of the L-reductive factor of P, and so in any
representation of Py, elements of O must be represented by non-zero multiples of

identity (see 3.11.) Let us compute the action of o, on M in coordinates z.

t 0 0 0

0t 0 0 I t.1 I

0 0 ¢t o |°P (z) - opat (t_1z> - pat <t—1zt—1>
00 0 ¢!

and so o; acts on z by multiplication by t~2.

5.2.4. There is a real subgroup G’ C G formed by all real matrices. Define P; =
Py N G'. There is a real subspace Ty = spang{t1,ta,t3,t4} of T . The space G'/P’
is real 2-Grassmanian of Tr and there are real coordinates

x : R?*? —» MD
x5 — span{(1, 0, zoo, Z10), (0,1, 201, 211)}

(A B ,
v=(3 2)en

where A, B,C,0 are 2 x 2 matrices, is the same on z and x and is given by:

The action of element

Mz = Cx(A + Bx)™!
Mz =Cz(A+ Bz) !

(The inverses of parentheses are defined in a neighbourhood of z = 0.)

5.2.5. We define manifold:
F= Fl’g (T) = {(SQ, Sl); S1 C Sy C T; dimS; = l,dimSQ = 2}

This is called the flag manifold and has the dimension 5. As in 5.2.1. and 5.2.2.
we can see, that x—<—e =T. Our diagram is so :

PN

P M
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5.2.6. Let us describe this geometric situation in a little more detail. We have
already defined M! C M. We define

F =77 (M), P! = n(F)

and we can restrict the diagram to

5.2.7. Lemma. There is a holomorphic bijection ¢ : M! x Py — F! .

Proof:. Let z;; € C**% be coordinates for M’ as above and [vg, v1] homogeneous
coordinates for P;. We define ¢ : M! x P; — I by:

oz, [v]) = (531 57y e B
where

Sy = span{(1,0, 200, z10), (0, 1, 201, z11)}

z,[v] _
S = span{(vo, v1, 200.Y0 + 201.01, Z10-Vo + 211.01) }

This definition is correct and ¢ is holomorphic bijection between M! x P; and
FI. O

5.2.8. The proof of the lemma 5.2.7. enables us to describe n and 7 in coordinates:
For F! we have ”semi-homogeneous” coordinates

(z,[v]), 2 € C**2 0 € C®,0 #0
given by isomorphism in lemma 5.2.7. On P! we have homogeneous coordinates
[u],u € C*,u#0
and on M! are simply coordinates
z,z € C?%2
Then we can write

n(200, Z10, 201, #11, [V0, V1]) = [(Vo, V1, 200-V0 + 201.V1, Z10-V0 + Z11-01)]

7'(2’00, 2105 2015 #4115 [U07U1]) = (2’00, 2105 2015 211)
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5.2.9. Lemma. The fibres of the fibration 1 : F — P! are topologically trivial.

Proof. We shall describe fibres in coordinates. Let u = [(u1, u2, ug, u4)] be a point
in PL. This means, that (uy,us) # (0,0). Then n~1(u) NF! are exactly points
(z,[v]) such that:

Vg = U1
V1 = U3

200-V0 + 201.V1 = U3

210-Vo -+ Z211-U1 = Ug4.

Hence [v] can be computed from the first two equations and we obtain the following
equations for z:

Z200-U1 -+ Z01-U2 = U3

Z10-U1 + Z11.-U2 = Uy

We can solve each equation separately and because (u1,u2) # (0,0), we see that
all z satisfying both equations form a 2-dimensional linear set in C* which is a
topologically trivial set. [

5.2.10. Remark. Let a subset M'of M! be convex in coordinates and define:
F =7"}M),P = n(F),

then n : ¥ — P’ has topologically trivial fibres, because they are obtained as the
intersection of two convex sets. Because we can choose any basis {t} , the sets M/
form the basis of topology of all M (if we change {t}, then we change the position
of M in M.

5.2.11. Lemma. Let E be a homogeneous vector bundle over x—e—e . then
cohomology groups. .
H P!, O(E)) =0, fori > 2.

Proof. P is covered by two Stein sets A, B described in coordinates as follows:
A= {[(t,1, 200-t + 201, z10.t + 211)];t € C,z € M"}

B = {[(1,t,z00 + 201.t, z10 + z11.t)];t € C,z € M}

By [G-R,7.A. ex.9] an intersection of two Stein subsets is a Stein subset. So {A, B}
is a covering of P! satisfying the condition from 2.11. and we get

H'(P',0(E)) = H'({A, B}, O(E)).
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This equals to 0 for ¢ > 2 because this is a two set covering. [

5.3. Ambitwistor space on left.

Now we will study the second case:

G/ Py
/ \
G/P; G/P,
PN

5.3.1. The basic action of G on T' defines the action of G on every flag manifold
of T. Tt is easy to show [B-E,2.3.], that

X—>—x =B :F%,z,?,

This is

x—e—x = A= IF%,S.
We define
BI = T_I(MI)7AI - W(BI)

and we can restrict our diagram to

B!
/ \
AT M’
5.3.2. Lemma. There is a holomorphic bijection ¢ : M! x Py x Py — B .

Proof:. Let z;; € C**2 be coordinates for M! as above and [vg, v1], [wp, w1] homo-
geneous coordinates for the both copies of P;. We define ¢ : M! x Py x P; — B
by:

(,O(Z, [U]7 [w]) — (S;’[v]’[w], S;[”H“’L Sfa[v]v[w])

where
S;’[v]’[w] is the 3-space orthogonal to (—zoo.wo — Zo1w1, —Z10Wo — Z11W1, Wo, W1)
S;’[v]’[w] = span{(1, 0, z00, 210), (0, 1, 201, 211) }
Sf’[”]’[w] = span{(vg, v1, 200-Vo + 201-V1, 210-V0 + Z11.V1) }

This definition is correct and ¢ is holomorphic bijection between M! x P; x P; and
B. O

So we have the ”semi-homogeneous” coordinations (z,[v], [w]) on B.
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5.3.3. A can be viewed as a subset of P(T') xP(T") formed by such elements ([a], [b]),
that < a,b >= 0. We identify ([a], [b]) with (S>'*, S*"), where

Sg’b is the 3-space orthogonal to b
S%P — span{a}
In such a way we have homogeneous coordinates for A.

5.3.4. We can describe i and 7 in coordinates:

n(z, [vo, v1], [wo, w1]) = ((vo, v1, 200-v0 + 201.V1, Z10.V0 + 211.V1),

(—Zoowo — 201W1, —210Wo — 211W1, Wo, wl))

7 (200, 210, 201, 211, [V0, V1], [wo, w1]) = (200, 210, 201, 211)-
5.3.5. Lemma. The fibration n: B! — Al has topologically trivial fibres.

Proof. We can calculate in coordinates. Let (a,b) = ([a1, a2, a3, a4]], [b1, b2, b3, bs])
be a point in AT, This means, that (a1, as) # (0,0) and (b3, bs) # (0,0). The fibre
of the point (a,b) it is n71(a,b) NB! are exactly points (z, [v], [w]) such that:
Vp = a1
V1 = G2
200-V0 + 201.V1 = a3
210-Vg + 211-V1 = a4
—Zp0-Wo — Zp1- W1 = by
—Z10.Wo — 211.w1 = bo
wo = b3
wy = by
[v], [w] is determined and we obtain following equations for z:
200.01 + Z01.02 = a3
210-01 + 211.02 = G4
—200.b3 — z01.b4 = b1

—Zlo.bg — 211.b4 = bz

We can solve each equation separately and see that all such z, form a linear set in
C* and this is topologically trivial set. [

5.3.6. Remark. Let a subset M'of M! be convex in coordinates and define:
B =7"'(M),A =nB),

then n : B" — A’ has fibres topologically trivial, because they are obtained as
intersection of two convex sets.
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5.3.7. Lemma. Let E be a homogeneous vector bundle over x—e—x . then
cohomologies

HY (AT, O(E)) =0, fori>3
Proof:. Al is covered by three Stein sets A,B,C in coordinates:
A = {([t, 1, z00.t + 201, 210t + 211), [~ 2005 — 201, —2105 — 211, 5, 1]);t,s € C,z € M'}

B = {([1,t, zo0o+ z01-t, 210+ 211.-t], [—200 — 2015, —210 — 2115, 1, 8]) };t,s € C, 2 € MI}

C = {([p, 7, zoop + z01.7, z10p + 2117 ], [— 2005 — Z01t, —2108 — 211t, S, 1]) };
p7r7t786 (C7T %p78%t72 GMI}

and the rest of proof is analogous to the proof of 5.2.11. O

5.4. BGG-resolution and direct images.

In the section 3.11. it was shown how to classify all the irreducible represen-
tations of parabolic groups. Now we will apply this procedure to G = SL(4,C)
and compute BGG-resolution and direct images 3.13. and 3.14. for both double
fibrations.

5.4.1. The irreducible finite dimensional representations of a parabolic subgroup
of G are classified by three integer numbers written over the nodes of the Dynkin
diagram. The integers over the uncrossed nodes must be positive, over the crossed

nodes just integer.
b
For example: All the representations of x—e—e are denoted by % oo

where a is an integer and b, ¢ are positive integers (> 1). We will use the same
notation for the corresponding associated bundle over G/P and in the spectral
sequence even for the section of this bundle over a given set. It will always be clear
from the context in which sense the notation is used.

If (1),(2), (3) are three simple reflections generating the Weyl group of G, then

b
we can compute the affine action of these elements on the weight . o o c h*

in the following way:

a b c —a a+b c
(1)_ o0 — o—0o o
a b c a+b —b b+c
(2), e o o — oo o
a b c a b+c —c
(3)_ 90— — oo o

[S1,10.20.]
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5.4.2. Lemma (BGG relative to n). For a,b,c integers b,c = 1 there is the follow-
ing exact sequence of sheaves on the space x—x—e :

_1 a b c a b c a+b —b b4c a+b+c b
0= (O(x—e—2)) > O0(x—x—0) >0 x—x—o )5 0( x—x—=e)—=0
—b—c
a b c
This sequence is the relative BGG resolution of the sheaf n=1(O( x—e—se)) and

15 G-equivariant.

Proof. The construction of relative BGG-resolution and of its relative version is
described in 3.13. We will just apply the recipe for the computation of BGG for
mapping

N: X—X—0 — X—e—e

The relative Haas diagram of this mapping is computed in [BE] and is like this:

id — (2) — (23),

b
where the integer numbers denote simple reflections. We act on the weight %
by the elements of the relative Haas diagram and get the required result . [

5.4.3. Lemma(BGG relative to n). For a,b,c integers b 2 1 we have the following
exact sequence of sheaves on the space X—x—x :

0_>n_1(0(a b c))_)O(a b c)_>0(a+b —b b+c)_>0

a b c
This sequence is the relative BGG resolution of the sheaf n='(O( x—e—x)) and

1s G-equivariant.

Proof.
The relative Hass diagram for mapping

N: X—X—e — X—eo—o

is :
id — (2)

b
We act on the weight % by the elements of the relative Haas diagram
and we get the required result . [

5.4.4. Lemma. For the mapping T : x—x—e — e—x—e  we can compute
the direct images of sheaves of sections of homogeneous vector bundles as follows:

(1)

k l m
Tf(’)(k ! m): O(e—x—e), fork>0
0 for k <0
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(2)

m

—k K+l
7_*1(,)(’C ! m): O( e—x—e) fork<0
0 for k>0

(3) all the higher direct images vanish

Proof. We will apply the Bott-Borel-Weyl theorem following the recipe 3.14. First
we must compute the relative Haas diagram for 7: x—x—e — e—>x—e , which

1 0 0
is 7 : G/Ps — G/P;. For this we act on the weight e—e—e by the Weyl

group Wy, . Wy, is the Weyl group of the Levi reductive factor of algebra p4 and is

. 1 0 0 1 0 0 (1) -1 1 0
generated by reflection (1),(3). The orbit of e—e—e is ¢—e—¢ —> o—o—o

and
Whs = {id, (1)}.

kool
The action of the W,f . on bundle o x o gives the relative Haas diagram:

{ud, (3)}
and using directly the point [4] from the recipe 3.14. we obtain the statement of
the lemma. O

5.4.5. Lemma. For the mapping 7 : x—x—x — e—x—e  we can compute
the direct images of sections of homogeneous vector bundles as follows:

(1)

k m
ok m):{cxk_*_q for kym > 0

0 otherwise

—k k+l m

O(e—x—=o) fork<0,m>0
7_10( k ! m) — k I4+m —m

5 G X O(e—x—=e ) fork>0,m<0

0 otherwise
(3) B )
ok L m O( e—x—e ) fork,m<0
TLO(%——x) = k+1+m
0 otherwise

(4) all the higher direct images vanish

Proof. We will apply the Bott-Borel-Weyl theorem following the recipe 3.14. The
relative Haas diagram is:
{id, (1),(3),(13)}

and using directly the point [4] from the recipe 3.10. we obtain the statement of
the lemma. O
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5.4.6. We will need some topological conditions for identifications 5.4.4. In fact
there are two identifications:

k l m —k m
HY(B', x—x—)~T(C', e—x—s),
K+
where C’ is a Stein open subset of M! and B’ = 7=1(C’) = C’" x P!. We denote
k l m k l m —k m
FEF .= %x—x—e andFy := e—x—e | := e—x—e or0 if the coefficients does
K+

not make sense.
Let us recall that

. k I m _. _.
H!(B', x—x—e) = Ker 9/ Im 91

and so we have mappings
P: Ker 0" — I'(C', ).
There is a topology of uniform convergence on £%¢(B’, E) - see [H-L]. There are
coordinates 5.2.8. on B’. The coordinates for C ~ {[vg,v1] € P};v; # 0} C P! will
be denoted by v = vp/vy. The forms on P! are determined by their restrictions to

C.

There is a space of harmonic forms
Hi(Py, E) C E%(P', E)
(E restricted to P1) see [We, chap.5, ex.5.5.] These forms are d-closed and
H'(Py, E) ~ H'(P, O(E)),

for 1 = 0 it is:
HO(P', E) = Ker 0°.

Let us denote by H!(B', E) the subspace of £%}(B’, E) of forms, restriction of
which to C’ x C can be written as

Wh = f(zv ,U)d@v

where f € I'(B', E), and f(z,v)dv € H'(Py, E) for each z € C’ fixed. The form wy,
is 0-closed, hence f(z,v) is holomorphic for each v € C fixed.
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Lemma. Let E be a homogeneous vector bundle on x——<—e then,

(1) .
F; ~ H'(Py, E).

(2) Ifw € Ker 0, then there is unique form wy, € H*(B', E) such that
[wh] = [w].
(3) The mapping
P: Kerd® — I'(C'",H°(P', E))
is given in the following way: If w € Ker 0° then O,w =
there is a unique s € I'(C',H°(P', E)) such that w(z,v)

P(w) = s.
(4) The mapping

Opw = 0 and so
::(5

(2))(v),then

P: Kerd' — I'(C', H'(P, E))

is given in the following way: If w € Ker O then by (2) there is a unique
wy, and a unique s € I'(C', H'(Py, E)) such that wy(z,v) = (s(2))(v), then
P(w) =s.

(5) P are continuous in the topology of uniform convergence.

Proof. The identification 5.4.4. is based on the Leray spectral sequence 2.7. In our
case we can see explicitly how this sequence is constructed and how it induces the
identification. See [GH,3.5.] for more details.

Let us define double complex:

K79 :={w; = Y Fr(z,0)do; Adzs; Fy € C®(B',E)},

the horizontal operator is 0, and vertical one is 0,. The associated complex 2.3. is
exactly the Dolbeault resolution:

K"= P K" =£""(BE).
p+q=n

By 2.5. there is a spectral sequence E converging to total cohomology whose first
term is:

EP? = Ker 0,/ Im 0, = {wp = Y Gydz;;Gy € C*(C', H'(P', O(E))}.
[71=p
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The space H1(P*, O(E)) is a finite dimensional vector space. In such a way,

B = £99(C' (P, 0())

and dy = 0,. It follows, that

r(C', Hi(P',O(E))) for p=0

EY9 = HP(C',O(HY (P, O(E)))) = { 0 for p > 1

Evidently F, = E5 and because E converges to the cohomology of K™, we obtain
identities:
HY(B',E) =I'(C', H(P',O(E))). (*)

Now let us prove the lemma:
(1) The (*) was obtained by the same procedure as the results 5.4.4. (construc-
tion in this proof is only an explicitation) and so

F, = HI(P', O(E)) = H(P', E)
If we Ker 9; = K% @ K0, then
Pw) = [lv] € B @ BY".

It is clear, that P restricted to H!(B’, E) is a bijection. From this follows (2) and

(4)-
(3) is evident.
For to prove (4), we can use the fact

Ker 0 = Tm 0" ' @ H'(B', E).
and see that P is simply projection to H*(B’, E) and it is continuous. [

5.5. Operators on the Minkowski space.

Now we will give the classification of all local G-equivariant operators between
homogeneous bundles over e—x—e . (See 2.12. for definition)

5.5.1. Lemma. Let Ey, F, be two irreducible homogeneous bundles over the space
o——x—e . There is one-to-one correspondence between differential operators from
Ey to F, and Py-equivariant homomorphisms V : JfE)\ — Fj o where k € N and
x = [e] =0 in coordinates 5.2.2.

Proof. By remark 2.15., a differential operator is given by a homomorphism of
bundles, transforming holomorphic sections to holomorphic sections:

L:J*E\ — F,.
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We define mapping Z by restriction:

(1)
(2)

U
5.5.2.

Z :Hom(J*Ey, F,)¥ — Hom(JFEy, F, )"

Z(L) = L,

Z is injective. Let L, = L! ;g € Gand A € J[kg]. Then L(A) = gL(g~tA) =
gL (g7 A) = gL (97'A) = gL'(g7'A) = L'(A) and so L = L.
Z is surjective. Bundle J*FE) is a homogeneous bundle associated to some

representation V,,. Let C': J£E>\ — F, ; be P-equivariant.
Define L € Hom(J*Ey, F,)< by:

L(lg,j]) = 9C([e, j]) for g € G, € V.

a) The map L is well-defined: L([gp, A\(p™1)j]) = gpC([e,\(p~1)j] =
gC([p, A(p™Y)j]) = 9C(le, 7]) = L([g, 7])- See 3.2. for definition of associated
vector bundle and action of G on it.

b) L is evidently linear and G-equivariant.

¢) L transform holomorphic sections of J¥Ey to holomorphic sections
of F,. For this we will use identification 3.6. Let s : GY -V, be a
holomorphic section. Define a mapping C' : V,, — F, by setting for C’(j)
the only f € F, that Cle,j] = [e, f]. We claim that L(s) = C" o s :
GY — F,. Really L([g,5(9)]) = gCle, s(g)] = gle, C's(g)] = [g,C"s(g)] and
so L(s)(g) = C'(s(g)). But s is holomorphic, C’ is linear and so L(s) is
holomorphic.

d) L, = C evidently.

Lemma. Let P = Py, let G', P = Pj be as in 5.2.4. We denote M =

G/P = e—x—=e and M' = G'/P'. Let Ey be a representation space for P and

by restriction for P’ as well. There are associated complex vector bundles Ey over
M and E' over M'. Then as P' modules:

JEE\ ~ JFE,

where x = [e]. See 2.13. and 2.14. for definition.
Proof. We have

Tk - Ow(EA) — J;CEA
. Ex(Ey) — JfES\

In £,(FE)) there is a submodule A, (Ey) of all analytic germs in z. It is really a
submodule because the action of G’ on M’ is analytic. The image 7 (A5 (Ey)) is
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evidently all J¥Ey. If we consider the coordinates z on M and x on M’ from 5.2.2.
and 5.2.4., we have:

Om (E)\) o~ S(Z) Qc Ey
Am(E)\) >~ Sl(ﬂf) SR ]E)\

where

S(z) =A{ E arz’;ap € C;nonzero radius of convergence}
T

S'(z) = {Z Bra’; Br € R;nonzero radius of convergence}
T

The action of P’ on Ey is given by A and on S(z) and S’(x) by transformation of
coordinates 5.2.4. Let us denote by S(z) the module S’(z) ®g C. Evidently S(x) =
{3, v1z"; 41 € C;non zero radius of convergence} and A, (Ey) = S(z) ®c Ex.
We define
F:S(z)— S(z)

Z’YI.I'I — Z’YIZI.
I I

This is an isomorphism of P’ modules because P’ transform z in the same way
as x. Thus we have an isomorphism of P’ modules:

F®Id: A, (Ey\) = O (E)y).
This isomorphism evidently induces an isomorphism
F:JE, — JFE,.

O

5.5.3. Theorem. Let Ey, F, be two homogeneous irreducible bundles over the
space e——x—e corresponding to representations A, p. Then each G-equivariant
local operator from Ey to F, is differential.

Proof. Let L. be such an operator. Then L, is a P-equivariant mapping from
Oz (E)y) into Oy (F,). We compose it with evaluation of germ in z and this mapping
must thus be O-equivariant. By 5.2.3. ,the element

20 0 0
02 0 0
2=1¢ 0 05 o0 |€°
00 0 05
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acts by multiplication by 0.25 on coordinates from 5.2.5. and so by multiplication
by 4k on homogeneous polynomials of degree k in S(z). It must also act by multi-
plication by some number ay,a, on Ey,F,. So if p; is a homogeneous polynomial
in z of degree k£ we have by equivariance:

4kaxL(px ® h) = L(o2(pr ® h)) = 02 L(px ® h) = a,L(pr @ h)

and so either 4kay = a, or L(py ® h) = 0. The second equation can hold for only
one k = ko. If f is defined in a neighbourhood U of 0, and

F=>_P,
0

is the Taylor serie for f in U, then S,, = Y " P, = f in U with all derivatives.
Hence L(S,,) = L(Py,) for m > ko and by continuity of a local operator

L(f) = L(Pko)

So it follows, that L, depends only on k-th derivatives. By equivariance we have
the same for Ly, generally and so L factorizes through 7y : O(Ey) — O(F,) and is
a differential operator. [

5.5.4. Theorem (list of operators). Let Ey and F, be two irreducible homogeneous
vector bundles over e—x—e . We consider the vector space DP»Fe of all G
-equivariant local operators from Ey to F,.

The dimension of DEx-Fe s 0 (there is only a zero operator) or 1. The dimension
is one if and only if there exist three integers k,l,m > 0 so that Ey and F, occur
in the following diagram and they are joined by some arrow:

l k+l4+m
——X—o
PRSI
k l m ] k+1 I+m I+m k+1 I m k
——X—eo —> ——X—o ——>X—o — &——X—»
—1 —k—l—m —k—l—m
/
m k+l4+m l k
*——X—
—l—-m
k+m
k+2l+m

In this case DE~Fr is generated by a differential operator d¥>-¥e. The order of
this operator is given by the number written over the arrow in the diagram.

Proof. By 5.5.3. every local equivariant operator must be differential. By 5.5.1. we
must classify all the homomorphisms of P-modules JﬁE,\ and F, ;. Thus it must
be a homomorphism of P-modules as well. By 5.5.2. JFE) = J*E{ as P’-modules.



38 Chapter 5

All homomorphisms of P’-modules J¥E} — F, , are classified in [S1,8] and by [Sl,
2.6.] (analogy of 5.5.1. for real homogeneous space) correspond to G’-equivariant
operators from E' to F ;. In addition the obtained homomorphisms of P’ modules
JEE, and F, , must be homomorphisms of P-modules as well, because they are
C-linear and P = P’ @ C.

It follows that differential G-invariant operators between Ey and F, are in one-
to-one correspondence with G’ operators from E to F ; on M’. The latter are
well classified in [S1,8.13 and 8.14.] and (DIG) is the same as the diagram in [SI,
8.14.]. O

5.5.5. Remark. The coefficients in the diagram above have a property that each
homogeneous bundle appears for just one choice of k,I,m.

5.5.6. Notation. If there are several operators between two bundles, then they
differ only by a multiplication. Because we will be interested by Ker and Coker
of these operators, we will choose one of them and denote it in dependance on
coefficients k, [, m and on its position in diagram as follows:

l k+l+m
k,l,m k,l,m
Dt TN Nk
k,l k,l
ko1 om DU I+m I+m k+1 Dg"m k
— X o —> o—x—» X o —> e— X+
-1 —k—l—m —k—l—-m
— __
Dlg,l,m k+l+m l Dlsc,l,m
k:_ll_m
77m
D7
Dk,l,m

8

(DIG)
We omit the sheaves and write just bundles.
So for example for £k = 3,1 = 2,¢c = 4 we have

D234 O(e—3—8) = O o——a)

and the order of this operator is 4. We say that operator DZ’b’c is an operator
of type [k]. Operators from diagram (DIG) are G-equivariant and if we disregard
bottom arrows, we get an exact sequence. FExactly:
Im D1 = Ker (DZ D Dg)
Im (D2 & D3) = Ker (Dy @ Ds)
Im (D4 D D5) = Ker D6
Dg is surjective.
These conditions follows from the fact, that (DIG) is in fact the BGG resolution.
[B-E]
Now we will give several properties of those diagrams (DIG).



OBJECTS AND COMPUTATIONS 39

5.5.7. Lemma. There is an isomorphism between Ker Dg’l’m/lm le’l’m and

Ker Df’l’m for all allowed coefficients k,l,m. This isomorphism is induced by

k,l . .
operator Dy and is G equivariant.

Proof. We define mapping;:
Itm : Ker D3"™ /Im DYY™ — Ker Db™

m k,l,m
%t ([s]) = Dy ™ (s)
for s € Ker DY"™,

(1) This definition is correct, because if [s] = [t], then s = ¢ + D™ () and
14m () = DEY (4 DRV (u)) = DI (1) = 14 (1),

(2) The image of I*b™ is just Ker D¥'™. For s € Ker DYb™ is pEbm phbm —
0 = DYDY and so I'm I®b™ C Ker DY"™. On the other hand for

v € Ker D™ v @0 € Ker [DF'™ @ DF'™] and from the exactness of

. . k+1 +m k,l,m
(DIG) it follows that there exists s € e—x—e such that s € Ker D5

1
and DEL™ () = 0.

(3) I®b™ is injective. Let D’;’l’m(s) = D’?f’l’m(s) =0, then s € Im D’fvl’m and

[s] = 0.
(4) The linearity and G' — equivariance of I*»™ follows from the linearity and
G — equivariance of the DY"™ [

5.5.8. Lemma. The sequences of sheaves

l k+1+ pk.tm I+ k+l . DFL™ k
O(e—x—e ) 50( o—x—e )5 O0(e—x—e)—=0 (1)
—k—1 —k—l—-m —k—l—-m
k+i+ ! Dpkbm I+ k+l . DFL™ k
O Totx—e) 3O ox—e )3 0O(e—x—e)=30 (2
—Il-m —k—l—-m —k—l—-m

from [DIG] are ezxact.

Proof. From the proof of the theorem 6.1. it follows (without using this lemma) that
the operator D’; b g surjective on section over M!. We will prove the surjectivity

of this operator on sheaves. Let (f) be a germ in 0 € M!, f local section of
k41 I+m
o—x—e . Let f be defined in polydisk B, (0). We can consider the mapping:
—1

k+l l+m I ktitm
DQ:C',?(BT17 o x—o )—>C’(§3(Br1,o+o )
—1 —k—I

k+1 I+
where C2(B,,, o« x o ) denotes the space of all sections over B,., bounded

~1
on B,, together their derivatives to order k.
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There is a standard norm || . ||z on CZ(B,.,, PN ) such that we get the
Banach space. By the Banach theorem about open_rlnapping we see, that Im D
is a closed subspace of C¥(B,,, ﬂﬂn ). From the global surjectivity of D5
follows, that all the polynomes in (:(I)C(;rldinates 5.2.2. are in Im D,. If we consider

the Taylor serie for f with centre in 0, then this serie converges uniformly to f on
B,, and so
f € Im D2

Elm - ..
and Dy"™ is surjective.
.. k,,m . . . k,l k,l k,l
Similarly the operator D3 is surjective, too. Because D" oDy = D™ o
k,l,m
Dy we have:

Im D™ = Im DFY™ = [m [DPY™ @ DED™)

and the exactness of (1) and (2) follows from the exactness of (DIG). O
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Chapter 6 - Results

6.1. Theorem. Consider the diagram from 5.2.

Let C’ be a convex subset of M!, B’ = 771(C") and A" = n(B'). The Pen-
rose transform gives the following isomorphisms and exact sequences of g-modules.
Operators are considered on section of bundles over C'.

For the zero cohomologqy on x—e—s :

a b c
HO(A', x—e—e) ~ Ker D‘f’b’c
This gives kernels of all operators of type [1] from (DIG)

a b c
HY(A', x—e—2)=0

For the first cohomologqy on Xx—e—e :

a b c
HY(A', x—e—e) ~ Ker DJ™°

This gives, together with the case a = 0, kernels of all operators of type [4] from
(DIG)

0 b c
HY(A', x—e—) =~ Ker D" = DJ"°

_ a b c _
0 — Ker D% , H1(A', x—e—e ) — Ker Dg™*"¢

This gives, together with the case a = —b, kernels of all operators of type [8]
from (DIG)

-b b c
H'Y(A', x—e—e) ~ Ker DY = D50
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—b—c<a<—b]

a b < o d%Y —a—b—c b
0— H' (A, x—e—e) — Ker D2 07b7¢ 22 o x o 0

a

a b c
H' (A", x—+—e) ~ Ker Dg’c’o = Dg’c’o

a=-b—-c
a b c
H'Y(A', x—e—e) ~ Ker DY 07b~¢

This gives, together with the case a = —b — ¢, kernels of all operators of type [5]
from (DIG)

Proof. We just apply the principle from chapter 4. By 5.2.10. our C’ satisfies
conditions from 4.1. and 4.4. and so we have the spectral sequence

B}t = D(C', rIAP(%—e—s) (SEQ)
and
EP = H™ (B, 'O %—e—e)) = H'(A',O( %—e—2a)). (SUM)

The bundles AP( - )) are described in 5.4.2. and recipe for direct images
Ty 10 5.4.4.

Now we will compute (SEQ) for different cases. The operators between sections
of sheaves in spectral sequences will be identified up to a multiple by a non zero
complex number with some of operators from (DIG). For this we need proof that
these operators are differential and G-equivariant. This fact is precised and proved
in 6.3.

case ¢ > 1 We can using 5.4.2. and 5.4.4. rewrite the first term of the spectral
sequence (SEQ) as follows (We omit to write section over C’ and write just the
sheaves):

0 0 0

EP— 0 0 0
a b c d?’o a+b —b b+tc d}’o a+b+c b
e—X—=o — — e—X—=o

The maps d?’oand d?’l are both g-equivariant local operators by lemma 6.3.
They are non-trivial, because they coincide with operators in BGG. We can identify



RESULTS 43

them using theorem 5.5.3 with operators from (DIG). Up to multiple by a non zero
complex number it holds:

0’0 JE— ’b’
d;” = DP°
0’1 JE— ’b’
dy = Dg™"
Now the second member of the spectral sequence is :
0 0 0
Eg,q — EPI = 0 0 0
Ker D{"°  Ker D$"/ Im D$™°  Coker D§™°

dy =10
So we have by (SUM) the following identifications of g modules:

a b c

Ker D¢ ~ HO(A', x—o—) (1)
a b c
Ker Dy"¢/ Im D} ~ H'(A', x—e—s) (2)
a b c
Coker D" ~ H2(A', x—eo—a) (3)

The (2) is equal to Ker D$" by 5.5.7. and the (3) is equal to 0 for the case
A =M by 5.2.11. So Dg’b’c is surjective on global sections and by 5.5.8. for all
trivial A’, too. (1) and (2) gives us results of theorem for this case.

We can see, that we obtain the kernels of all the operators of type [1] and [4]
from (DIG):

The operator D" is well defined for a,c > 0,b > 0 but for b = 0 has trivial
kernel. Our case gives all the solutions of D?’b’c for a,b,c > 0.

The operator D" is well defined for a,c > 0,b > 0 but for ¢ = 0 has trivial
kernel and so no solution. Our case exhausts all a,b,c > 0 and the operator with
a = 0 will be obtained in the following case.

a b c
In all the remaining cases E{"* = 0 and so H°(A, x—e—e) = 0 for a < 0.
Computation will be very similar and so we will be brief.

case a = 0 The first term of the spectral sequence (SEQ) is:

EP1 = 0 0 0
0 b —b btc dr° b+c b
o xX—e — *—xX—e
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1,0 _ 0,b,c _ 10,b,c
dl _'1)3 _'1)4

The second member of the spectral sequence is :

EPI=FERI=| 0 0 0

And we obtain the results for this case. The Dg’b’c is surjective and it follows, that
operators from the position [3] are all surjective.

case —b < a <0
The first term of the spectral sequence (SEQ) is:

0 0 0

—a a+b ¢
Ef’q — ——x—eo 0 0
a+b —b btc dy° a+b+c b
O *—X—eo — *—X—=o
—b—c
d?J,::l)Za¢v+mc
. —a,a+b,c ¢ —a
From the lemma 5.5.7. it follows that Coker D, ~ e—x—e . The
—b—c
second member of the spectral sequence is so:
E)rb 0 0
—a a C
E'g’q = ——xX—e 0 0
_ c —a
0 Ker D;@%Th¢ o 5 o
—b—c
0.1 —@ atb ¢ c —a
d2’ . e—X—0 — &—X—=e@
—b—c

ol @ b c 0.1 . . : 1
Because H*(P', x—e—e ) = 0, dy" must be surjective on sections over M' and
so dy' # 0. Tt follows that

0,1 —a,b+a,c
dz _.D8 .

The third member of spectral sequence is:
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0 0 0

EV? = EPd = | Ker Dg»"+e° 0 0
0 Ker Dy “otbe 0

Considered as vector spaces it holds:

a b c _ —
H'(A', x—e—) ~Ker Dy ©0H0:¢ g Ker D, a,0tbe

From the construction of spectral sequence follows that considered as g—modules
we have only the sequence [B-T,14.13.]:

0—EY 5 EXeESY 5 ES 0

and this gives exactly the exact sequence from 6.1.
We ask which operators of type [8] we obtain. It is, for which &, m > 0,1 > 0 the
system of equations:

k=—a
[l=a+Db
m=c

has solution with ¢ > 0,b > 0,0 > a > —b It has such solution except the case [ = 0
which will be obtained in the following case.

case a = —b
L9, 0
E{”q:Eg’q: ———x—e 0 , 0 ,
+c
0 0 X o
—b—c

dg’l must be surjective. We identify:

0,1 _ b,0,c _ 11b,0,c
d2 _'1)7 _'1)8

<

0 0
BP9 =FERI=| Ker DY*° 0
0 0 0

)
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and all is clear.

case —b—c<a< b

0 0 0
b+c —c c d?l —c b+c 0
EPa ———xXx—e —— eo—x—e
1
—b—c
a+b+c b
0 0 X o
—b—c

0.1 . .
The map d;’" must be surjective and so non zero, hence

0,1 _ nb,c,—a—b—c
dl _'1)5

—a—b—c b

by 5.5.8. Coker Dg’c’_a_b_c = e—x—+o and the second term is:
0 0 0
EP — | ker DYOT0TbTC 0 0
2 —a—b—c b
0 0 —x—e

0,1 — .
d5" must be surjective and we obtain exact sequence:

a b ¢ o d%PY —a—b—c b
0— H' (A, x—e—e) — kerDYo™o7b7¢ 2, o x—o —0
a
case a=—-b—c
0 0
b+c —c c 4ot —c b+c
1

Efﬁq: ® v Py > ® v Py 0
—b—c

0 0 0

0,1 I
d,” must be surjective and so non zero.
0,1 _ b,c,0 __ yb,c,0
dy” = Dg™" = Dy

And this case is done.
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casea < —b—c

—a a+b ¢ dflJ 1 —a—b a b+c d}’l —a—b—c b
Ef:q ° X PY > ° X Py ) PS X PY
a
0 0 0

d%’l must be surjective. We identify:

1,1 _ pnyb,c,—a—b—c

0 0 0

EPY = EP9 = | Kerd)' Ker Dg’c’_a_b_c/ Im dy"* 0
0 0 0
The operators from position [6] are not injectif for m > 0. Hence Ker D3¢~ %707¢ £

a b c
0 and Im d®' = Ker D2 7*7"7¢ because H2(A', x—e—e ) = 0. So d"' is non-

61 i\/ial alld
1 —a—b—
l(l], Db,C, a—b—c

which gives the isomorphism of this case.

The operator D’;’l’m has the non-trivial kernel for £, > 0 and m > 0. In this
case we obtain all the possibilities of coefficients k,I,m except m = 0, which was
obtained in the previous case.

The reason for g-equivariance is the equivariance of BGG, of computation of
direct images, of interpretations 5.5.7. and 5.5.8. and lemma 2.10. saying, that
equivariance is preserved by derivation in spectral sequence. [

Theorem 6.2. Consider the diagram

Let C’ be a convex subset of M, B’ = 77Y(C") and A’ = n(B’).
The Penrose transform gives the following isomorphisms of g-modules.

For the zero cohomology on x—e—x :
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a>1andc>1

a b c a b c a+b —b b+c
HO(A', x—e—x) ~Ker D" : ['(C', e—x—e) — I'(C", DAL )

This gives all the operators of type [1] from [DIG]

‘a<10rc<1‘

a b c

H(A', x—e—x)=0

For the first cohomologqy on x—e—X

a>1andc>1

a b c a b c a+b —b b+c
HY(A', x—eo—x) ~ CokerD" : I'(C', e—x—e) = I'(C', o—x—e )

This gives all the operators of type [1] from [DIG]

‘a:() andc>—b‘0r‘c:0 anda>—b‘0r —-b<a,c<0

a b c a+b —b b+c

This gives all the homogeneous bundles of the type [2].

a>1land —b<e<0

a+b —b b+c 1 , @ b c a b+c —c
0> e—x—e > H (A, x—e—xX)—> e—x—e —0

c>land —b<a<0

a+b —b b+c 1 ;) @ b c —a a+b ¢
0— o—x—o —H (A x—e—x)— e—x—e —0

c>1anda=—-b

a>1andec—=—-b
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a>lande< —-banda+b+c>0

a b c —c—
HY (A, x—e—x) ~ Ker DitbFe—erbb

We obtain kernels of all operators of type [3].

a>landc< —-banda+b+c<0

a b c
—a—b— b
Hl(A’, x—e—x )~ Ker D, . “

We obtain kernels of all operators of type [4].

c>landa<—-banda+b+c>0

a b c —a—
HY (A, x—e—x) ~ Ker Dyobatbte

We obtain kernels of all operators of type [2].

c>landa< —-banda+b+c<0

a b c
b,c,—a—b—
Hl(A’, x—e—x ) ~ Ker D5’C’ amoe

We obtain kernels of all operators of type [5].

otherwise

a b c
Hl(A/, x—e—x) =0

For the second cohomology on X—e—x

a < —b andc<—b‘

a b c o o
HZ(A’, x—e—x ) ~ Ker D6b ¢,b,—b—a

This gives all the operators of type [6] from [DIG]

a=—b andc<0‘0r‘c:—b anda<0‘0r —-b<a,c<0

a+b+c

This gives all the homogeneous bundles of the type [5].
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a<—band—b<c<0‘

—a—b a b+c 9 , @ b c —a —c
0> e —x—e S H (A x—e—XxX)—> e—x—e —0
a+b+c

c < —b and —b<a<0‘

a+b ¢ —b—c 9 ;) a b c —a —c
0> e—x—e —SH A x—o—x)—> e—x—e —0
a+b+c

c<—b anda:()‘

a b c a+b ¢ —-b—c

a< —b andc:()‘

a b c —a—b a b+c

a>landc< —-banda+b+c>0

a b c e
H?(A', x—e—x) ~ Coker D§+b+c’ c=bb

We obtain kernels of all operators of type [3].

a>landec< —-banda+b+c<0

a b c
HQ(A’, ) ~ Coker D4—a—b—c,a,b

We obtain kernels of all operators of type [4].

c>landa<—-banda+b+c>0

a b c —a—
H?(A', x—e—x) ~ Coker Dg’ a—b,atbte

We obtain kernels of all operators of type [2].

c>landa< —-banda+b+c<0

a b c
H?(A', x—e—x) ~ Coker DY~ %7b=¢

We obtain kernels of all operators of type [5].
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otherwise

a b c
H?*(A', x—e—x)=0

Proof. The proof is essentially the same as in 6.1. By 5.3.6. our C’ is good in sense
of chapter 4 and so we have the spectral sequence

BV = [(C', rIA7 (—e—%) (SEQ)
and
EM == H" (B, O(%—e—%)) = H" (A, O( %—e—%)). (SUM)

b
The spaces AP( . )) are given in 5.4.3. and recipe for direct images 7,

in 5.4.5.
Now we will compute (SEQ) for different cases. It will be very simple, because

a b c
AP( x—e—x)) is 0 for p > 2. It follows that Ey = E for (SEQ) and we must
only to identify F; and d;. It is completely same as in 6.1. The results are given
bellow: case a > 1 and ¢ > 1

0 0 0

E{’?q = 0 0 0
a b c d?’o a+b —b b+c
—X—o —_— *——X—=0 0

0,0 _ pna,b,c
dl - Dl

casea>land1l>ec> —b

0 0

a b+ec —c
ED = R E— 0 0
a+b —b b+c
0 e 0
0,1
d> =0
case a > 1 and ¢ < =}
0 0
a b+c —c 49t a+b ¢ —-b—c
Epaq 1
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o Dg+b+c’_c_b’b ifa+b+c>0
ool Dyttt ifatb+e<0

This give kernels of all operators of type [3] and [4] from (DIG).
case —b<a<landc>1

0 0 0

—a a+b ¢
EYT = <o . Ob . 0
a+b — +c
0 0
di=0
case —b<ec,a<1
.~ % e 0 0
a+b+c
EYT = 0 0 0
a+b —b b+c
0 — <o 0
di=0
case —b<a<landec<-b
.~ % 0 0
a+b+c
P.q _ atb ¢ —b—c
By 0 PLAA 0
0 0 0
di =0
casea < —bandc>1
0 o 0
—a a+b ¢ ’ —a—b a b+c
E{J,q _ + d; + 0
0 0 0

o DYymembatbte g 4 h4e>0
Pl Dbt fatbte<0
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We get kernels of all operators of type [2] and [5].
case a < —band —b<c<1

.~ % o 0 0
a+b+c
P4 _ —a—b a b+c
B 0 O+i— 0
0 0 0
di =0
case a,c < —b
—a —c d?’2 —a—b —b—c 0
*—X—=o — *—X—=o
Ep’q — a+b+c a+b+c
1 0 0 0
0 0 0

0,2 —b—c,b,—b—a
dl - DG

All the results follows by (SUM) from these diagrams. There is only one problem
- how to prove, that operators d(l]’1 are non-trivial. (The nontriviality of d(l)’2 follows

from fact that H3(A!, M) — 0 and the nontriviality of d5"° from the fact,
that it is exactly an operator from relative BGG). This nontriviality is supposed
for example in [Ea2], but we do not know the proof.

The g-equivariance has the same reasons like in 6.1. [J

6.3. Explanation. In proofs of 6.1. and 6.2. we got mappings Lo between
sections over C’ of two vector bundles. By 4.1. the maps Lo are defined for such
C" which form a basis of topology of C’. We want to prove, that L is a local
G-equivariant operator.

For this we must prove three conditions:

(1) L commutes with sheaf restrictions.

(2) L is G-equivariant.

(3) L¢ is continuous.

Let us see how the L¢: is defined: In fact it is the mapping d in spectral sequence
associated with double complex:

K21 =T(B,E"(E)))
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There is action of G on the sheaves £Y9(E)) given in 3.9. and the both horizontal
and vertical operators of K are G-equivariant by 3.5. and 3.9. It means, that if
B1 C B and By = gB; for some g € G then we have

P.q . P,g P,q
fg?: Kg' — Kg,.

These f, commute with both operators of K. It follows, that there are induced
mappings
. P P,q
ar BB = BB,

commuting with operators d,.. The computation of direct images is G-equivariant
(3.14.) and so if we identify EZ? with I'(C;, Ey), the f,, will be identical with
action of g on O(E)), which sends the sections over C; to sections over Cy. So L
is G-equivariant. Absolutely same argument works if we replace f, by restriction
for B; C Bs. We obtain following commutative diagram:

L
I(Cy,E\) —2—T1(Cy,E,)

CQ C2
T.Cl l lrcl

F(Cz7 E)\) T F(Cz, Ep)
and L is well defined homomorphism of sheaves.

For the proof of continuity (see 2.12. for definition) we will use the Dolbeault
resolution of sheaves on x——<—e see 3.7. We will use the description of identifi-
cation

I'(Cy, TEO(E)) ~ I'(Cy, H (P, E)) ~ H'(By, O(E))

given in lemma 5.4.6. and the definition of mappings in spectral sequence given in
2.10.

There were only the operators d; and dy which were identified with some dif-
ferential operators. First let us see the situation for d;. Let {h;} be a basis for
H! (P, E) and

s € I'(Cy, H'(P', E)); s = Zsj.hj
1

where s/ are holomorphic functions on Cy. We define a (0,i)-form on Bs.

a(z,v) = Z s7(2).h;(v).

Evidently P(a) = s and
LC2 (S) = P(D(a))v
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where D is operator in BGG-resolution. Now we will prove the continuity of L. Let
s, € I'(Cy, H'(P', E)); 5, %0 on Cs,
where % means uniform convergence for all derivatives. By definition

s %0 on Cy for all J-

It is easy to see that «, 0 on Bs, because
m
dr(e) = dy.s7.dp,h;
0

dr. s’ 2 0 and dr,hj are bounded on compact P'. The operator D is a differential
operator and so

D(ay,) 20 on Bs,

P is given by projection, which is continuous in topology of uniform convergence
and so
P(D(ay,)) =0

and L, is continuous.
The situation for ds is a little more complicated, namely we have :

go’l(Bz, Eo) L go’l(Bz, El)

]a
£%%(By, Ey) —5— E%0(By, Ey)

2
and

Le,(s) = P(D2(f))

where 3 is some element of £%%(By, E) for which
D1(ar) = 9(B).

Such an element must exist from the construction of the spectral sequence. Now
let us prove the continuity of Lo,. Let C; C Cy and:

sp € I'(Cy, H'(PL, E,,)); 51, %0 on Cy
then define «,, € 50’1(32, Ey) like above and «, i> 0 on Bs.

Yn = D1(ay) 0 on Bs
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Lemma. There are forms (3, € E%°(Bj, E1) such that 0(8,) = Yn and vy LN
on By, where y means uniform convergence for all the derivatives up to order k.
Proof. Let Cg’i(Bl, E1) denotes the space of all k-smooth (0,i)-forms on B; bounded
with their derivations on B;y. This a Banach space with respect to the norm || . ||.

There is operator B
0: CO’O (Bl,El) — Cg’l(Bl,El)

continuous with respect to the norms. Evidently y, € Co’'(By, E1) and even in Im 9
because there are some (3], even on Bs. By Banach theorem on open mappings there
ll-Ils+1

are some 3, € C,Sfl(Bl,El) such that 9(8,) = v, and 3, ——= 0 This £, must
be C*°, because (3], is smooth and (3, — (3, is a holomorphic function on B;. O

If we choose k to be big enough, we have
D5(5,) = 0 on By
and from the continuity of P we have
Lo, (sn) = P(D2(Bn)) = 0

and this give us the continuity of L.

6.4. Remark. Let us discuss which solutions were obtained by Penrose transform:
In 6.1. was obtained all the solutions of all operators of types [1],[4],[5],[8] from
diagram DIG (see 5.5.6.). If we consider the double fibration

/ \
oe—eo X *—xX—=e
we obtain by the symmetry solutions of all the operators of type [1],[3],[4],[8]- In
6.2. we obtain solutions of all the operators of type [1],[2],[3],[4],[5],[6]. Thus we see,
that we have obtained solutions of all G-equivariant operators on e—x—e with

exception of operators of type [7]. But in fact D; = Dy o D4 and from surjectivity
of D, follows the following exact sequence of g-modules:

0 — Ker Dy — Ker D7 — Ker Dy — 0,

which gives us information about Ker D7.
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