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Abstract

In this paper theC1 Hermite interpolation problem by spatial Pythagorean-hodograph cubic biarcs is presented and
a general algorithm to construct such interpolants is described. Each PH cubic segment interpolatesC1 data at one
point and they are then joined together with aC1 continuity at some unknown common point sharing some unknown
tangent vector. Biarcs are expressed in a closed form with three shape parameters. Two of them are selected based
on asymptotic approximation order, while the remaining onecan be computed by minimizing the length of the biarc
or by minimizing the elastic blending energy. The final interpolating spline curve is globallyC1 continuous, it can be
constructed locally and it exists for arbitrary Hermite data configurations.
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1. Introduction

Pythagorean-hodograph (or shortly PH) curves form a special subclass of parametric curves which have several
important properties, such as a (piecewise) polynomial arclength and a rational offset. This makes them very useful
in many practical applications, such as CAGD, CAD/CAM systems, CNC machining, robotics, animation ... They
were first introduced in [1] and since then, many approximation and interpolation schemes that involve PH curves
can be found in the literature. Interpolation methods by general polynomial curves are usually based on low degrees
polynomials, i.e., up to 5. Since only odd degree PH curves are regular, this practically reduces interpolation methods
by such curves to cubic and quintic cases.

For planar cubic PH curves one of the first interpolation methods was given in [2] whereG1 interpolation of
Hermite data (i.e. positions and tangent directions) at twogiven points was analyzed, and in [3], whereG1 andC1

Hermite interpolation via double-Tschirnhausen cubics have been considered. These results were later generalized
in [4] to G2 interpolation by the same objects, and in [5], where a thorough analysis of the number of solutions and
their properties was done. For quintic planar PH curves, several results on first and second order continuous spline
interpolation are given in [6], [7], [8], [9], [10], [11] ...For spatial curves,G1 Hermite interpolation by PH cubics
was thoroughly investigated in [12]. Those results were later generalized to some level in [13]. The most general
results on this type of interpolation can be found in [14] and[15]. The problem ofC1 andC2 Hermite interpolation
by spatial PH curves of degree≥ 5 has been studied in [16], [17], [18], [19] ...
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SinceC1 Hermite interpolation by cubic polynomial spline curves isalways uniquely solvable, it is clear that
the same problem can not be solved by PH cubic splines. However, low degree polynomial interpolating splines are
important in several applications, and one would insist on using cubic curves. One possibility is to relaxC1 continuity
toG1 continuity but unfortunately it is not always possible to interpolateG1 Hermite data by PH cubic (see [12], [14]
and [15], e.g.). To avoid this,C1 Hermite iterpolation by spatial PH biarcs will be considered in this paper. This
approach is a generalization ofC1 Hermite interpolation with planar uniform and non-uniformcubic PH biarcs which
was recently studied in [20]. The idea is to join two arcs of spatial cubic PH curves at some unknown point. First
curve interpolatesC1 Hermite data at one side, and the other one interpolates the same type of data at the other side.
The arcs are then joined together withC1 continuity in order to make the final biarcC1 smooth. It turns out that the
biarc depends on three shape parameters. The final interpolating spline curve is globallyC1 continuous, it can be
constructed locally and it exists for arbitrary Hermite data configurations.

The paper is organized as follows. In Section 2 the theory of quaternions and the connection between quaternions
and spatial PH curves is briefly recalled. Next section describes the HermiteC1 interpolation problem by spatial
cubic PH biarcs and presents a general algorithm for computing interpolants. In Section 4 the asymptotic behaviour
of solutions with respect to two shape parameters is studiedand in the following section the parameter values which
preserve planarity are identified. In the last section the computation of the last shape parameter is considered and
several criteria how to choose it are provided. The paper is concluded with Section 7 that summarizes the main results
of the paper and identifies possible future investigations.

2. Quaternions and spatial PH curves

As the planar PH curves can be defined through some relations between complex numbers (see, e.g., [21]), the
spatial PH curves can be determined by relations between quaternions or through a Hopf map representation ([11]).
Quaternions form a 4-dimensional vector spaceH with a standard basis{1, i, j,k},

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1).

The first component of a quaternion is called a scalar part, while the remaining three components form a vector part
of a quaternion. A quaternion with a zero scalar part is called a pure quaternion. Vectors inR3 can be identified with
pure quaternions and vice versa. For quaternionsA = (a,a) andB = (b, b), a, b ∈ R, a, b ∈ R3, we can define

A+ B = (a+ b,a+ b), AB = (ab− a · b, ab+ ba+ a× b).

With this associative, but noncommutative multiplicationthe space of quaternions becomes an algebra. Moreover,
Ā := (a,−a) denotes a conjugate ofA and the norm of a quaternionA is defined as

‖A‖2 = ĀA = AĀ = a2 + ‖a‖2,

where‖a‖ =
√
a · a is the Euclidean norm of the vectora. We can also define a commutative multiplication on the

space of quaternions as

A ⋆ B :=
1

2
(A i B̄ + B i Ā). (1)

By this operationA ⋆ B is a pure quaternion and will be identified with a vector inR3 several times later on. In order
to simplify the notation, the expressionA2⋆ := A ⋆A will be used.

By [22] it is easy to solve a ’quadratic’⋆–equation which is recalled in the following lemma.

Lemma 1. Let A be a given pure quaternion. All the solutions of a quadratic⋆–equationX 2⋆ = A form a one–
parameter family

X := X (ϕ;A) := Xp(A)Qϕ, Qϕ := cosϕ+ i sinϕ, ϕ ∈ [−π, π), (2)
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whereXp(A) is a particular solution given by

Xp(A) :=





√
‖A‖

A
‖A‖ + i
∥∥∥ A
‖A‖ + i

∥∥∥
A

‖A‖ 6= −i

√
‖A‖ k A

‖A‖ = −i

.

Moreover, it is not difficult to see that for any quaternionsA andB

AQϕ ⋆ BQψ = AQϕ−ψ ⋆ B = A ⋆ BQψ−ϕ. (3)

Let us now define the connection between spatial PH curves andquaternions (see, e.g., [11]). The hodograph of a
spatial polynomial curvep(t) = (x(t), y(t), z(t))⊤ of degreen is the curveh(t) := p′(t) = (x′(t), y′(t), z′(t))⊤ of
degreen− 1, wherep′ denotes the derivative ofp with respect to the parametert. Such a polynomial curve is called
Pythagorean-Hodograph curve (PH curve), if the Euclidean norm of its hodograph is a piecewise polynomial function
of degreen− 1. More precisely, there must exist a polynomialσ, such that

x′(t)2 + y′(t)2 + z′(t)2 = σ2(t).

If all real roots ofgcd(x′, y′, z′) have even multiplicity, thenp is a PH curve iff there exist polynomialsu, v, p, q such
that

x′ = u2 + v2 − p2 − q2, y′ = 2uq + 2vp, z′ = 2vq − 2up, σ = u2 + v2 + p2 + q2.

This gives use the following lemma.

Lemma 2. Letp(t) = x(t)i + y(t)j+ z(t)k be a spatial polynomial curve, such that all real roots ofgcd(x′, y′, z′)
have even multiplicity. Thenp is a PH curve iff there exists a quaternion polynomialA(t) = u(t) + v(t)i + p(t)j+
q(t)k, such that

h(t) = A(t)iĀ(t) = A(t)2⋆.

The quaternion curveA(t) is called the preimage. Note that quaternionsA(t) andA(t)Qφ generate the same hodo-
graph.

3. Interpolation problem and algorithm

In this section the interpolation problem by spatial cubic PH biarcs is presented and an algorithm for computing
interpolants is given. LetP 0,P 2 ∈ R3 be two given points and lett0 andt2 be given associated tangent vectors. Our
goal is to find aPH cubic biarcinterpolantpτ : [0, 1] → R3, composed of two spatial cubic PH curvesb : [0, τ ] → R3

andc : [τ, 1] → R3, τ ∈ (0, 1), i.e.,

pτ (t) =

{
b(t), t ∈ [0, τ ],
c(t), t ∈ [τ, 1],

(4)

such that
b(0) = P 0, b′(0) = t0, c(1) = P 2, c′(1) = t2. (5)

Additionally we require that curvesb andc join with theC1 continuity at some unknown common point sharing some
unknown tangent vector,

P 1 := b(τ) = c(τ), t1 := b
′(τ) = c′(τ). (6)

In order to use Bézier representation of spatial cubic PH curves it is appropriate to expressb andc in a Bézier form as

b(t) =
3∑

j=0

bj B
3
j

(
t

τ

)
, t ∈ [0, τ ], c(t) =

3∑

j=0

cj B
3
j

(
t− τ

1− τ

)
, t ∈ [τ, 1], (7)
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wherebj andcj , j = 0, 1, 2, 3, are control points and

Bnj (t) =

(
n

j

)
tj(1 − t)n−j , j = 0, 1, . . . , n,

are the Bernstein basis polynomials.
By using the quaternion representation of spatial PH cubics[11], the preimages of both arcs can be described as

B(u) = B0(1− u) + B1u, C(u) = C0(1− u) + C1u, u ∈ [0, 1], (8)

whereBi, Ci ∈ H, i = 1, 2, and for the control points of the curvesb andc it holds

b1 = b0 +
1
3B2⋆

0 , c1 = c0 +
1
3C2⋆

0 ,

b2 = b1 +
1
3B0 ⋆ B1, c2 = c1 +

1
3C0 ⋆ C1,

b3 = b2 +
1
3B2⋆

1 , c3 = c2 +
1
3C2⋆

1 .

(9)

Standard properties of Bézier curves (see, e.g, [23]), equations (9) and the interpolation conditions (5) imply

b0 = P 0, B2⋆
0 = τ t0, c3 = P 2, C2⋆

1 = (1− τ) t2. (10)

Moreover,C1 condition (6) implies

C2⋆
0 =

1− τ

τ
B2⋆
1 . (11)

By (2), (10) and (11) it follows

B0 = X (ϕ0; τt0),

C1 = X (ψ1; (1− τ)t2), (12)

C0 =

√
1− τ

τ
B1Qψ0

.

It is straightforward to see from (3) and (9) that the same control pointsci, i = 0, 1, 2, 3, are obtained if we choose

C0 =

√
1− τ

τ
B1 and C1 = X (ψ1 − ψ0; (1− τ)t2).

Finally, (6) and (9) imply the following quaternion quadratic equation forB1

B2⋆
1 + B1 ⋆D + E = 0, (13)

where

D := τ X (ϕ0; τt0) +
√
τ(1 − τ)X (ψ1 − ψ0; (1− τ)t2),

(14)
E := 3τ(P 0 − P 2) + τ2 t0 + τ(1 − τ)t2.

By transforming the equation (13) into

(
B1 +

1

2
D
)2⋆

=
1

4
D2⋆ − E ,

we obtain a one-parameter family of solutions for the unknown quaternionB1, namely

B1 = −1

2
D + X

(
ϕ1;

1

4
D2⋆ − E

)
=

(
−1

2
F + Xp

(
1

4
F2⋆ − E

))
Qϕ1

, F := DQ−ϕ1
. (15)
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From (1), (3), (9), (12), (13) and (15) now follows that control pointsbi andci, i = 0, 1, 2, 3, do not change if we take

B0 := B0(α) = X (α; τt0), C1 := C1(β) = X (β; (1 − τ)t2),
(16)

B1 := B1(α, β) = −1

2
F + Xp

(
1

4
F2⋆ − E

)
, C0 := C0(α, β) =

√
1− τ

τ
B1,

where
α := ϕ0 − ϕ1, β := ψ1 − ψ0 − ϕ1, F = F(α, β) = τB0 +

√
τ(1 − τ)C1

andE is given in (14). Let us summarize the results in the following theorem:

Theorem 1. LetP i, ti, i = 0, 2, be given non-degenerate spatial Hermite data and letτ ∈ (0, 1). Then there exists
a two-parameter family of interpolating PH cubic biarcspτ (t;α, β), given by(4), (7), (8), (9) and(16), satisfying(5)
and(6).

LetP i, ti, i = 0, 2, be given data and letpτ (t;α, β) : [0, 1] → R
3 be an interpolating PH cubic biarc with respect

to chosen parametersα andβ. Further, letΦ be an orthogonal transformation andp̃τ (t;α, β) : [0, 1] → R3 be an
interpolant with respect to the transformed dataP̃ 0, P̃ 2, t̃0, t̃2. In general

Φ (pτ (t;α, β)) = p̃τ (t; α̃, β̃) ⇒ (α, β) 6= (α̃, β̃), (17)

except for some particular cases (see [16]). Note that a general relation between(α, β) and (α̃, β̃) such that the
left-hand side of (17) would hold, is quite complicated.

As one can expect from the planar case ([20]), not all choicesof parametersα andβ will provide the same
approximation order of corresponding interpolants. In order to determine which solutions are more acceptable from
the approximation point of view, it is by (17) very importantto choose a particular position of data, to which the
original data should be transformed before the asymptotic analysis is done. Since by [16, Lemma 3] the following
properties hold:

• if Φ is a rotation about thei-axis, theñpτ (t;α, β) = Φ (pτ (t;α, β)),

• if Φ is a reflection with respect to a plane containing thei-axis, theñpτ (t;α, β) = Φ (pτ (t;−α,−β)),

good choices are the following so-calledstandard positionsof the data.

Definition 1. TheC1 spatial Hermite dataP i, ti, i = 0, 2, are said to be in a standard position, ift0 + t2 is a
positive multiple ofi, andP 0 = 0.

Note that by the described rotation symmetry the particularchoice of a standard position (which may vary by a rotation
abouti-axis) does not matter.

From the computational point of view, this also motivates usto define the algorithm for constructing spatial cubic
PH biarcs in the following way. TheC1 Hermite data should first be transformed to the standard position, where the
two-parameter family of interpolating PH cubic biarcs is computed. Then the solutions are transformed back to the
original position. The whole procedure is summarized in Algorithm 1.

From now on, the parametersα andβ will always denote the parameters used to construct the interpolants after
the data transformation to the standard position.

Example 1. Let us consider theC1 spatial Hermite data

P 0 = (2, 2, 1)⊤,P 2 = (1, 1, 1)⊤, t0 = (1, 1, 1)⊤, t2 = (1, 1,−2)
⊤
,

and letτ = 1/2. In Fig. 1 examples of cubic PH biarcs for parametersα, β ∈ {−π,−π/2, 0, π/2} obtained using
Algorithm 1 are shown.
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Algorithm 1 C1 Hermite interpolation by spatial PH cubic biarcs

Require: PointsP 0, P 2 with associated tangent vectorst0, t2, parameterτ ∈ (0, 1).
Ensure: PH cubic biarc

pτ (t) =

{
b(t), t ∈ [0, τ)
c(t), t ∈ [τ, 1]

.

1: Transform data to the standard position using a transformationΦ : R3 → R3, Φ(x) = R · (x− P 0), with

R := R (U) := 1

‖U‖2




u20 + u21 − u22 − u23 2(u1u2 − u0u3) 2(u1u3 + u0u2)
2(u1u2 + u0u3) u20 − u21 + u22 − u23 2(u2u3 − u0u1)
2(u1u3 − u0u2) 2(u2u3 + u0u1) u20 − u21 − u22 + u23



 ,

U := (u0, u1, u2, u3) =

(
cos

φ

2
, sin

φ

2
a

)
,

where the rotation axisa and the rotation angleφ are given as

a =
1

‖t0 + t2‖
(t0 + t2)× (1, 0, 0)⊤, cosφ =

1

‖t0 + t2‖
(t0 + t2) · (1, 0, 0)⊤.

Therefore one obtains

P̃ 0 = Φ(P 0) = 0, P̃ 2 = Φ(P 2) , t̃0 = Φ(t0) , t̃2 = Φ(t2) .

2: Compute the preimage of a PH cubic biarc

B0 = B0(α) = X (α; τ t̃0), C1 = C1(β) = X (β; (1 − τ )̃t2),

B1 = B1(α, β) = −τ
2



B0 +

√
1− τ

τ
C1 −Xp




(
B0 +

√
1− τ

τ
C1
)2⋆

− 4

τ
(B2⋆

0 + C2⋆
1 − 3p̃2)









3: Compute the control points and parameterizations of the arcs of the PH cubic biarc

b0 = P 0, b1 = b0 +
1

3
Φ−1

(
B2⋆
0

)
, b2 = b1 +

1

3
Φ−1 (B0 ⋆ B1) , b3 = b2 +

1

3
Φ−1

(
B2⋆
1

)
,

c3 = P 2, c2 = c3 −
1

3
Φ−1



(√

1− τ

τ
B1

)2⋆

 , c1 = c2 −

1

3
Φ−1

(√
1− τ

τ
B1 ⋆ C1

)
,

c0 = c1 −
1

3
Φ−1

(
C2⋆
1

)
, b(t) =

3∑

i=0

biB
3
i

(
t

τ

)
, c(t) =

3∑

i=0

ciB
3
i

(
t− τ

1− τ

)
.

Remark 1. Let us compare our construction of spatial cubic PH biarcs for C1 Hermite data with the construction of
PH quintic interpolants, which are usually used in this case. From the point of view of computational complexity, both
method are equivalent because three quadratic⋆-equations must be solved and a two-parametric system of solutions
is obtained in both cases (cf. [16]).

Further, let us mention that the approximation order is one less for PH cubic biarcs than for PH quintics (see
Section 4 and [16]). On the other hand, the main advantages ofPH cubic biarcs over PH quintics lie in the lower degree
of interpolants and in the presence of an additional free shape parameter, i.e., whereas there exists one-parameter
family of PH cubic biarcs for givenC1 data with the maximal approximation order, there is a uniquesingle PH

6



0.0

0.5

1.0

1.5

2.0

1.0

1.5

2.0

0.0

0.5

1.0

1.5

Figure 1: PH cubic biarcs obtained for input Hermite data in Example 1 for pairs of parameters(α, β), whereα, β ∈ {−π,−π/2, 0, π/2}, and
τ = 1

2
.

quintic interpolant with the maximal approximation order.
Finally, it is also possible to compare curvature and torsion profiles of interpolants produced by both methods,

which is done for particular data in Example 2.

Example 2. Let us consider theC1 spatial Hermite data

P 0 = (0, 0, 0)⊤,P 1 = (1, 1, 1)⊤,P 2 = (2, 2, 1)⊤,P 3 = (4,−1,−1

2
)⊤,

t0 = (1,−1,−1)⊤, t1 = (−1, 2, 3)
⊤
, t2 = (2, 0, 0)⊤, t3 = (−1,−1,−3)

⊤
.

Fig. 2 shows the comparison of PH quintic interpolants and PHcubic biarcs for two particular choices of the shape
parameterτ . In Fig. 3 curvature and torsion profiles of these interpolating spline curves are shown. It can be seen that
a particular choice ofτ influences curvature and torsion profile of a resulting PH cubic spline curve.

4. Approximation order

Algorithm 1 can be used to formulate a simple method for conversion of an arbitrary regular spatial parametric
curve into aC1 spatial PH cubic spline curve. Letf : [0, 1] → R3 be a regular spatial curve and letn be a number of
segments. First, we sampleC1 spatial Hermite data fromf ,

P 2i = f

(
i

n

)
, t2i = f ′

(
i

n

)
, i = 0, 1, . . . , n.

Then, we compute an interpolating PH cubic biarcpiτ (t;α, β) for each pair of consecutive sample points and as-
sociated tangent vectors(P 2i,P 2(i+1), t2i, t2(i+1)), i = 0, 1, . . . , n − 1, and after a linear reparameterization we
obtain aC1 spatial PH cubic spline curvenpτ (t;α, β). Finally, we evaluate the approximation error by measuringthe
Hausdorff distance

distH (f , npτ ) := max

(
max
u∈[0,1]

(
min
t∈[0,1]

||f(t)− npτ (u;α, β)||
)
, max
t∈[0,1]

(
min
u∈[0,1]

||f (t)− npτ (u;α, β)||
))

. (18)
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Figure 2: PH quintic interpoants (blue) and PH cubic biarcs (τ = 1/2 (red, green),τ = 2/3 (purple, yellow)) obtained for input Hermite data in
Example 1 forα = 0, β = 0.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

-4

-3

-2

-1

0

1

Figure 3: The comparison of curvature (left) and torsion (right) profiles for PH quintic interpoants (blue) and PH cubic biarcs (τ = 1/2 (red,
green),τ = 2/3 (purple, yellow)) obtained for input Hermite data in Example 1 forα = 0, β = 0.

If the error is not sufficiently small, we increase the numberof segments and repeat the whole process.

Example 3. Let us consider a Bézier curve with control points(2, 0, 0)⊤, (1, 1, 1)⊤, (−3, 1, 2)⊤, (0,−3, 2)⊤, (5, 0, 3)⊤

and(−1, 2, 3.2)⊤ (see Fig. 4). Table 1 summarizes the approximation error andits decay exponent (the binary log-
arithm of the ratio of two consecutive errors). Two particular choices of parametersα = β = 0 andα = π

2 , β = 0
are considered forτ = 1

2 . The decay exponent in the first case indicates that the approximation order of the curve ap-
proximation by the above mentioned procedure is3. For parametersα = π

2 , β = 0 the approximation error decreases
slower and the asymptotic approximation order is only one.

As it was shown in the previous example, not all choices of parametersα andβ provide the same approximation
order. As already observed for biarcs in [7], the approximation order obtained forα = β = 0 is the best what we
can expect. To analyse this more precisely and to identify suitable choices of parametersα andβ, we will study an
asymptotical behaviour of solutionspτ (t;α, β). More precisely, ourC1 spatial Hermite data will be taken from an
analytical curvef : [0, h] → R3 and an asymptotic analysis of solutionspτ (t;α, β) will be investigated for decreasing
values ofh. As an error measure, we take the parametric distance introduced in [24], which is an upper bound for
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Figure 4: Bézier curve and its approximation byC1 spatial PH cubic spline curve forn segments:n = 1 (top left), n = 2 (top right),n = 4
(bottom left) andn = 8 (bottom right).

the Hausdorff distance. The parametric distance between parametric curvesf : [c, d] → Rd andg : [a, b] → Rd, is
defined as

distP (f , g) := inf
ψ

max
a≤t≤b

‖ (f ◦ ψ) (t)− g(t)‖, (19)

where the infimum is taken among all diffeomorphismsψ : [a, b] → [c, d], and‖.‖ is the usual Euclidean norm. Any
particular reparameterizationψ gives an upper bound on the parametric distance (19).

Theorem 2. Letf : [0, h] → R3, s 7→ f (s), be an analytical parametric curve parameterized by the arc-length and
let ψ : [0, 1] → [0, h], t 7→ ht be the reparameterization. Further letpτ (t;α, β) : [0, 1] → R3 be a spatialC1 PH
cubic biarc spline approximation with respect to an arbitrary fixedτ ∈ (0, 1), which satisfies

pτ (0;α, β) = f(ψ(0)) = f (0) =: P 0, pτ (1;α, β) = f(ψ(1)) = f(h) =: P 2,

and

dpτ (0;α, β)

dt
=
d(f ◦ ψ)(0)

dt
= h

df(0)

ds
=: t0,

dpτ (1;α, β)

dt
=
d(f ◦ ψ)(1)

dt
= h

df(h)

ds
=: t2.

Then forα = β = 0 the approximation error satisfies

distP (f ,pτ ) ≤ max
t∈[0,1]

‖(f ◦ ψ)(t) − pτ (t; 0, 0)‖ = O
(
h3
)
.
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Table 1: Hausdorff distance and the approximation order forExample 3.

α = β = 0 α = π
2 , β = 0

Segments (n) distH (f ,n pτ ) Decay distH (f ,n pτ ) Decay

2 2.71094× 10−1 - 4.07333× 10−1 -
4 1.79493× 10−2 3.91679 9.00869× 10−2 2.17682
8 3.04503× 10−3 2.5594 2.73028× 10−2 1.72227
16 4.20046× 10−4 2.85784 7.61397× 10−3 1.84233
32 6.17968× 10−5 2.76494 2.01659× 10−3 1.91673
64 7.58439× 10−6 3.02643 5.19698× 10−4 1.95617
128 9.38429× 10−7 3.01471 1.32751× 10−4 1.96895
256 1.16691× 10−7 3.00756 3.44051× 10−5 1.94803
512 1.4548× 10−8 3.0038 9.61148× 10−6 1.83979
1024 1.8161× 10−9 3.0019 3.24925× 10−6 1.56465
2048 2.26864× 10−10 3.00095 1.36417× 10−6 1.25208
4096 2.83489× 10−11 3.00046 6.49193× 10−7 1.07131

For other constant choices ofα andβ, the parametric distance for the particular reparameterizationψ behaves only
asO(h).

PROOF. Without loss of generality, we may assume

f(0) =




0
0
0



 , f ′(0) =




1
0
0



 , f ′′(0) =
∥∥f ′′(0)

∥∥



0
1
0



 . (20)

Suppose that the curvatureκ and the torsion̺ of the curvef ats = 0 expand as

κ(s) = κ0 + κ1s+
κ2
2
s2 +

κ3
3!
s3 +O(s4), ̺(s) = ̺0 + ̺1s+

̺2
2
s2 +

̺3
3!
s3 +O(s4),

whereκ0 > 0. Then (see [25]) the Frenet-Serret formulae give an expansion of the curve, simplified by the assump-
tions (20) to

f (s) =




s− 1

6κ
2
0s

3 − 1
8κ0κ1s

4

1
2κ0s

2 + 1
6κ1s

3 + 1
24

(
−κ30 − ̺20κ0 + κ2

)
s4

1
6κ0̺0s

3 + 1
24 (2κ1̺0 + κ0̺1) s

4



+O
(
s5
)
. (21)

From (21), it is straightforward to obtain expansions of thedata

P 0 = (0, 0, 0)⊤, P 2 =

(
h− 1

6
κ20h

3,
1

2
κ0h

2 +
1

6
κ1h

3,
1

6
κ0̺0h

3

)⊤

+O
(
h4
)
,

t0 = (h, 0, 0)⊤, t2 =

(
h− 1

2
κ20h

3, κ0h
2 +

1

2
κ1h

3,
1

2
κ0̺0h

3

)⊤

+O
(
h4
)
.

Then, we follow Algorithm 1 in order to obtain the expansion of the interpolating PH cubic biarc:

Step 1. Given Hermite data can be transformed to the standard position using the quaternion multiplication

U(q) = Uq Ū ,

where

U =

(
1− 1

32
κ20h

2, 0,
1

8
κ0̺0h

2,−1

4
κ0h− 1

8
κ1h

2

)⊤

+O
(
h3
)
.
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Then

P̃ 0 = U(P 0) = (0, 0, 0)⊤,

t̃0 = U(t0) =

(
h− 1

8
κ20h

3,−1

2
κ0h

2 − 1

4
κ1h

3,−1

4
κ0̺0h

3

)⊤

+O
(
h4
)
,

P̃ 2 = U(P 2) =

(
h− 1

24
κ20h

3,− 1

12
κ1h

3,− 1

12
κ0̺0h

3

)⊤

+O
(
h4
)
,

t̃2 = U(t2) =

(
h− 1

8
κ20h

3,
1

2
κ0h

2 +
1

4
κ1h

3,
1

4
κ0̺0h

3

)⊤

+O
(
h4
)
.

Step 2. We now compute the expansions of preimages

B0 =
(
−
√
τ sin(α)

√
h+

1

32

√
τ sin(α)κ20h

5/2,
√
τ cos(α)

√
h− 1

32

(√
τ cos(α)κ20

)
h5/2,

− 1

4

(√
τ cos(α)κ0

)
h3/2 +

(
−1

8

√
τ cos(α)κ1 −

1

8

√
τ sin(α)κ0̺0

)
h5/2,

1

4

√
τ sin(α)κ0h

3/2 +
1

8

√
τ (sin(α)κ1 − cos(α)κ0̺0)h

5/2
)⊤

+O
(
h7/2

)
,

C1 =
(
−
√
1− τ sin(β)

√
h+

1

32

√
1− τ sin(β)κ20h

5/2,
√
1− τ cos(β)

√
h− 1

32

(√
1− τ cos(β)κ20

)
h5/2,

1

4

√
1− τ cos(β)κ0h

3/2 +
1

8

√
1− τ (cos(β)κ1 + sin(β)κ0̺0)h

5/2,

− 1

4

(√
1− τ sin(β)κ0

)
h3/2 +

1

8

√
1− τ (cos(β)κ0̺0 − sin(β)κ1)h

5/2
)⊤

+O
(
h7/2

)
.

Further, we compute the expansion ofB1, which is rather too long to include it into the paper.

Step 3. Finally, we obtain the expansions of all control points for both arcs forming an interpolating PH cubic biarc
and their corresponding parameterizations, which are again too long for the inclusion into the paper (even their
leading terms). Nevertheless, if we study the leading term with respect toh of thex-component of the first arc,

(
t+ t2

cos(α)
√

2τ2−2(τ−1)τ cos(α−β)−2τ+9+(τ−1) cos(α−β)−τ−2

2τ

−t3−2τ2+2(τ2−1) cos(α−β)−7+((1−τ) cosβ+(τ+2) cosα)
√

2τ2−2(τ−1)τ cos(α−β)−2τ+9

6τ2

)
h,

(22)

the coefficients oft2 andt3 have to be equal to zero in order the interpolant to match the shape off . Using a
computer algebra system we can solve this system of equations. It turns out that the only solution isα = β = 0,
independently of parameterτ . Substituting these parameters into the expansions of botharcsb(t) andc(t) of
PH cubic biarcpτ (t; 0, 0) (after applyingU⊤), we obtain

b(t) =

(
th+

κ20
24

(
−2t3 +

(
1− 3τ

τ

)
t2
)
h3,

κ0
2
t2h2 +

κ1(3τ − 1)

12τ
t2h3,

κ0̺0(3τ − 1)

12τ
t2h3

)⊤

+O
(
h4
)
,

c(t) =

(
th+

κ20
24(τ − 1)

(
−2(τ − 1)t3 + (4− 3τ)t2 − 2t+ τ

)
h3,

κ0
2
t2h2+

κ1
12(τ − 1)

(
(3τ − 4)t2 + 2t− τ

)
h3,

κ0̺0
12(τ − 1)

(
(3τ − 4)t2 + 2t− τ

)
h3
)⊤

+O
(
h4
)
.

Therefrom we obtain the upper bound for the parametric distance

max
t∈[0,1]

‖(f ◦ ψ)(t)− pτ (t; 0, 0)‖ =

√
4κ20̺

2
0 + κ40 + 4κ21
24

max (K1,K2)h
3 +O

(
h4
)
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where

K2
1 := max

(
(1− 3τ)6

729τ6
, τ2(1− 3τ + 2τ2)2

)
, K2

2 := max

(
(2− 3τ)6

729(τ − 1)6
, (1− 2τ)2(τ − 1)2τ2

)
.

Thus we have shown that the asymptotic approximation order for α = β = 0 is three. Furthermore, from (22)
it follows that for any other pair of constants(α, β) 6= (0, 0) the parametric distance with respect to the chosen
functionψ behaves only asO(h). �

5. Identification of planar solutions for planar input data

Recently, planarC1 Hermite interpolation by the so-called TC-biarcs, i.e., biarcs composed of two arcs of Tschirn-
hausen cubic joined withC1 continuity, was studied in [20]. Any non-degenerateC1 Hermite data can be interpolated
by four distinct TC-biarcs which can be found by computing two complex square roots and solving one quadratic
equation. Similarly to the case ofC1 planar PH quintic interpolation, these solutions can be labeled as(++), (+−),
(−+), (−−), where+, − correspond to the signs of complex square roots.

Obviously, one could expect that such planar solutions willbe obtained by Algorithm 1 if the input data are planar.
In the following proposition, we will identify parametersα, β for which these planar solutions are obtained.

Proposition 1. For any planarC1 Hermite dataP i, ti, i = 0, 2, the four PH cubic biarcspτ (t; 0, 0), pτ (t; 0,−π),
pτ (t;−π, 0), pτ (t;−π,−π), obtained by Algorithm 1, are planar and correspond to(++), (+−), (−+), (−−)
solutions of the planar interpolation problem with TC-biarcs, presented in [20], respectively.

PROOF. Let us follow the idea of the proof in [16, Theorem 4]. Without loss of generality we can assume that the
givenC1 Hermite data lie in theij-plane. Then, for anyA = a1i+a2j ∈ H expression (2) (forϕ ∈ {−π, 0}) reduces
to the expression for complex square root of the associated complex number, i.e., to±

√
a1 + a2i ∈ C, i :=

√
−1.

Here we have used the identificationz1 + iz2 ∈ C ≈ z1i + z2j ∈ H. With this identification at hand, operation⋆
behaves like the standard multiplication of complex numbers. Thus, expressions forB0 andC1 for α, β ∈ {−π, 0}
and forB1 (cf. Step 1 in Algorithm 1) correspond exactly to expressions for w0, w2, w1, respectively, in [20,
Algorithm 2]. �

Example 4. Let us consider planarC1 Hermite data

P 0 = (0, 0, 0)⊤, P 2 = (1, 0, 0)⊤, t0 = (2, 2, 0)⊤, t2 =

(
2,

2

3
, 0

)⊤

.

Fig. 5 shows four PH cubic biarcs obtained by Algorithm 1 forα, β ∈ {−π, 0} andτ = 1
2 . These solutions exactly

correspond to the solutions of the planar problem (cf. Fig. 4in [20]).

6. Computation of shape parameterτ

Suppose that we have already chosen parametersα andβ (e.g. by Theorem 2). Now, it remains to determine the
last free parameterτ (i.e., the parameter corresponding to the join point of the biarcs) to get a particular interpolant
for givenC1 data. In this section we will discuss on how to compute the parameterτ with respect to the following
characteristics: minimal arc length and minimal elastic bending energy.

Thearc lengthof a parametric curvef : [0, 1] → R
3 is determined as

L =

∫ 1

0

∥∥f ′(t)
∥∥ dt.

By using PH curves, the cumulative arc length is a polynomialfunction and can therefore be computed exactly. For a
PH cubicp we have

L =
1

3
(σ0 + σ1 + σ2) , ‖p′(t)‖ = σ(t) =

2∑

i=0

σiB
2
i (t).
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Figure 5: PH cubic biarcs obtained for planar input Hermite data in Example 4.

In the case of a PH cubic biarc the arc lengthL is given by the scalar part of

1

3

(
B0B̄0 +

1

2

(
B0B̄1 + B1B̄0

)
+

B1B̄1

τ
+

1

2

√
1− τ

τ

(
B1C̄1 + C1B̄1

)
+ C1C̄1

)
.

Remark 2. Analogously to [18, Formula (64)], it can be proved that the arc lengthL depends only onτ and the
differenceα − β. However, this is not of a particular importance because theonly reasonable choice of the constant
parameters (guaranteeing the optimal approximation order) is (α, β) = (0, 0), see Theorem 2.

Example 5. Let us considerC1 spatial Hermite data

P 0 = (0, 0, 0)⊤,P 2 = (−2, 2, 5)⊤, t0 = (0,−13, 20)⊤, t2 = (4, 13,−20)
⊤
.

Using Algorithm 1 and settingα = 0 andβ = 0 we find a family of PH cubic biarcs (depending onτ ∈ (0, 1))
interpolating given data. From this family of interpolantswe choose the one which minimizes the arc length. The
total arc length of the biarcs depending onτ ∈ (0, 1) is shown in Fig. 6 (left) and the interpolant with the minimalarc
length approximately equal to11.26331, obtained forτ

.
= 0.83046, is shown in Fig. 6 (right).

The next possibility for choosing a particular interpolantreflects the aspect of minimalelastic bending energy.
Elastic bending energyε of a curvef is defined as

ε =

∫ 1

0

κ2(t)
∥∥f ′(t)

∥∥ dt,

whereκ is the curvature off , defined as

κ(t) =
∥∥f ′(t)× f ′′(t)

∥∥ /
∥∥f ′
∥∥3 .

For a PH curvep (see, e.g., [26]) we can do the following factorization

‖p′(t)× p′′(t)‖2 = ρ(t)σ2(t),

13
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Figure 6: The total arc length of the biarcs depending onτ ∈ (0, 1) (left) and the interpolant with the minimal arc length (right). The tangent
vectors are presented six times shorter.

for some polynomialρ(t). Hence, for a PH cubicp we obtain

ε =

∫ 1

0

‖p′(t)× p′′(t)‖2

‖p′‖6
‖p′‖ dt =

∫ 1

0

ρ(t)σ2(t)

‖p′‖5
dt =

∫ 1

0

ρ(t)

σ3(t)
dt. (23)

Furthermore, ifp is obtained by integratingp′ = B(t)iB̄(t), whereB(t) = B0(1 − t) + B1t andBi = (0, b1i , b
2
i , b

3
i ),

i = 0, 1, the polynomialρ simplifies to a constant defined as

ρ = 4
((
b20b

1
1 − b10b

2
1

)2
+
(
b30b

1
1 − b10b

3
1

)2)
,

which simplifies formula (23) to

ε = ρ

∫ 1

0

σ−3(t)dt.

In the case of a PH cubic biarc the elastic bending energyε is given by

ε =

∫ 1

0

(
ρ1
σ3
1(t)

+
ρ2
σ3
2(t)

)
dt,

where

ρ1 = 4
((
b20b

1
1 − b10b

2
1

)2
+
(
b30b

1
1 − b10b

3
1

)2)
and ρ2 = 4

1− τ

τ

((
b21c

1
1 − b11c

2
1

)2
+
(
b31c

1
1 − b11c

3
1

)2)
,

andσ1 andσ2 are given by the scalar parts of

B0B0(1−t)2+(B0B1+B1B0)(1−t)t+B1B1t
2 and

1− τ

τ
B1B1(1−t)2+

√
1− τ

τ
(B1C1+C1B1)(1−t)t+C1C1t2,

respectively, andBi = (0, b1i , b
2
i , b

3
i ), i = 0, 1, andC1 = (0, c11, c

2
1, c

3
1).

Example 6. Let us consider a family of biarcs (depending onτ ∈ (0, 1)) from Example 5 and let us demonstrate a
choice of the parameterτ corresponding to the minimal elastic bending energy. The energy depending onτ ∈ (0, 1)
is shown in Fig. 7 (left) and the particular biarcs with the globally minimal elastic bending energy approximately
equal to2.26853 (obtained forτ

.
= 0.13125) and the locally minimal elastic bending energy approximately equal to

2.84321 (obtained forτ
.
= 0.72672) are shown in Fig. 7 (right). Of course the optimal shape (with respect to minimal

elastic bending energy) is provided by the global minimum only.
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Figure 7: The elastic bending energy of the biarcs dependingon τ ∈ (0, 1) (left); and the two interpolants with the globally (solid) and locally
(dashed) minimal elastic bending energy (right). The tangent vectors are presented six times shorter.

Remark 3. In Examples 5 and 6, only the parameterτ was computed in order to minimize the arc length or the elastic
bending energy of the output biarc. The other two parametersα andβ were both set to zero as this choice guarantees
the best approximation order. However, when we give up the requirement on the best approximation order all three
parameters can be considered in the the optimization process. For input data from Examples 5 and 6, the minimal arc
length, approximately equal to10.91739, is then obtained forα − β

.
= −1.02878, τ

.
= 0.77861, and the minimal

elastic bending energy (approximately equal to0.07504) is gained forα
.
= 1.03459, β

.
= 5.13187, τ

.
= 0.71053, see

Fig 8.

Figure 8: The biarcs with the minimal arc length (left) and the minimal elastic bending energy (right) when all parameters α, β, τ are taken into
the optimization process, see Examples 5, 6 and Figures 6, 7 (right). The tangent vectors are presented six times shorter.
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7. Conclusion

In this paper the problem ofC1 Hermite interpolation of spatial data by PH cubic biarcs wasconsidered. For
two given positions and two corresponding tangent vectors aPH cubic biarc was constructed. More precisely, spatial
PH cubic biarc curve was constructed by joining two spatial PH cubics, each of them interpolating one position and
corresponding tangent vector. Moreover, junction was donein a way that the resulting biarc becameC1 continuous.
It turned out that this problem has a solution for any configuration of spatial data and the solution depends on three
independent parameters. These parameters were later used to choose a particular solution with the best asymptotic
approximation order (three in this case) and the minimal arclength or minimal elastic bending energy. Several
numerical examples were given which confirm that the obtained biarcs are of good shape and that they can be used to
approximate spatial parametric curves by PH cubic spline curves. One of the advantages of the proposed interpolation
scheme is that it can be applied to any configuration of spatial data. On the other hand, the problem of HermiteC1

interpolation by spatial PH cubics is not possible in general, and the problem of HermiteG1 interpolation by spatial
PH cubics is restricted only to particular spatial data configurations.
As a future work one could consider a generalization toC2 Hermite interpolation by quintic biarcs. However, this
problem is much more difficult which is to be expected since already a characterization of PH quintics is more
complicated as it is the case of PH cubics.
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