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Abstract

In this paper theC'* Hermite interpolation problem by spatial Pythagoreaneugpeph cubic biarcs is presented and

a general algorithm to construct such interpolants is desdr Each PH cubic segment interpolat€'sdata at one
point and they are then joined together with'a continuity at some unknown common point sharing some unknow
tangent vector. Biarcs are expressed in a closed form witetehape parameters. Two of them are selected based
on asymptotic approximation order, while the remaining cale be computed by minimizing the length of the biarc
or by minimizing the elastic blending energy. The final ip@ating spline curve is globallg'! continuous, it can be
constructed locally and it exists for arbitrary Hermiteadednfigurations.
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1. Introduction

Pythagorean-hodograph (or shortly PH) curves form a spsglalass of parametric curves which have several
important properties, such as a (piecewise) polynomialeargth and a rational offset. This makes them very useful
in many practical applications, such as CAGD, CAD/CAM syste CNC machining, robotics, animation ... They
were first introduced in [1] and since then, many approxiomaéind interpolation schemes that involve PH curves
can be found in the literature. Interpolation methods byegaipolynomial curves are usually based on low degrees
polynomials, i.e., up to 5. Since only odd degree PH curvesegular, this practically reduces interpolation methods
by such curves to cubic and quintic cases.

For planar cubic PH curves one of the first interpolation reéthwas given in [2] wheré&! interpolation of
Hermite data (i.e. positions and tangent directions) atdwen points was analyzed, and in [3], whe¥é andC'!
Hermite interpolation via double-Tschirnhausen cubiocgehzeen considered. These results were later generalized
in [4] to G? interpolation by the same objects, and in [5], where a thgiaanalysis of the number of solutions and
their properties was done. For quintic planar PH curvessrsgvesults on first and second order continuous spline
interpolation are given in [6], [7], [8], [9], [10], [11] ..For spatial curves;;' Hermite interpolation by PH cubics
was thoroughly investigated in [12]. Those results wererlgeneralized to some level in [13]. The most general
results on this type of interpolation can be found in [14] &16]. The problem ofC'! andC? Hermite interpolation
by spatial PH curves of degree5 has been studied in [16], [17], [18], [19] ...
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SinceC'! Hermite interpolation by cubic polynomial spline curvesalaays uniquely solvable, it is clear that
the same problem can not be solved by PH cubic splines. Howlewedegree polynomial interpolating splines are
important in several applications, and one would insistsingicubic curves. One possibility is to rela% continuity
to G continuity but unfortunately it is not always possible tteipolateGG! Hermite data by PH cubic (see [12], [14]
and [15], e.g.). To avoid thig;’! Hermite iterpolation by spatial PH biarcs will be considene this paper. This
approach is a generalization@f Hermite interpolation with planar uniform and non-unifocobic PH biarcs which
was recently studied in [20]. The idea is to join two arcs ddtid cubic PH curves at some unknown point. First
curve interpolate€’’ Hermite data at one side, and the other one interpolatesithe §/pe of data at the other side.
The arcs are then joined together with continuity in order to make the final biaf¢' smooth. It turns out that the
biarc depends on three shape parameters. The final intémgp&pline curve is globally>! continuous, it can be
constructed locally and it exists for arbitrary Hermiteadednfigurations.

The paper is organized as follows. In Section 2 the theoryaternions and the connection between quaternions
and spatial PH curves is briefly recalled. Next section diessrthe HermiteC'! interpolation problem by spatial
cubic PH biarcs and presents a general algorithm for comgiurniterpolants. In Section 4 the asymptotic behaviour
of solutions with respect to two shape parameters is stuatieldn the following section the parameter values which
preserve planarity are identified. In the last section thematation of the last shape parameter is considered and
several criteria how to choose it are provided. The paperisladed with Section 7 that summarizes the main results
of the paper and identifies possible future investigations.

2. Quaternions and spatial PH curves

As the planar PH curves can be defined through some relatetmgebn complex numbers (see, e.g., [21]), the
spatial PH curves can be determined by relations betweetempi@ns or through a Hopf map representation ([11]).
Quaternions form a 4-dimensional vector spEceith a standard basifl, i, j, k},

1=(1,0,0,0), i=(0,1,0,0), j=(0,0,1,0), k=(0,0,0,1).

The first component of a quaternion is called a scalar paritewine remaining three components form a vector part
of a quaternion. A quaternion with a zero scalar part is dall@ure quaternion. Vectors R? can be identified with
pure quaternions and vice versa. For quaterniders (a,a) andB = (b,b), a,b € R, a, b € R?, we can define

A+B=(a+ba+b), AB=(ab—a-b,ab+ba+a xb).

With this associative, but noncommutative multiplicattbie space of quaternions becomes an algebra. Moreover,
A := (a, —a) denotes a conjugate gf and the norm of a quaterniof is defined as

IAI* = AA = AA = a® + ||a|*,
where||a|| = v/a - a is the Euclidean norm of the vectar We can also define a commutative multiplication on the
space of quaternions as
1 _ _
A*Bzzi(AiBaLBiA). 1)
By this operationd x B is a pure quaternion and will be identified with a vectoRihseveral times later on. In order

to simplify the notation, the expressiof?* := A x A will be used.
By [22] it is easy to solve a 'quadratie—equation which is recalled in the following lemma.

Lemma 1. Let A be a given pure quaternion. All the solutions of a quadratiequation¥?* = A form a one-
parameter family
Xi:=X(pA) =X, (A)Qy, Qp:=cosp+ising, ¢e|[—mm), (2)



whereX,(A) is a particular solution given by

o AL .
|A|HA+1 m?éfl

Xp(A) = TAT
AT A =i

A

Moreover, it is not difficult to see that for any quaterniofand 5
AQp x BQy = AQp—y % B=AxBQy—. 3)

Let us now define the connection between spatial PH curveqaatgrnions (see, e.g., [11]). The hodograph of a
spatial polynomial curvg(t) = (z(t),y(t), 2(t)) " of degreen is the curveh(t) := p'(t) = (' (t),y'(t), 2’ (t)) T of
degreen — 1, wherep’ denotes the derivative gf with respect to the parameterSuch a polynomial curve is called
Pythagorean-Hodograph curve (PH curve), if the Euclideamrof its hodograph is a piecewise polynomial function
of degreen — 1. More precisely, there must exist a polynomiakuch that

() + 4/ (1) + 2 (1) = o*(t).

If all real roots ofged(2’, ¢/, 2') have even multiplicity, thep is a PH curve iff there exist polynomials v, p, ¢ such
that

P =u? 40 —p* —¢% Y =2uq+2vp, 2 =2wq—2up, o=u®+0v>+p>+q%
This gives use the following lemma.

Lemma 2. Letp(t) = z(¢)i + y(t)j + 2(t)k be a spatial polynomial curve, such that all real rootgsofl(2’, v/, 2’)
have even multiplicity. Thepis a PH curve iff there exists a quaternion polynomit) = u(t) + v(¢)i + p(¢)j +
q(t)k, such that

h(t) = A)LA(t) = A(t)**.

The quaternion curvel(t) is called the preimage. Note that quaterniot(¢) and.A(¢) Q4 generate the same hodo-
graph.

3. Interpolation problem and algorithm

In this section the interpolation problem by spatial cubitifarcs is presented and an algorithm for computing
interpolants is given. LeP,, P, € R? be two given points and lét andt, be given associated tangent vectors. Our
goalis to find &@PH cubic biarcinterpolantp.. : [0, 1] — R3, composed of two spatial cubic PH cunes|0, 7] — R?
andc: [1,1] = R?, 7 € (0,1), i.e.,

[ b(t), tel]o,T],
p.(t) = { c(t), te]r1], )
such that
b(0) = Py, b'(0)=to, c(1)=Py, ' (1)=t,. (5)

Additionally we require that curvesandc join with theC'! continuity at some unknown common point sharing some
unknown tangent vector,
P, :=b(1)=c(7), t:=b(r)=c(r). (6)

In order to use Bézier representation of spatial cubic Pidesiit is appropriate to exprebgndc in a Bézier form as
3

b(t):ijB?(é), te 0,7, c(t):ich;’(t_T), teln1l, )

i 1—7
Jj=0

3



whereb; andc;, j = 0, 1, 2, 3, are control points and
n

)ﬁj(l )" §=0,1,...,n,
J

510 = (

are the Bernstein basis polynomials.
By using the quaternion representation of spatial PH cyhitk the preimages of both arcs can be described as

B(u) = Bo(1 —u) + Byu, C(u) =Co(1 —u)+Ciu, wel0,1], (8)

whereB3;,C; € H, i = 1,2, and for the control points of the curvdsndc it holds

by = by+ %Bg*, ciT = cCo-+ %Cg*,
b, = b+ %Bo * By, c; = ¢+ %Co *Cy, 9)
b3 — b2 —+ %B%*, C3 = C2 —+ %C%*

Standard properties of Bézier curves (see, e.g, [23])aggpus (9) and the interpolation conditions (5) imply
bO:F)Q7 Bg*:TtQ, 6321‘_)27 612*:(1—7')132. (10)

Moreover,C'! condition (6) implies
1—7

o = B2*. (11)

By (2), (10) and (11) it follows

By = X(¢o; Tto),

Cl = X(’L/Jl; (1 — T)tg), (12)
1_

Co = L B1Qy,.

T

It is straightforward to see from (3) and (9) that the samdrabpointse;, i = 0, 1,2, 3, are obtained if we choose

1—71

Co = By and Ci = X (Y1 —tbo; (1 — 7)t2).

T

Finally, (6) and (9) imply the following quaternion quadcagquation fori3;
B* 4+ B xD+E =0, (13)
where

D :=71X(po;Tto) + V/7(1 —7) X (1 — to; (1 — 7)t2),

(14)
£ ZZST(PQ —P2)+T2t0+7'(1 —T)tQ.
By transforming the equation (13) into
1 2% 1 o
(Bl + §D> = ZD - €,
we obtain a one-parameter family of solutions for the unkmgwaternior3;, namely
1 1, o, 1 1 o,
By = —§D+X gpl;ZD —&| = —5]-‘+Xp Z]-‘ —-&1))Qp, F:=DO_,. (15)
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From (1), (3), (9), (12), (13) and (15) now follows that caointsb; andc;, i = 0, 1, 2, 3, do not change if we take

BO = Bo(a) = X(Oz;TtQ), Cl = Cl(ﬁ) = X(ﬁ, (1 — T)tg), (16)

1—7

1 1
By :=Bi(a, ) = 5T+ <Z]:2* - 5) , Co:=Co(a,B) = Bi,

where
a:=@o—p1, Bi=v1—v%—¢1, F=F(ap)=18o++/7(1-7)C1

and¢ is given in (14). Let us summarize the results in the follayvineorem:

Theorem 1. Let P;, t;, i = 0,2, be given non-degenerate spatial Hermite data and let (0, 1). Then there exists
a two-parameter family of interpolating PH cubic biarps(¢; a, 8), given by(4), (7), (8), (9) and (16), satisfying(5)
and(6).

Let P;,t;,i = 0,2, be given data and let_(¢; o, 8) : [0, 1] — R? be an interpolating PH cubic biarc with respect
to chosen parametersand 3. Further, letd be an orthogonal transformation apd(t; o, 5) : [0,1] — R3 be an
interpolant with respect to the transformed dB{@ P-, to, t2. In general

O (p, (e, B) =b,(t;a,8) = (a,B)# (@5), 17)

except for some particular cases (see [16]). Note that argkredation betweeri«, 5) and (&, 8) such that the
left-hand side of (17) would hold, is quite complicated.

As one can expect from the planar case ([20]), not all choidgsarametersy and 5 will provide the same
approximation order of corresponding interpolants. Ineoitd determine which solutions are more acceptable from
the approximation point of view, it is by (17) very importaotchoose a particular position of data, to which the
original data should be transformed before the asymptotiyais is done. Since by [16, Lemma 3] the following
properties hold:

e if @ is arotation about theaxis, therp,. (t; a, 8) = @ (p,.(¢; o, B)),
o if @ is areflection with respect to a plane containingittais, therp.. (¢; a, 8) = @ (p,. (t; —a, —3)),
good choices are the following so-callsndard positionsf the data.

Definition 1. TheC' spatial Hermite dataP;, t;, i = 0,2, are said to be in a standard position, if + ¢, is a
positive multiple of, and Py = 0.

Note that by the described rotation symmetry the partiazhaice of a standard position (which may vary by a rotation
abouti-axis) does not matter.

From the computational point of view, this also motivatesaudefine the algorithm for constructing spatial cubic
PH biarcs in the following way. The'' Hermite data should first be transformed to the standardiposivhere the
two-parameter family of interpolating PH cubic biarcs ismputed. Then the solutions are transformed back to the
original position. The whole procedure is summarized inokithm 1.

From now on, the parametesisand 5 will always denote the parameters used to construct thepioliznts after
the data transformation to the standard position.

Example 1. Let us consider thé'! spatial Hermite data
Po=(221)",Py=(1,1,1)"to=(1,1,1) o = (1,1,-2) ",

and letr = 1/2. In Fig. 1 examples of cubic PH biarcs for parameters € {—m, —7/2,0,7/2} obtained using
Algorithm 1 are shown.



Algorithm 1 C* Hermite interpolation by spatial PH cubic biarcs

Require: PointsP,, P, with associated tangent vectdss t2, parameter € (0,1).
Ensure: PH cubic biarc

1: Transform data to the standard position using a transféomét: R?> — R3, &(x) = R - (x — Py), with

1 ud+ud —ud —ui 2(ugus — uous) 2(urus + uousg)
R:=RU):= e 2(urus +uous)  uf —ui+ud—ui  2(ugusz —uour) |,
2(uyus — upusg) 2(ugug +uour)  ud —ut —ud +u3

U = (uo,ul,ug,ug,) = (Cosg,sin §a> ,

where the rotation axig and the rotation angle¢ are given as

1
lto + L2

1

7 Tto + tall (to +t2) - (1,0,0) .

(t0+t2) X (15070)T7 COS¢:
Therefore one obtains
Py=0(Py)=0, Py=9%(P,y), to=2(ty), to=o(Ly).
2: Compute the preimage of a PH cubic biarc

By = Bo(a) = X(a;7ho), C1 = Ci(8) = X(B; (1 — 7)ta),

2%
1-— 1— 4 ~
Bo+y/ TTcl—Xp (Boﬂ/ TTQ) —— (B + ¢~ 3p)

3: Compute the control points and parameterizations of the@rthe PH cubic biarc

B = 31(04,5) = -

V|

1 1 1
by = Py, by = by + gqu (B3*), by =by + gqu (Bo* By), bs = by + g‘l’fl (B7),

2%
1 1—7 1 [1—171
C3 :PQ, Co :C3—§(I)71 ( - 81> , Cl = C2 — §(1)1< — Bl *Cl>,

1 t . t—
Chp =C1 — gq)_l (Cf*) 5 b(t) - ZblB? (;) 9 C(t) = chB? (1 _T> .
i=0

3
=0

Remark 1. Let us compare our construction of spatial cubic PH biarc€foHermite data with the construction of
PH quintic interpolants, which are usually used in this c&sem the point of view of computational complexity, both
method are equivalent because three quadsagiguations must be solved and a two-parametric system aticas

is obtained in both cases (cf. [16]).

Further, let us mention that the approximation order is @ss for PH cubic biarcs than for PH quintics (see
Section 4 and [16]). On the other hand, the main advantageld clibic biarcs over PH quintics lie in the lower degree
of interpolants and in the presence of an additional fre@eipmarameter, i.e., whereas there exists one-parameter
family of PH cubic biarcs for giver©'! data with the maximal approximation order, there is a unisingle PH



Figure 1: PH cubic biarcs obtained for input Hermite dataxargple 1 for pairs of paramete(s, 3), wherea, 8 € {—m, —7/2,0,7/2}, and

— 1
T=3.

quintic interpolant with the maximal approximation order.
Finally, it is also possible to compare curvature and torgimofiles of interpolants produced by both methods,
which is done for particular data in Example 2.

Example 2. Let us consider thé'! spatial Hermite data

1
Py =(0,0,00", Py =(1,1,1)", Py = (2,2,1)", P3 = (4, -1, —§)T

to=(1,-1,-1)T ¢t = (-1,2,3)" ,t2=(2,0,0) T, t5 = (-1,—1,-3)" .

)

Fig. 2 shows the comparison of PH quintic interpolants andcBbic biarcs for two particular choices of the shape
parametet. In Fig. 3 curvature and torsion profiles of these interpotaspline curves are shown. It can be seen that
a particular choice of influences curvature and torsion profile of a resulting PHeapline curve.

4. Approximation order

Algorithm 1 can be used to formulate a simple method for cosiva of an arbitrary regular spatial parametric
curve into aC'* spatial PH cubic spline curve. Lgt: [0, 1] — R3 be a regular spatial curve and tebe a number of
segments. First, we sampl& spatial Hermite data fronf,

Pzif(%), tgif'<%>, i=01...,n.

Then, we compute an interpolating PH cubic bigtdt; o, 3) for each pair of consecutive sample points and as-
sociated tangent vecto(d;, Py(it1), t2i, taiv1)), @ = 0,1,...,n — 1, and after a linear reparameterization we
obtain aC'* spatial PH cubic spline curvep_(t; , 3). Finally, we evaluate the approximation error by meastuitiieg
Hausdorff distance

disr (£,"p,) = max (m (i 190 =" (s, 911 ) o (i 170~ "p (s 5)) ) 19)

ue(0,1] \t€[0,1] te[0,1] \u€(0,1
7



Figure 2: PH quintic interpoants (blue) and PH cubic biarcs<(1/2 (red, green); = 2/3 (purple, yellow)) obtained for input Hermite data in
Example 1 fora = 0,8 = 0.

Figure 3: The comparison of curvature (left) and torsiogh() profiles for PH quintic interpoants (blue) and PH cubirés ¢ = 1/2 (red,
green),r = 2/3 (purple, yellow)) obtained for input Hermite data in Examflfora = 0, 8 = 0.

If the error is not sufficiently small, we increase the numifesegments and repeat the whole process.

Example 3. Letus consider a Bézier curve with control poifits0,0) ", (1,1,1) T, (=3,1,2)T, (0, -3,2) 7, (5,0,3) "
and(—1,2,3.2)" (see Fig. 4). Table 1 summarizes the approximation erroiitardecay exponent (the binary log-
arithm of the ratio of two consecutive errors). Two partisuthoices of parametets= 8 = 0 anda =

s
g =0
2 ’
are considered for = % The decay exponent in the first case indicates that the gippation order of the curve ap-
proximation by the above mentioned procedurg iBor parameters = 7,

= 0 the approximation error decreases
slower and the asymptotic approximation order is only one.

As it was shown in the previous example, not all choices odpeatersy andg provide the same approximation
order. As already observed for biarcs in [7], the approxiomabrder obtained forv = § = 0 is the best what we
can expect. To analyse this more precisely and to identifglsie choices of parametesisand 3, we will study an
asymptotical behaviour of solutions. (¢; «, 3). More precisely, ouC'* spatial Hermite data will be taken from an
analytical curvef : [0, h] — R3 and an asymptotic analysis of solutigng(¢; «, 3) will be investigated for decreasing
values ofh. As an error measure, we take the parametric distance intsatlin [24], which is an upper bound for

8
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Figure 4: Bézier curve and its approximation @Y spatial PH cubic spline curve for segmentsn = 1 (top left), n = 2 (top right),n = 4
(bottom left) andn = 8 (bottom right).

the Hausdorff distance. The parametric distance betweemgric curvesf : [c,d] — R? andg : [a,b] — R?, is
defined as

dist (f,g) = inf max | (f o 9) () — g(®)ll, (19)
where the infimum is taken among all diffeomorphisinsia, b] — [c, d], and||-|| is the usual Euclidean norm. Any
particular reparameterizatiafhgives an upper bound on the parametric distance (19).

Theorem 2. Let f : [0,h] — R3, s — f(s), be an analytical parametric curve parameterized by thelangth and
let : [0,1] — [0, h], t — ht be the reparameterization. Further Ipt (¢; o, 8) : [0,1] — R? be a spatialC' PH
cubic biarc spline approximation with respect to an arbirdixedr € (0, 1), which satisfies

P, (0;a,8) = f(¥(0)) = £(0) =: Py, p.(L;,B8) = f((1))

f(h) =: Ps,
and

dp,(0;2,B) _ d(fo¥)(0) _, df(0)

o dpLa) d(fow)1) _, df(h)
dt dt ds 0 dt - dt ~ T ds

Then fora = g = 0 the approximation error satisfies

= t2.

diste (f,p,) < max [|(f o ¥)(t) = P, (£:0,0)]| = O (n%) -

te[0,1

9



Table 1: Hausdorff distance and the approximation ordeEf@mple 3.

a=p=0 a=3,3=0

Segmentsi) | disty (f,"p,) | Decay | disty (f,"p,) | Decay

2 2.71094 x 107! - 4.07333 x 1071 -
4 1.79493 x 10~2 | 3.91679 | 9.00869 x 102 | 2.17682
8 3.04503 x 1073 2.5594 | 2.73028 x 102 | 1.72227
16 4.20046 x 10~* | 2.85784 | 7.61397 x 10~3 | 1.84233
32 6.17968 x 10~° | 2.76494 | 2.01659 x 1073 | 1.91673
64 7.58439 x 106 | 3.02643 | 5.19698 x 10~* | 1.95617
128 9.38429 x 10~7 | 3.01471 | 1.32751 x 10~* | 1.96895
256 1.16691 x 107 | 3.00756 | 3.44051 x 10> | 1.94803
512 1.4548 x 10~8 3.0038 | 9.61148 x 107° | 1.83979
1024 1.8161 x 10~? 3.0019 | 3.24925 x 10~ | 1.56465
2048 2.26864 x 10719 | 3.00095 | 1.36417 x 10~° | 1.25208
4096 2.83489 x 10~ | 3.00046 | 6.49193 x 10~7 | 1.07131

For other constant choices of and 5, the parametric distance for the particular reparametatian i) behaves only
asO(h).

PrRoOOF Without loss of generality, we may assume

0 1 0
fO) =10, fO=1{0], fO=|fOf1]- (20)
0 0 0
Suppose that the curvatukeand the torsion of the curvef ats = 0 expand as
k(s) = ko + K1s + %52 + %83 +0(s%),  o(s) =00+ 015+ %82 + %53 +0(sY),

wherery > 0. Then (see [25]) the Frenet-Serret formulae give an expargfithe curve, simplified by the assump-

tions (20) to
s — +rgs® — frok1st
f(s)=| iros®+ tris®+ 3 (k3 — 0dro + k2) st | +0O(s°). (21)
$(0005° + 37 (2K100 + Koo1) s*

From (21), it is straightforward to obtain expansions ofda¢a

.
1 1 1 1
Py =(0,0,0)", Py= (h - Eﬁghg, 550112 + gmh{ Eﬁzogoh3> + 0 (h%),

@
1 1 1
to=(h,0,0)", ty= (h — §n3h3, koh? + §/~z1h3, 5nogoh?’) +0 (hY).

Then, we follow Algorithm 1 in order to obtain the expansidrtiee interpolating PH cubic biarc:

Step 1. Given Hermite data can be transformed to the standard posiing the quaternion multiplication

where

L 9,01 2 1 L 9 ! 3
u= 1——Iioh,0,§ﬁogoh,—Zﬁoh—gﬁalh +O(h).

10



Then
Py =U(Py) =(0,0,0)",

T
~ 1 1 1 1
t() = U(to) =(h-— —Iighg, 7—I€0h2 — —Iilhg, 7—I€()Q()h3 + @ (h4) y
8 2 4 4
1 1 1 i
D 3 3 3 4
P2 == U(PQ) == (h - ﬂlioh 7EI€1}L 12H0Q0h ) + @ (h ) y

-
~ 1
to =Ul(ts) = <h —n2h3 0h2 + nlh liogoh ) +0 (n").
Step 2. We now compute the expansions of preimages

By = (—ﬁsmwm 5 V/Tsin(a)r3h??, /7 cos(a)vh 3—12 (V7 cos(a)r) b2,
1

- (v/7 cos()ko) R3/2 4 <%\/?cos(a)m - é TSin(a)HOQO) 3/2,
1 T
7 sin(a)roh®/? + g\/?(sin(a)m — cos(a)ko0o) h5/2) ) (h7/2) ,

C, = (— \/ﬁsin(ﬁ)\/ﬁ—i— %msin(ﬁ)mghsﬂ, \/mcos(ﬁ)\/_ — 3% (\/ﬁcos(ﬁ)ﬁzg) h5/2,

i\/l — TCOS(ﬂ)IiOh3/2 + é 11—+ (cos(8)k1 + sin(B)ko0o) hS/Q7
_ i (\/1 — TSiH(ﬂ)IiO) R3/2 4 é /T—7 (cos(8) ko000 — sin(B)x1) hs/g)—'— Lo <h7/2) .

Further, we compute the expansion®f, which is rather too long to include it into the paper.

Step 3. Finally, we obtain the expansions of all control points fottbarcs forming an interpolating PH cubic biarc
and their corresponding parameterizations, which arenggailong for the inclusion into the paper (even their
leading terms). Nevertheless, if we study the leading teftin k@spect to of the z-component of the first arc,

2 cos(a)\/Q‘erQ(‘rfl)'r cos(a—pB)—274+9+(7—1) cos(a— ) —7—2
t+ 3 2T

43 —27242(72=1) cos(a—B) =7+ ((1—7) cos B+ (7+2) cos a)\/27272(771)‘r cos(aﬁ)27+9) h (22)

672

the coefficients of? andt® have to be equal to zero in order the interpolant to matchhpesoff. Using a
computer algebra system we can solve this system of eqsatidnrns out that the only solutionis= g = 0,
independently of parameter Substituting these parameters into the expansions ofdrob(¢) andc(t) of
PH cubic biarg._(¢; 0, 0) (after applyingl ), we obtain

.
1-— -1
b(t) = (th—i— - (—2t3 + (_37) t2) B3, Roy2p2 | k131 —1) 1253, K000 (3T — )t2h3> Lo (h4),
T

2 127 127
c(t) = \th+ S (=2(r — 1) 4+ (4= 37) — 2t +7) B3, 22n2
24(T — 1) ) 2

12(71 1) 12(7 — 1)

Therefrom we obtain the upper bound for the parametric nicgta

.
(37 — 4)2 + 2t — 7) B3, —220 _ (37 — 4)2 4 2t — 7) h3) +0(hY).

\/411(2)9(2) + né + 4/-;? m
24

max [|(f o 9)(t) — p.(0,0)] =

K1, Ko) k3 4+ O (h*
te[0,1] ax (K1, K) b + ( )
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where

1—37)°

K? := max <( 50,6 ,72(1 =37+ 272)2> , K3 :=max <

(2—37)° 2 2 2

72907 1)6,(1 21)(r = 1)“7° ) .

Thus we have shown that the asymptotic approximation oater = 3 = 0 is three. Furthermore, from (22)

it follows that for any other pair of constants, 5) # (0, 0) the parametric distance with respect to the chosen
function behaves only a®(h). O

5. Identification of planar solutions for planar input data

Recently, plana€'! Hermite interpolation by the so-called TC-biarcs, i.earbs composed of two arcs of Tschirn-
hausen cubic joined with'* continuity, was studied in [20]. Any non-degener@teHermite data can be interpolated
by four distinct TC-biarcs which can be found by computing teomplex square roots and solving one quadratic
equation. Similarly to the case 6f' planar PH quintic interpolation, these solutions can beledbas++), (+-),
(—+), (——), where+, — correspond to the signs of complex square roots.

Obviously, one could expect that such planar solutionshveilbbtained by Algorithm 1 if the input data are planar.
In the following proposition, we will identify parametedis 3 for which these planar solutions are obtained.

Proposition 1. For any planarC! Hermite dataP;, t;, i = 0,2, the four PH cubic biarcp, (¢;0,0), p, (t;0, —7),
p,(t;—m,0), p,(t; —m, —7), obtained by Algorithm 1, are planar and correspond(te+), (+—), (—+), (——)
solutions of the planar interpolation problem with TC-kiar presented in [20], respectively.

PrROOF Let us follow the idea of the proof in [16, Theorem 4]. Withdass of generality we can assume that the
givenC'* Hermite data lie in th&j-plane. Then, for anyl = a1i+ asj € H expression (2) (fop € {—m,0}) reduces

to the expression for complex square root of the associaigglex number, i.e., teey/a; + azi € C, i := /—1.
Here we have used the identification+ izo € C = z1i + 25j € H. With this identification at hand, operatien
behaves like the standard multiplication of complex nurabéhus, expressions f&, andC; for o, 8 € {—7,0}
and for By (cf. Step 1 in Algorithm 1) correspond exactly to expressibor w,, wo, wq, respectively, in [20,
Algorithm 2]. O

Example 4. Let us consider planar’ Hermite data

T
2
PO = (05070)T7 P2 = (15070)T7 tO = (25270>T7 t2 = (27 570> .

Fig. 5 shows four PH cubic biarcs obtained by Algorithm 1dop € {—=,0} andr = % These solutions exactly
correspond to the solutions of the planar problem (cf. Fig.[20]).

6. Computation of shape parameterr

Suppose that we have already chosen parametarsi5 (e.g. by Theorem 2). Now, it remains to determine the
last free parameter (i.e., the parameter corresponding to the join point of tiaeds) to get a particular interpolant
for givenC! data. In this section we will discuss on how to compute thap@terr with respect to the following
characteristics: minimal arc length and minimal elastiodieg energy.

Thearc lengthof a parametric curve : [0, 1] — R? is determined as

L :/0 | /()| de.

By using PH curves, the cumulative arc length is a polynofiattion and can therefore be computed exactly. For a
PH cubicp we have

L=Yo+ato). PO =0l) =3 aB0).
1=0

12



Figure 5: PH cubic biarcs obtained for planar input Hermagadn Example 4.

In the case of a PH cubic biarc the arc lengtfs given by the scalar part of
1 S 1 = _ BB 1 [1-— . _ _
g <BQBO + B (8081 + 8180) + 17_ ! + B = T (8161 + C181) + Clcl> .

Remark 2. Analogously to [18, Formula (64)], it can be proved that the langth . depends only on and the
differencea — 5. However, this is not of a particular importance becausetitg reasonable choice of the constant
parameters (guaranteeing the optimal approximation prslét, 5) = (0,0), see Theorem 2.

Example 5. Let us conside€'! spatial Hermite data
Py =(0,0,0)", Py =(—2,2,5)T,ty = (0,—13,20) ", 5 = (4,13, -20)" .

Using Algorithm 1 and settinge = 0 and = 0 we find a family of PH cubic biarcs (depending enc (0, 1))
interpolating given data. From this family of interpolamts choose the one which minimizes the arc length. The
total arc length of the biarcs dependingog (0, 1) is shown in Fig. 6 (left) and the interpolant with the miniraat
length approximately equal tol.26331, obtained forr = 0.83046, is shown in Fig. 6 (right).

The next possibility for choosing a particular interpolagfiects the aspect of minimalastic bending energy
Elastic bending energyof a curvef is defined as

1
o= [ o)
wherek is the curvature off, defined as
3
K(t) = [|£7 @) < £ /£
For a PH curvep (see, e.g., [26]) we can do the following factorization

I’ (£) x p"(t)||* = p(t)o? (),
13



Figure 6: The total arc length of the biarcs dependingroa (0, 1) (left) and the interpolant with the minimal arc length (ighThe tangent
vectors are presented six times shorter.

for some polynomiap(t). Hence, for a PH cubip we obtain

e xp" O L e [t )
57/0 —HpHdt—/O e dtf/o dt. (23)

6 5
Il | o*(t)

Furthermore, ifp is obtained by integrating’ = B(¢)iB(t), whereB(t) = By(1 — t) + Bit andB; = (0,b},b2,b?),
1 =0, 1, the polynomiap simplifies to a constant defined as

p =4 (0301 — 083)" + (o — 0lp)”)
which simplifies formula (23) to
1
€= p/ o3 (t)dt.
0

In the case of a PH cubic biarc the elastic bending eneigyiven by
1
P£1 P2
€= + dt,
/0 <o§(t) oé”(t)>

pr =4 (030} — 03p3)” + (o} — 0jp})*)  and p2:4—1;7 ((@3el = bied)” + (et — bie))”)

where

ando; ando, are given by the scalar parts of

1— /11—
8080(1—f)2+(8081 +8180)(1—t)t+8181t2 and T8181(1—t)2+ TT(BlCl +Cll’3’1)(1—t)t+6161t2,

T

respectively, andB; = (0,b},b7,5?),7 = 0,1, andC; = (0, c}, c3,c3).

y Y Yo Ve

Example 6. Let us consider a family of biarcs (dependingo® (0,1)) from Example 5 and let us demonstrate a
choice of the parametercorresponding to the minimal elastic bending energy. Thee@ndepending om € (0, 1)

is shown in Fig. 7 (left) and the particular biarcs with theldlly minimal elastic bending energy approximately
equal t02.26853 (obtained forr = 0.13125) and the locally minimal elastic bending energy approxaha¢qual to
2.84321 (obtained forr = 0.72672) are shown in Fig. 7 (right). Of course the optimal shapeh(néspect to minimal
elastic bending energy) is provided by the global minimury.on
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4.0

3.0

25

Figure 7: The elastic bending energy of the biarcs depenaiing € (0, 1) (left); and the two interpolants with the globally (solid)calocally
(dashed) minimal elastic bending energy (right). The tabgectors are presented six times shorter.

Remark 3. In Examples 5 and 6, only the parametavas computed in order to minimize the arc length or the elasti
bending energy of the output biarc. The other two parametersd 5 were both set to zero as this choice guarantees
the best approximation order. However, when we give up thairement on the best approximation order all three
parameters can be considered in the the optimization psoEes input data from Examples 5 and 6, the minimal arc
length, approximately equal t1).91739, is then obtained forv — 5 = —1.02878, 7 = 0.77861, and the minimal
elastic bending energy (approximately equad 17504) is gained foroe = 1.03459, § = 5.13187, 7 = 0.71053, see

Fig 8.

Figure 8: The biarcs with the minimal arc length (left) and thinimal elastic bending energy (right) when all paranseters, = are taken into
the optimization process, see Examples 5, 6 and Figuresrighf)( The tangent vectors are presented six times shorter
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7. Conclusion

In this paper the problem af'! Hermite interpolation of spatial data by PH cubic biarcs wassidered. For
two given positions and two corresponding tangent vect®sl @ubic biarc was constructed. More precisely, spatial
PH cubic biarc curve was constructed by joining two spatildabics, each of them interpolating one position and
corresponding tangent vector. Moreover, junction was domeway that the resulting biarc becaifé continuous.

It turned out that this problem has a solution for any configjon of spatial data and the solution depends on three
independent parameters. These parameters were laterauskddse a particular solution with the best asymptotic
approximation order (three in this case) and the minimallangth or minimal elastic bending energy. Several
numerical examples were given which confirm that the obthinarcs are of good shape and that they can be used to
approximate spatial parametric curves by PH cubic splimeesu One of the advantages of the proposed interpolation
scheme is that it can be applied to any configuration of Spddita. On the other hand, the problem of Herndite
interpolation by spatial PH cubics is not possible in gehearad the problem of Hermit&'! interpolation by spatial

PH cubics is restricted only to particular spatial data @pnfitions.

As a future work one could consider a generalizatio@toHermite interpolation by quintic biarcs. However, this
problem is much more difficult which is to be expected sinaealy a characterization of PH quintics is more
complicated as it is the case of PH cubics.
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