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Abstract. Hypo/epicycloids (shortly HE-cycloids) are well-known
curves, in detail studied in classical geometry. Hence, one may wonder
what new can be said about these traditional geometric objects. It
has been proved recently, cf. [12], that all rational HE-cycloids are
curves with rational offsets, i.e. they belong to the class of rational
Pythagorean hodograph curves. In this paper, we present an algorithm
for G1 Hermite interpolation with hypo/epicycloidal arcs which results
from their support function representation.
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1 Introduction

Hypocycloids and epicycloids are a subclass of the so called roulettes,
i.e., planar curves traced by a fixed point on a closed convex curve as
that curve rolls without slipping along a second curve. In this case, both
curves are circles, cf. [13, 1, 9]. Various sizes of circles generate different
hypo/epicycloids, which are closed when the ratio of the radius of the
rolling circle and the radius of the other circle is rational.

It has been proved recently, cf. [12], that all rational hypo/epicycloids
are curves with Pythagorean normals and therefore they provide ratio-
nal offsets. This new result was obtained with the help of support
function (SF) representation of hypo/epicycloids. In this paper, we
present the main idea of the algorithm for G1 Hermite interpolation with
hypo/epicycloidal arcs. Due to the their simple support function rep-
resentation, the G1 interpolation with hypo/epicycloidal arcs becomes a
linear problem.

The remainder of the paper is organized as follows. Section 2 recalls
some basic facts concerning elementary theory of hypo/epicycloids and
their support functions. In, Section 3 we formulate an algorithm for G1

Hermite interpolation with hypo/epicycloidal arcs and discuss the main
idea. Then, the algorithm is demonstrated on examples. Then, we con-
clude the paper.

2 Support function representation of hypo/epicycloids

A hypocycloid is a plane curve generated by the trace of a fixed point c on
a circle with radius r that rolls without sliding within a fixed circle with
radius R > r. If the fixed circle is centered at the origin, the hypocycloid
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is parameterized by

c(ϕ) = (R − r) · n(ϕ) − r · n(kϕ), k = 1− R

r
, (1)

where n(ϕ) = (sinϕ, cosϕ)>. In case the moving circle roles outside the
fixed circle, we generate an epicycloid, whose equation is obtained by using
a negative value r in (1). W.l.o.g. we may assume R > 2r in the rest of
this paper (for more details see the so-called Double Generating Theorem
(1785) by D. Bernoulli). We introduce the name HE-cycloid which is a
unified term for both hypo/epicycloids.

Recently, the support function representation of curves and surfaces
has been applied to some problems in CAGD – see [10, 5]. It was shown
that this representation is, among others, very suitable for describing
offsets and convolutions as these operations correspond to simple algebraic
operations of the associated support functions.

We consider algebraic curves in the two-dimensional Euclidean plane,
which is identified with R2. Recall that an algebraic curve C in R2 which
is not a line has the dual representation of the form

D(n, h) = 0, (2)

where D is a homogeneous polynomial in n = (n1, n2)> and h. The set
of all lines

Tn,h := {x ∈ R2 : n · x = h}, for D(n, h) = 0 (3)

forms the system of tangents of the curve C. The vector n is the normal
vector. If |n| = 1 then the value of h is the oriented distance of the tangent
to the origin.

If the partial derivative ∂D/∂h does not vanish at (n0, h0) ∈ R3 and
D(n0, h0) = 0 holds, then (2) implicitly defines a function

n 7→ h(n) (4)

in a certain neighborhood of (n0, h0) ∈ R2. The restriction of this function
to the unit circle S1 = {n ∈ R2 : |n| = 1} is then called the support
function and analogously D(n, h) = 0 is the implicit support function (or
shortly ISF ) representation of the curve C.

Inversely, from any smooth real function on S1 we can reconstruct the
corresponding curve by the mapping xh : S1 → R2

xh(n) = h(n)n + h′(n)n⊥, (5)

where n⊥ ∈ S1, n · n⊥ = 0, cf. [11]. The vector-valued function xh

gives a parameterization of the envelope of the set of tangents (3). Hence,
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all curves with the associated rational support function are rational —
it is enough to substitute to (5) a rational parameterization of S1, e.g.
n = (2t/(1 + t2), (1 − t2)/(1 + t2))>.

The following list summarizes how the support function h(n) is related
to translation, rotation and scaling of the curve (for more details see [11]):

1. translation: h(n) 7→ h(n) + v · n, where v is the translation vector;
2. rotation: h(n) 7→ h(An), where A is a matrix from SO(2);
3. scaling: h(n) 7→ λh(n), where λ ∈ R is the scaling factor.

Figure 1: Left: Cardioid (HE-cycloid C1
3); Right: HE-cycloid C2

3 – with
tangents of the given direction.

Lemma 1. Any HE-cycloid given by the parameterization (1) possesses
the support function in the form

h(θ) = (R − 2r) cos
(

R

R − 2r
θ

)
(6)

with respect to the parameterization n(θ) = (sin θ, cos θ)>.

Proof. The main idea is analogous to the proof in [10] where so called
quasi-convex hypocycloids were partially studied.

In what follows we assume R : r is rational and we set

% = gcd(R, r), a = R/%, b = (R − 2r)/%. (7)

Hence, (6) can be rewritten into the form

h(θ) = (b%) cos
(a

b
θ
)

. (8)
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The multiplication by a constant factor represents scaling and thus we
can omit the factor (b%) from (8).

Definition 2. The curve given by the support function

h(θ) = cos
(a

b
θ
)

(9)

with relatively prime a, b ∈ N will be called canonical HE-cycloid with
parameters a, b and denoted Ca

b .

Let us emphasize that the support function (9) represents an epicycloid
for a < b and a hypocycloid for a > b. Furthermore, the angular distance
between cusps in the parameter domain is always b

aπ.

3 Hermite interpolation algorithm
In this section we will present a method for G1 Hermite interpolation with
HE-cycloids. Reader who is more interested in the related interpolation
problems is referred e.g. to [7].

As proved in [12], all rational HE-cycloids are rational PH curves. For
more details about PH curves see [2, 8, 3, 4] and references therein. Thus,
the so called HE-splines brings an important extra-feature, the rationality
of offsets, which is a property very useful for applications, cf. [6].

Lemma 3. The curve given by the support function

h(θ) = vx sin θ + vy cos θ + s sin
a

b
θ + c cos

a

b
θ. (10)

is a scaled, rotated and translated Ca
b and all such transformations can be

obtained by a suitable choice of coefficients vx, vy, s, c ∈ R.

Proof. Ca
b scaled through a factor λ and rotated through angle α has the

support function

λ cos
[a

b
(θ − α)

]
= λ sin

(a

b
α
)

︸ ︷︷ ︸
s

sin
(a

b
θ
)

+ λ cos
(a

b
α
)

︸ ︷︷ ︸
c

cos
(a

b
θ
)

and the translation by vector (vx, vy)> of any curve is realized by adding
the term

vx sin θ + vy cos θ

to its support, as stated in Section 2.

HE-cycloid with the support function (10) has the parameterization

x(θ) = h(θ)(sin θ, cos θ)> + h′(θ)(cos θ,− sin θ)>, (11)
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where coefficients vx, vy, s, c appears also linearly, cf. (5). This means,
that given G1 Hermite boundary data, we will be able to find vx, vy, s, c
solving linear system of equation, so that (a segment of) Ca

b interpolates
the data.

Now we suppose that they are given the following G1 Hermite data

P0 = (x0, y0)>, n0 = (sin θ0, cos θ0)>,
P1 = (x1, y1)>, n1 = (sin θ1, cos θ1)>.

(12)

Let us denote ω = θ1 − θ0. We say, that the data are regular with respect
to Ca

b , if P0 6= P1 and 0 < |ω| < min
(
π, b

aπ
)
. We say that an Hermite

interpolant interpolating these data is simple if its normals vary only
within the interval (θ0, θ1) (or within (θ1, θ0) if θ1 < θ0).

The restriction on ω is motivated by the fact that the angular distance
between two consecutive cusps of Ca

b is b
aπ. Taking the interpolation

conditions for the given data, we obtain the following system of linear
equations in the matrix form

M ·




vx

vy

c
s


 =




x0

y0

x1

y1


 , (13)

where M =



1 0
(
sin θ0 cos a

b
θ0 − a

b
cos θ0 sin a

b
θ0

) (
sin θ0 sin a

b
θ0 + a

b
cos θ0 cos a

b
θ0

)

0 1
(
cos θ0 cos a

b
θ0 + a

b
sin θ0 sin a

b
θ0

) (
cos θ0 sin a

b
θ0 − a

b
sin θ0 cos a

b
θ0

)

1 0
(
sin θ1 cos a

b
θ1 − a

b
cos θ1 sin a

b
θ1

) (
sin θ1 sin a

b
θ1 + a

b
cos θ1 cos a

b
θ1

)

0 1
(
cos θ1 cos a

b
θ1 + a

b
sin θ1 sin a

b
θ1

) (
cos θ1 sin a

b
θ1 − a

b
sin θ1 cos a

b
θ1

)


 .

(14)

This represents the main computational part of our interpolation algo-
rithm.

Proposition 4. For any regular G1 Hermite data, there is precisely one
interpolant similar to a segment of Ca

b and it can be found by solving a
system of linear equations.

Proof. See [12] for the detailed proof of this statement.

Now, we demonstrate the presented approach on two examples.

Example 5. For the given data (Figure 2, left), we show the unique in-
terpolant and the three positions of a similar segment on C3

5 in canonical
position (see Fig. 2, right – green color). Note that the number of various
intervals [θ0 + 2kπ, θ1 + 2kπ], on which the interpolant can be parame-
terized, is b = 5. The number of geometrical occurrences of the similar
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Figure 2: Left: Hermite interpolation of the given data (black) by an arc
of C3

5 (blue); Right: C3
5 (blue) together with three segments (green) similar

to the used interpolant.

segment is given by the symmetry group of the particular HE-cycloid and
is equal to a = 3 in this case.

Example 6. Let us consider a Bézier quartic curve on the interval t ∈
[0, 1] with the control points [0, 0], [0, 1], [1, 2], [2, 1] and [1, 0] (see Fig. 3).
The curve is replaced by 2,4 and 8 interpolating arcs of C1

3 (cardioid).

It can be shown by measuring the approximation error and its im-
provement (ratio of two consecutive errors), that when no inflections are
present then the approximation order is 4 and at the inflections it drops
to 3 (which is due to the absence of inflection points on HE-cycloids).
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Figure 3: Bézier curve and its conversion in HE-spline curve composed of
2, 4 and 8 arcs of C1

3 (cardioid).
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[12] Š́ır, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids
and epicycloids with rational offsets, submitted to Computer Aided
Geometric Design.

[13] Yates, R.C.: Curves and Their Properties. National Council of Teach-
ers of Mathematics, 1974.
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