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Abstract: A survey of some new results about Hermite interpolation by Pythagorean Hodograph curves
is given. In particular we discuss the C2 interpolation in Euclidean plane and space and the G1 inter-
polation in Minkowski space. We give an outline of our methods and results together with examples
and references to relevant papers. Keywords: Hermite interpolation, Pythagorean hodograph curves,
Minkowski space

1 Introduction

Pythagorean hodograph (PH) curves (see the survey [4] and the references cited therein), form
a remarkable subclass of polynomial parametric curves. They have a piecewise polynomial arc
length function and, in the planar case, rational offset curves. These curves provide an elegant
solution of various difficult problems occurring in applications, in particular in the context of
CNC (computer-numerical-control) machining.

Curves in Minkowski space R
2,1 are very well suited to describe the medial axis transform

(MAT), which plays a key role in the definition of Minkowski Pythagorean hodograph (MPH)
curves. A curve in R

2,1 considered as a MAT uniquely defines a planar domain. Minkowski
Pythagorean hodograph curves correspond to domains, where both the boundaries and their
offsets are rational curves, [15].

Our paper is devoted to the Hermite interpolation by (M)PH curves, which seems to the most
promising among various methods for their construction. Since it is essentially a local construc-
tion, it results in a relatively reasonable system of nonlinear equations, which can be explicitly
solved in certain cases. Other (global) methods lead typically to a huge system of nonlinear
equation having unclear solvability condition. As an additional problem it is necessary to make
a choice among a great number of solutions.

The remainder of the paper is organized as follows. After recalling some basic facts about PH
curves in Euclidean and Minkowski space we outline our results about C 2 Hermite interpolation
in Euclidean space in the context of other interpolation techniques. Afterwards, we give a survey
of G1 Hermite interpolation by MPH cubics focusing on solvability and approximation order.
We also present a brief outline of converting analytic curves into MPH cubic splines. Finally
we conclude the paper.



2 Euclidean and Minkowski PH curves

In this section we summarize some basic properties of Pythagorean Hodograph curves in both
Euclidean and Minkowski spaces.

A Bézier curve is called Pythagorean Hodograph (PH) if the length of its tangent vector, taken
in the appropriate metric, depends in a polynomial way on the parameter. In particular

• p(t) = [x(t), y(t)] is called planar PH curve if there exists a polynomial σ(t) such that

x′(t)2 + y′(t)2 = σ2(t), (1)

• p(t) = [x(t), y(t), z(t)] is called a spatial PH curve if there exists a polynomial σ(t) such
that

x′(t)2 + y′(t)2 + z′(t)2 = σ2(t), and (2)

• p(t) = [x(t), y(t), z(t)] is called a spatial Minkowski PH (MPH) curve if there exists a
polynomial σ(t) such that

x′(t)2 + y′(t)2 − z′(t)2 = σ2(t). (3)

The degree of σ(t) equals n − 1, where n is the degree of the PH curve. The curve h(t) =
[x′(t), y′(t){, z′(t)}] is called the hodograph of p(t).

The planar polynomial curve p(t) can be identified with complex valued polynomial p(t) =
x(t) + iy(t). The hodograph h(t) = x′(t) + iy′(t) then satisfy the equation (1) if and only if it
is of the form h(t) = w(t)2, where w(t) = v(t) + iw(t) is a complex valued polynomial called
preimage, [3].

In a similar way, the spatial polynomial curve p(t) can be identified with pure–quaternion–
valued polynomial p(t) = x(t)i+ y(t)j+ z(t)k. The hodograph h(t) = x′(t)i+ y′(t)j+ z′(t)k
then satisfy the equation (2) if and only if it is of the form h(t) = A(t) iA∗(t), where A(t) =
u(t) + v(t)i + p(t)j + q(t)k is a quaternion valued polynomial called preimage, [2].

In the Hermite interpolation one wants to construct a suitable object (a PH curve in our case)
matching prescribed boundary data. This data are typically the end point positions and some
additional constraints, which can be analytical (derivative vectors) or geometrical (tangent di-
rections, curvature, etc.) information. In the former case we talk about C-interpolation, in the
latter about G-interpolation.

As an immediate consequence of the definition of MPH curves, the tangent vector c′(t) of an
MPH curve cannot be time–like. Also, light–like tangent vectors c′(t) correspond to roots of the
polynomial σ(t) in (3). In the remainder of this paper we consider only curves with space–like
tangent vectors. These curves will be called space–like. Recall that the MAT of a planar domain
is a space curve with space–like or light–like tangent vectors, where the latter ones appear only
at isolated points, typically at vertices (points with extremal curvature) of the boundaries.



data degree maximum number of solutions
and computational effort

available results

2D-plane
G1 3 2 solutions, quadratic equation

(Walton and Meek [14])
One of the solutions has approximation
order 4 at generic points [14].

C1 5 4 solutions, quadratic equa-
tions (Farouki and Neff [7])

The best solution can be identified via
its rotation index (Moon et al. [16]).

G2[C1] 7 8 solutions, quartic equations
(Jüttler [10])

One of the solutions has approximation
order 6 at generic points [10]. Inflec-
tions reduce the approximation order.

C2 9 4 solutions, quadratic equa-
tions (Farouki et al. [6])

One of the solutions has approxima-
tion order 6 at all points (Šı́r and Jüttler
[17]).

3D-space
G1 3 2 solutions, quadratic equation

(Jüttler and Mäurer [11])
One of the solutions has approximation
order 4 at generic points (Mäurer and
Jüttler [13]).

C1 5 2–parametric system of solu-
tions, quadratic equations in
quaternions (Farouki and Neff
[5])

One solution has the best approximation
order 4, preserves planarity and symme-
try of the data (Šı́r and Jüttler [19]).

C2 9 4–parametric system of so-
lutions, quadratic and linear
equations in quaternions (Šı́r
and Jüttler [18])

One solution has the best approximation
order 6, preserves planarity and symme-
try of the data [18].

Table 1: Hermite interpolation by Euclidean PH curves.

3 C2 Hermite interpolation in Euclidean plane and space

Table 1 summarizes the known results about Hermite interpolation in the Euclidean plane and
space. One can observe two facts. First, interpolation of geometrical data is in principle more
complicated then that of analytical data. Only the G1 construction is available both in space
and plane. The combined G2[C1] interpolation in plane leads to the most complicated (quartic)
equations. Moreover, while the C-interpolation has always a solution, this is not the case for
G-interpolation, where certain conditions of solvability exist. Second, the space yields more
freedom to satisfy the PH condition and therefore there are more interpolants of the same degree
than in the plane.

Recently we gave new results concerning C2 Hermite interpolation [17] and [18]. The task is
to construct a PH curve p(t) matching given C2 Hermite boundary data: the end points pb, pe,
the first derivative vectors (velocities) vb, ve and the second derivative vectors (accelerations)
ab, ae. This can be done most efficiently by constructing the preimage. If we work in a suitable
polynomial basis (such as Bernstein Bézier basis), the boundary condition which are linear
for the curve p(t) and its hodograph h(t) become non-linear for the preimage w(t) or A(t).



2D-plane, complex numbers 3D-space, quaternions
Equation #Solutions Equation #Solutions

quadratic x2 = a 2 X iX ∗ = A 1-param. system
linear xb = a 1 XB = A 1-param. system

Table 2: Two types of equation occurring in the C2 Hermite interpolation
process. The unknowns are x (complex number) or X (quaternion).

The resulting system can be however reduced to successive explicit solution (in quaternions or
complex numbers) of several equations which are quadratic or linear (see Table 2).

While the complex number equation have a finite number of solution, the quaternion ones have
one dimensional systems of solutions. We thus obtain a finite number of preimages for the
planar case and multidimensional system of preimages in the space case. After eliminating some
redundancies we finally obtain four PH interpolants in the planar case and a four dimensional
system of solutions in the space case. Via an asymptotical analysis we were able to identify the
”best” solution, which behaves in a most suitable way, when we interpolate data taken from an
analytical curve and we diminish the step size.

As an example, Figure 1, left shows the system of spatial PH interpolants of degree 9 to the data

pb = [0, 0, 0], vb = [3, 0, 0], ab = [0, 1, 0]
pe = [1, 1, 0], ve = [3, 0, 0], ae = [0,−1, 0].

(4)

Note that these data lie in fact in the xy-plane and therefore the four dimensional system of
spatial interpolants must contain the four planar interpolants (shown on the right figure).
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Figure 1: Left figure shows 64 representants of the four dimensional system
of PH interpolants of the data (4). Right figure shows 4 interpolants, which
are planar. The ”best” interpolant is plotted in bold.
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Figure 2: Necessary condition: the control polygon of the interpolating MPH
cubic lies on a certain hyperbolic paraboloid.

4 Hermite interpolation in Minkowski space

In this section we summarize some results concerning G1 Hermite interpolation by cubic MPH
curves and an approximate conversion of a space–like analytic curve into MPH cubic spline.

4.1 G1 Hermite interpolation by MPH cubics

Let us consider an MPH cubic g(t) in Bézier form

g(t) = p0 (1 − t)3 + p1 3t(1 − t)2 + p2 3t2(1 − t) + p3 t3, t ∈ [0, 1], (5)

which is to interpolate two given points q0 = p0 and q1 = p3, and the associated space-like unit
tangent directions t0 and t1. It turns out that this interpolation problem leads to two quadratic
equations, which yield up to four distinct MPH cubic interpolants. A necessary condition for
the interpolants is that their control polygons lie on a certain hyperbolic paraboloid, see Fig. 2.

In order to analyze the solvability of the problem, we shall simplify the given input data without
loss of generality as far as possible. First, we move the starting point p0 of the curve g(t) to
the origin, while the endpoint p3 remains arbitrary. Then we apply Lorentz transforms to map
the input data to one out of five canonical positions depending on the causal characters of the
sum and difference of t0 and t1. In order to obtain solutions, the endpoint q1 has to lie inside
certain quadratic cone, which depends solely on the input Hermite data, see Fig. 3. A thorough
discussion of the number of interpolants is given in [12].

4.2 Converting analytic curves into MPH cubic splines

Let us consider a space–like curve segment p = p(s) with s ∈ [0, Smax] in Minkowski space.
The coordinate function are assumed to be analytic. For a given step–size h, we generate points
and tangents at the points s = ih, i = 0, 1, 2, . . ., and apply the G1 Hermite interpolation
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Figure 3: Space–like difference vector and two corresponding families of
quadratic cones.
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Figure 4: a) Two interpolants to given medial axis transform, b) correspond-
ing circles and their rational envelopes.

procedure by MPH cubics to the pairs of adjacent points and tangents. With the help of Taylor
expansions we analyze the existence and the behavior of the solutions for decreasing step–size
h → 0.

If the principal normal vector of p is space–like or time–like, the G1 interpolation has four
solutions, provided that the step–size h > 0 is sufficiently small. Exactly one among them
matches the orientation of the given tangent vectors. This solution has the approximation order
four. The approximation order reduces to two at isolated Minkowski inflections, i.e. when the
principal normal vector of p is light–like for s = 0.

4.3 Example

Consider the space–like cubic arc (the MAT of a planar domain Ω) h(t) = (t, t2, t3

2
)>, t ∈ [0, 1

2
].

We apply the G1 Hermite interpolation scheme to this curve segment. Two among the four
interpolants are shown in Fig. 4 along with the rational approximations to the original domain
boundary ∂Ω.



5 Conclusion

The described constructions represent the state of art of the Hermite interpolation by PH curves.
We were able to obtain construction methods along with an analysis of the quality of the solu-
tions. In this way we described the solution which can be used for example for conversion of
analytical curves into PH splines or (in the Euclidean case) for smoothing tool paths.

Based on the mutual position of the given first order Hermite data we described the basic results
concerning the conditions for the existence and the number of MPH cubic interpolants. More-
over, we presented an approach to the approximate conversion of a space–like analytic curve
into MPH cubic spline. The approximation order is generally equal to four, but it reduces to
two at isolated Minkowski inflections.
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