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Abstract. In this paper we apply the rational Puiseux series to study
the local properties of algebraic curves at their singular points. In
particular we exploit the existence of a bijection between the curve real
branches and set of rational Puiseux series at a given point of the curve.
We determine the quadrant which contains any curve half-branch and
find the mutual position of all the branches. All this information is
extracted from a certain tree representation without the necessity of
computing the Puiseux series explicitly. This study is meant as an
element for our new method for a topologically accurate approximation
of algebraic curves.
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1 Introduction

In [2, 3] we proposed a novel approach to study the topology of algebraic
curves. It is based on three fundamental steps. In the first we identify
the singular (and some other critical) points and all the branches at these
points. Then we study the connectivity of these branches. Eventually we
approximate all the connecting segments.

For the seek of completeness let us recall that their exist also a com-
pletely different approach which is based on subdivision. The only cer-
tified algorithm (i.e. one which gives the correct output for every input)
based on subdivision is [1]. This algorithm subdivides the studied region
into regular regions (the curve is smooth inside) and regions with singu-
lar points, which can be made sufficiently small. The topology inside the
regions containing a singular point is recovered from the information on
the boundary using the topological degree.

In this paper we present some results which improves the first step
of our algorithm, more precisely the identification of all the branches
at a singular point. First we describe the system of rational Puiseux
series introduced in [5]. These are certain generalizations of the standard
Puiseux series [6, chapter IV] which are in bijection with real branches
(trough the origin) of a given algebraic curve. We also shortly recall the
algorithm to find rational Puiseux series. In the second section we improve
the ideas given in [4]. We deduce the local position of the branches. The
singular part of Puiseux series determines in which quadrant(s) the given
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branch lies. Also, the singular part implies the clockwise order of the
curve branches.

2 Rational Puiseux Series
Through this paper we suppose that the polynomial f(x, y) ∈ Q [x, y] is a
monic and irreducible in C[x, y]. We denote by Cf the set of corresponding
affine points

Cf = {[x, y] ∈ R2 | f(x, y) = 0}.
Definition 1. Let Cf be a curve, t be a variable and [x̃, ỹ] ∈ (C[t]\Q)2.
[x̃, ỹ] is called a parametrization of Cf if f(x̃, ỹ) = 0.

Parametrization [x̃1, ỹ1] and [x̃2, ỹ2] are equivalent if there exists z ∈
R[[t]] linear in t such that x̃1(z) = x̃2 and ỹ1(z) = ỹ2.

The equivalence classes of irreducible parametrizations of Cf are called
branches.

Definition 2. The field of Puiseux series is

Q〈〈t〉〉 =
∞⋃

k=1

Q((t1/k)),

where Q((t1/k)) denotes formal Laurent series in t1/k.

In [6, IV.3] it is shown that Q〈〈x〉〉 is algebraically closed. It means
that the roots of f as a polynomial in y are Puiseux series in x. We will
call these roots Puiseux series of f .

Definition 3. To each Puiseux series
∑

i∈Z
ait

i/n corresponds the parame-

trization [x̃, ỹ] defined as follows:

x̃(t) = tn ỹ(t) =
∑

i∈Z
ait

i. (1)

For applications, the disadvantage of Puiseux series is that more para-
metrizations corresponding to Puiseux series can be equivalent, i.e. that
more Puiseux series can describe the same branch of the curve. Du-
val in [5] introduced the system of rational Puiseux series, where each
parametrization corresponds to precisely one branch.

Definition 4. Let y1, y2, . . . , ys be Puiseux series of f and {[x̃j , ỹj ]}sj=1

be corresponding parametrization. Let r denote the maximal number of
non-equivalent parametrization (branches) between {[x̃j , ỹj ]}sj=1. System
of rational Puiseux series of f over Q is the set

{[x̃′j , ỹ′j ]}rj=1
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of pairwise non-equivalent irreducible parametrization of Cf , which is in-
variant under the action of the Galois group G(C/Q) and for each j,
x̃′j = λjt

nj , where nj > 0 and λj 6= 0.

In the following text we will use rational Puiseux series to refer to a
parametrization from the system of rational parametrizations.

The key property of rational Puiseux series, proved in [5], is summa-
rized here:

Theorem 1. Let f(x, y) ∈ R[x, y] and {[x̃k, ỹk]}k be a rational Puiseux
series of f over R. Then the branch [x̃k, ỹk] is real if and only if the
coefficient of x̃k and every coefficient of ỹk are real numbers.

Algorithm for finding a system of rational Puiseux series

The algorithm describes how to find the local parametrization of all
branches above the origin. If we are interested in the branches above
an another point, we can translate the coordinate system. The structure
above the point [a, b] is obtained by examination f̃ = f(x + a, y + b) at
the origin.

The algorithm is recursive and very similar to the algorithm to find
the standard Puiseux series (see [6, IV.3]). It is usually described using
the recursion, but we find more transparent use the terminology of trees.
We can say that the algorithm is based on the tree traversal.

Let describe how to compute the tree of the given polynomial f . The
tree is generally infinite and has nodes of three types

• the root of the tree – a given polynomial,

• nodes of type N (shortly N -nodes) – ”Newton polygon edge” and

• nodes of type C (shortly C-nodes) – ”coefficients of Puiseux series.”

N -nodes and C-nodes periodically alternate.

The number of tree branches is same as the number of curve branches.
The Puiseux series of a given curve branch is fully determined by the
information attached to the nodes on the tree branch.

At the root and in C-nodes we compute Newton polygon of f . It
consists of several edges (children of type N). Every edge is fully described
by its equation pi + qj = l and certain characteristic equation h(z). To
the node we attach the quadruple (q, p, l, h).

In N -nodes we search for coefficients of Puiseux series (γ and δ). They
depends on p, q and root % of h(z), so for every % we have one child of
type C. More precisely γ = %−v and δ = %u, where uq + vp = 1. We
also compute new polynomial g. To the node we attach the quadruple
(%, γ, δ, g).
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Figure 1: Example of the tree corresponding to some polynomial f .

Usually we are interested in finite number of terms of rational Puiseux
series, i.e. in finite sub-tree. The natural choice is singular sub-tree de-
fined in the following definition. The reason why it is so important is in
Proposition 1.

Definition 5 (with proposition). Let the tree branch be the sequence of
nodes B = (f,N1, C1, N2, C2, . . . ). There exists j0 such that for every
k > k0 it holds

γk = qk = 1 and δk ∈ Q(γ1, δ1, γ2, δ2, . . . , γk0 , δk0).

The part of the tree branch (f,N1, C1, N2, C2, . . . , Nk0
, Ck0

) is called sin-
gular. The rest of the branch (Nk0+1, Ck0+1, Nk0+2, Ck0+2, . . . ) is called
regular part of the branch. The sub-tree consisting of singular part of
each branch is called singular sub-tree of T .

Proof. The existence can be proven using observation in [6, page 102] and
direct computations.

Proposition 1. Let B1, B2 . . . Br be the branches of the tree of f . The
local topology at the origin is influenced only by singular parts of Bk, where
k = 1, 2, . . . , r.

Proof. See [5].

Directly from the recursive equations, we can deduce the parametriza-
tions of Puiseux series:

Theorem 2. Let B = (f,N1, C1, N2, C2, . . . , Nw, Cw) be a part of a
branch of the tree of f . Let the length of singular part of B be k0. The
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Puiseux series of the curve branch is

P (B) = [x, y] =


λtn,

k0∑

j=1

ξjt
cj +

w∑

j=k0+1

χjt
dj + · · ·


 (2)

where

λ =

k0∏

k=1

γ
∏k−1

i=1 qi
k , n =

k0∏

k=1

qk,

ξk = δk

k∏

l=1

(
k0∏

i=l+1

γ
∏i−1

k=l+1 qk
i

)pl

, ck =
k∑

i=1

(
pi

k0∏

k=i+1

qk

)
,

χk = δk

k0∏

l=1

(
k0∏

i=l+1

γ
∏i−1

k=l+1 qk
i

)pl

, dk = ck0 +

k∑

i=k0+1

pi. (3)

3 Local geometry over given point
In this part we describe the local topology over a given point. In the
first part we choose two quadrants, where the given branch can lie. In
the second part we determine in which of possible quadrants the branch
really lies. And in the last section we determine the mutual position of
the branches. Any such information easily follows from the first terms
of Puiseux series of the curve branch. Here, we describe how to extract
these characteristics from the singular part of the tree branch.

3.1 Branch position - possible quadrants

In this subsection we describe in which quadrants a given branch can lie.
We can obtain this information very fast from the first two tree nodes. The
disadvantage is that the found quadrants are only possible ones, i.e. the
branch can lie in only one or in both of them.

Assume that the quadrants are numbered as usual (the quadrant num-
ber 1 is x > 0 & y > 0 and then counterclockwise.

Definition 6. The point [x0, y0] is called regular point of f if at least
one derivative fx(x0, y0) or fy(x0, y0) is nonzero. Otherwise it is called
singular.

The topology in regular point is always clear. We are interested in
local topology in singular points, where should be more branches.

Proposition 2. Let B be a real branch through a singular point deter-
mined by the tree branch. The first N -node (namely p, q) and first C-node
(namely the sign of %) restricts the local position of B as stated in Table 1.
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q p sign(%) possible quadrants

odd odd + 1 & 3
odd odd - 2 & 4
even odd + 1 & 4
even odd - 2 & 3
odd even + 1 & 2
odd even - 3 & 4

Table 1: Local position of a given curve branch using only first two inner
nodes of the tree branch.

Proof. Let (f,N1, C1, N2, C2, . . . ) be the tree branch corresponding to B.
The Puiseux series using only the first N and C-node is

[γ1t
q1 , δ1t

p1 ].

The local parametrization of B using the whole singular part of the tree
branch has the form

[γ1x
q1
1 , δ1x

p1

1 + xp1

1 y1],

with x1 = λtn and y1 =

k0∑

j=2

ξjt
cj where λ =

k0∏

k=2

γ
∏k−1

i=1 qi
k , n =

k0∏

k=2

qk,

ξk = δk

k∏

l=2

(
k0∏

i=l+1

γ
∏i−1

k=l+1 qk
i

)pl

and ck =
k∑

i=2

(
pi

k0∏

k=i+1

qk

)
. Note that

the regular part of the tree branch has no effect on topology (see Prop. 1).
The position in quadrants is given by the sign of x-coordinate (γ1x

q1
1 ) and

the sign of y-coordinate, which is near zero influenced only by the first
term δ1x

p1

1 .

From the previous paragraphs it is clear that the Puiseux series corre-
sponding to first two nodes really approximate the position of the branch.
When the signs of x1 for t = ±ε (suppose ε positive infinitesimal) are
different the branch lies in both quadrants, when the signs are equal, the
branch B lies only in one of given quadrants.

Denote B = [Bx, By] = [γtq, δtp]. Recall that γ = %−v and δ = %u.
We can distinguish 3 cases according to parities of q and p. In every
case we treat only the case % < 0, the case % > 0 is similar. Denote
s = sign(%) = −1.

Case p and q odd

We need to find the sign of γ and δ.
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sign(γ) = sign(%−v) = sign(%−vp)

sign(δ) = sign(%u) = sign(%uq)

Using the fact that uq + vp = 1 we have

sign(γ) sign(δ) = sign(%−vp) sign(%uq) = sign(%−vp) sign(%1−vp) = −1

The last equation is because the difference between −vp and 1− vp is
1 and therefore one term is odd and one even.

So we have to distinguish two cases:
If sign(%−v) = −1 and sign(%u) = 1 then for t = ε we have Bx < 0, By > 0
and B lies in second quadrant and for t = −ε we have Bx > 0, By < 0
and B lies in quadrant 4.

If sign(%−v) = 1 and sign(%u) = −1 then for t = ε we have Bx > 0, By < 0
and B lies in quadrant 4 and for t = −ε we have Bx < 0, By > 0 and B
lies in quadrant 2.

Case q even and p odd
As in the previous case sign(γ) = sign(%−v) = sign(%−vp) and because

q is even, we have sign(%uq) = 1 therefore

sign(γ) = sign(%−vp) sign(%uq) = sign(%−vp) sign(%1−vp) = −1

So, we have two possibilities:
If u is even, then sign(%u) = 1 and for t = ε: Bx < 0, By > 0 and B lies
in second quadrant and for t = −ε we have Bx < 0, By < 0 and B lies in
quadrant 3.

If u is odd, then sign(%u) = 1 and for t = ε: Bx < 0, By < 0 and B lies
in third quadrant and for t = −ε we have Bx < 0, By > 0 and B lies in
quadrant 2.

Case q odd and p even is analogous to the previous one.

Case q and p even can not arise, because it will be in contradiction
with the irreducibility of Puiseux series.

Example 1. To demonstrate the proposition we use the curve defined by
equation f = 2y5−xy3 +3x2y3 +2x2y2−x5y2−x3y+2x5. We know that
Cf has three real branches through the origin, see Fig. 2. First branch is
solid, second is dashed and third is dotted.

First branch has first two nodes N1 = (1, 2, 5,−z+2), C1 = (2, 1, 2, f1),
more explicitly q = 1 is odd, p = 2 is even, % = 2 is positive and therefore
the branch can lie in quadrants 1 and 2.
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Similarly second branch has nodes (1, 1, 4,−(z − 1)2), (1, 1, 1, f1),
i.e. q = 1 is odd, p = 1 is odd, % = 1 is positive and the branch has
position 1 & 3.

And third branch has nodes N1 = (2, 1, 5, 2z − 2), C1 = (1/2, 2, 1, f1),
i.e. q = 2 is even, p = 1 is odd, % = 1/2 is positive and the branch has
position 1 & 4.

3.2 Branch position - exact quadrants

The branch can lie in both possible quadrants but does not have to. In
this section we describe how to decide in which of possible quadrants the
branch really lies. Again, this information is contained in the first terms
of Puiseux series. We extract the information from the singular part of the
tree branch, so we do not need to compute the Puiseux series explicitly.

The following observation is corollary of proof of Proposition 2.

Corollary 1. Let B be a real curve branch through the singular point
determined by the tree branch. Let the singular part of the branch has
height 2. Then the branch B lies in both quadrants given in Prop. 2.

Example 1 (continuous). The singular part of first and third tree branch
has height 2. Due to Corollary 2 the first branch pass through both
quadrants 1 and 2 and the third branch pass through quadrants 1 and 4.

If the singular part of the tree branch is higher than two, it is possible
that the curve branch lies only in one of quadrants given in Prop. 2.

Proposition 3. Let B be a real curve branch going through a singular
point and the corresponding singular part of the tree branch have nodes
(f,N1, C1, N2, C2, . . . , Nk0

, Ck0
). Let i& j are possible quadrants of po-

sition of B given by Prop. 2.
If q1 is odd and q2q3 · · · qk0

• is odd then B lies in both quadrants i and j.

• is even then B lies in only one quadrant i or j. Which one can be
recognized by determining the sign of Bx = λtn (see (2)).

If q1 is even and p1q2q3 · · · qk0
,

• is odd then B lies in both quadrants i and j.

• is even then B lies in only one quadrant i or j. The quadrant is
given by the sign of first term of By, i.e. ξ1t

c1 .

Proof. In the first case (q1 odd) the possible quadrants are given by γ1x
q1
1 .

Because x1 = λtn, the signs of x1 for t = ±ε are different when n =

k0∏

i=2

qi

is odd. If n is even, the sign of x1 is the same for t = ±ε. The sign
of Bx is dependent also on λ, i.e. the parities of qi and the signs of γi
(i = 2, 3, . . . , k0). The sign of Bx determines the quadrant, where B lies.
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In the second case (q1 even) the sign of Bx is same for possible quad-
rants and the question is whether By has same sign for t = ±ε. The
y-coordinate is near zero influenced only by the first term ξ1t

c1 . If c1 =
p1q2q3 · · · qk0 is odd, the signs of By are different for t = ±ε and B lies in
both quadrants. If c1 is even, the signs of By are same and B lies only in
one quadrant which is fully determined by the signs of δ1, γ2, γ3, . . . , γk0

and the parities of q2, q3, . . . , qk0
.

Example 2 (continuation). The singular part of the second branch B2 is
(f, N1 = (1, 1, 4,−(z−1)2), C1 = (1, 1, 1, f1), N2 = (2, 1, 2,−z+7), C2 =
(7, 1/7, 1, f2)) q1 = 1 is odd and q2 = 2 is even therefore B2 lies only in
one quadrant. λ > 0 because γ1 = 1 > 0 and γ2 = 1/7 > 0. n is odd,
because q2 = 2 is odd. We conclude that Bx > 0 for t = ±ε and B2 lies
in second quadrant.

3.3 Mutual position of branches

Every curve branch has two natural half-branches, one for t > 0 and the
second for t < 0. Using singular parts of tree branches it is possible to
resolve the order of half-branches of the curve through a given singular
point. We are interested in the order of half-branches on the right side
(quadrants 1, 4) and left side (quadrants 2, 3) of the point separately.
In this section (without loss of generality) we assume that all the half-
branches are in quadrants 1 and 4. The case of quadrants 2, 3 is analogous.

To compare the half-branches we need to number them. One natural
numbering follows from previous section - let the branch i (numbered in
the tree from the left) consists of half-branches π2i−1 and π2i. It will be
useful to define for every branch πj associated functions qj which gives
the number of quadrant of branch πj .

π3
π4

π2
π1

π5

π6
Figure 2: Numbering of branches
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Definition 7. Assume that branches qi = qi′ . Due to the implicit func-
tion theorem, we can consider the branches as the functions of x coordi-
nate, i.e. y = πi(x) resp. y = πi′(x). We say that πi < πi′ if there exists
a neighborhood of the origin, where for every x is πi(x) < πi′(x).

Suppose that qi = 4 and qi′ = 1. It is clear that πi < πi′ .
Otherwise both compared curve branches are in the same quadrant.

Assume that B = [Bx, By] = [λtn,
∑k0

k=1 ξkt
ck ] and B′ = [B′x, B

′
y] =

[λ′t′n
′
,
∑k′0

k=1 ξ
′
kt
′c′i ] are the parametrizations of the branches using theirs

singular parts of tree branches. We consider same (infinitesimal) values
of Bx and B′x and we ask whether By is greater than B′y or vise versa.

Without loss of generality assume that c1 ≤ c′1. To simplify the no-

tation denote w = (λ/λ′)1/n
′
. From Bx = B′x, we can deduce that

t′ = (λ/λ′)1/n
′
tn/n

′
= wtn/n

′
. We denote c̃1 := (n/n′)c′1.

The reciprocal position of branches follows from the following scheme
• c1 = c̃1

– ξ1 = wc′1ξ′1. Repeat this decision procedure with c2, c
′
2 (resp.

ci+1, c
′
i+1). As the branches are different, they have different

singular parts of tree branches and the process terminates.

– ξ1 < wc′1ξ′1 then B < B′.

– ξ1 > wc′1ξ′1 then B > B′.

• c1 < c̃1
– ξ1 > 0 then B > B′

– ξ1 < 0 then B < B′

• c1 > c̃1
– ξ′1w

c′1 > 0 then B < B′

– ξ′1w
c′1 < 0 then B > B′

If the half-branch corresponds to t < 0 we substitute t̃ = −t and
compare the modified local parametrization.

Proof. B < B′ if and only if lim
t→0+

sign(By −B′y) = 1. We have

lim
t→0+

sign(By −B′y) = lim
t→0+

sign




k0∑

k=1

ξkt
ck −

k′0∑

k=1

ξ′kt
c′k


 =

= lim
y→∞

sign




k0∑

k=1

ξk
1

yck
−

k′0∑

k=1

ξ′k
1

yck


 = lim

y→∞
sign




m′∑

i=m

1

yi
(ξ(i) − ξ′(i))


 ,
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wherem = mini=1,...,k0

i′=1,...,k′0
(ci, c

′
i′), m

′ = maxi=1,...,k0

i′=1,...,k′0
(ci, c

′
i′) and ξ(i), ξ

′
(i)

are the coefficients of ti in By resp. B′y.
Let o be the smallest number for which ξ(o) 6= ξ′(o). Then

lim
t→0+

sign(By −B′y) = lim
y→∞

sign

(
1

yo
(ξ(o) − ξ′(o))

)
,

which implies the proposition.

Example 1 (continuation). We can number the half-branches of first branch
π1, π2 with q1 = 1, q2 = 2. Denote the half-branches of second branch
π2, π3 with q2 = 1, q3 = 1. Third branch half-branches are π5, π6 with
q5 = 1, q6 = 4. Everything is marked in Figure 2.

On the left side of the origin is only one branch π2. On the right side,
we have five half-branches. In the quadrant 4 is only one branch π6. The
rest of branches is in the first quadrant. Their position is following:
• π5 > π3 because n = n′ = 2 and c1 = 1 < 2 = c′1 and ξ1 = 1 > 0.

• π3 > π4 because n = n′ = 2, c1 = c′1 = 2, w = 1 and ξ1 = ξ′1, but
c2 = c′2 = 3 and ξ2 = 1/7 > −1/7 = ξ′2.

• π4 > π1 because n = 2 6= 1 = n′, t′ = t2/7 and c1 = 2 < 4 = c̃1 and
ξ1 = 1/7 > 0.

4 Conclusion
We have presented an improvement on the existing algorithm for finding
the rational Puiseux series and the corresponding curve branches. We
used the formalism of trees instead of the terminology of recursion. The
output we use to find the position of branches in quadrants and the mutual
position of branches without the necessity of computing whole Puiseux
series.

These information are very important to deduce the correct topology
of the given algebraic curve. We plan to exploit it to improve the global
topology results in [2].
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