Representations of algebraic lattices

Pavel Růžička
Charles University
Prague

Second Czech-Catalan conference in mathematics
Barcelona, Spain, September 21–23, 2006
Grätzer-Schmidt’s theorem

Definition

A lattice L is algebraic provided that L complete and every element is a join of compact elements.
Definition

A lattice \(L \) is **algebraic** provided that \(L \) complete and every element is a join of compact elements.

Theorem (G. Grätzer, E.T. Schmidt 1963)

Every algebraic lattice \(L \) is represented as the congruence lattice \(\text{Con} A \) of some unary algebra \(A \).
Lampe’s theorem

Definition

An algebraic lattice L is a **pinched lattice** provided that there is a set I of compact elements in L such that $\bigvee I = 1$ and each element of L is comparable to every element of I.
Lampe’s theorem

Definition
An algebraic lattice L is a **pinched lattice** provided that there is a set I of compact elements in L such that $\bigvee I = 1$ and each element of L is comparable to every element of I.

Theorem (W.A. Lampe 1982)

Each pinched lattice can be represented as the congruence lattice of a grupoid.
Lampe’s theorem

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An algebraic lattice L is a pinched lattice provided that there is a set I of compact elements in L such that $\bigvee I = 1$ and each element of L is comparable to every element of I.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (W.A. Lampe 1982)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each pinched lattice can be represented as the congruence lattice of a grupoid.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every algebraic lattice with compact maximal element is isomorphic to a congruence lattice $\text{Con } M$ of a monoid M.</td>
</tr>
</tbody>
</table>
Theorem (R. Freese, W.A. Lampe, W. Taylor 1979)

Let V be an infinitely-dimensional vector space over an uncountable field F. If $\text{Con} V$ is isomorphic to the congruence lattice, $\text{Con} A$, of an algebra A, then A has at least $|F|$ operations.
Theorem (R. Freese, W.A. Lampe, W. Taylor 1979)

Let V be an infinitely-dimensional vector space over an uncountable field F. If $\text{Con} V$ is isomorphic to the congruence lattice, $\text{Con} A$, of an algebra A, then A has at least $|F|$ operations.

Proof.
Theorem (R. Freese, W.A. Lampe, W. Taylor 1979)

Let V be an infinitely-dimensional vector space over an uncountable field F. If $\text{Con} V$ is isomorphic to the congruence lattice, $\text{Con} A$, of an algebra A, then A has at least $|F|$ operations.

Proof.

Let A be an algebra with $\not\exists$ non-nulary operations. If for every compact congruence Ψ of A there exist congruences Θ, Φ such that $\Psi \geq \Phi \lor \Theta$ and $\Psi \land \Phi = 0 = \Psi \land \Theta$, then a block of every compact congruence of A has at most $\aleph + \aleph_0$ elements.
Theorem (R. Freese, W.A. Lampe, W. Taylor 1979)

Let V be an infinitely-dimensional vector space over an uncountable field F. If $\text{Con} V$ is isomorphic to the congruence lattice, $\text{Con} A$, of an algebra A, then A has at least $|F|$ operations.

Proof.

1. Let A be an algebra with κ non-nulary operations. If for every compact congruence Ψ of A there exist congruences Θ, Φ such that $\Psi \geq \Phi \lor \Theta$ and $\Psi \land \Phi = 0 = \Psi \land \Theta$, then a block of every compact congruence of A has at most $\kappa + \aleph_0$ elements.

2. Let A be an algebra, Ψ a compact congruence of A and suppose that there is a set X of compact congruences of A such that for all distinct $\Phi, \Theta \in X$, $\Phi \land \Theta = 0$ and $\Phi \lor \Theta \geq \Psi$. Then every nontrivial block of Ψ has at least $|X|$ elements.
A join-semilattice \(S \) is **distributive** if for all \(a, b, c \in S \) with \(a \vee b \geq c \) there are \(a' \leq a, b' \leq b \) with \(a' \vee b' = c \).
Distributive algebraic lattices

Definition
A join-semilattice S is **distributive** if for all $a, b, c \in S$ with $a \lor b \geq c$ there are $a' \leq a$, $b' \leq b$ with $a' \lor b' = c$.

Theorem
An algebraic lattice L is distributive iff the join-semilattice L_C of compact elements of L is a distributive semilattice.
Definition
A join-semilattice S is **distributive** if for all $a, b, c \in S$ with $a \lor b \geq c$ there are $a' \leq a$, $b' \leq b$ with $a' \lor b' = c$.

Theorem
An algebraic lattice L is distributive iff the join-semilattice L_C of compact elements of L is a distributive semilattice.

Example
The congruence (ideal) lattices of various algebraic structures are distributive:
Definition

A join-semilattice S is distributive if for all $a, b, c \in S$ with $a \lor b \geq c$ there are $a' \leq a$, $b' \leq b$ with $a' \lor b' = c$.

Theorem

An algebraic lattice L is distributive iff the join-semilattice L_C of compact elements of L is a distributive semilattice.

Example

The congruence (ideal) lattices of various algebraic structures are distributive:

- von Neumann regular rings,
Distributive algebraic lattices

Definition
A join-semilattice S is **distributive** if for all $a, b, c \in S$ with $a \vee b \geq c$ there are $a' \leq a$, $b' \leq b$ with $a' \vee b' = c$.

Theorem
An algebraic lattice L is distributive iff the join-semilattice L_C of compact elements of L is a distributive semilattice.

Example
The congruence (ideal) lattices of various algebraic structures are distributive:
1. von Neumann regular rings,
2. dimension groups,
Distributive algebraic lattices

Definition

A join-semilattice S is **distributive** if for all $a, b, c \in S$ with $a \vee b \geq c$ there are $a' \leq a$, $b' \leq b$ with $a' \vee b' = c$.

Theorem

An algebraic lattice L is distributive iff the join-semilattice L_C of compact elements of L is a distributive semilattice.

Example

The congruence (ideal) lattices of various algebraic structures are distributive:

1. von Neumann regular rings,
2. dimension groups,
3. lattices.
Theorem (G. Bergman 1986)

A distributive algebraic lattice with at most \aleph_0 compact elements is isomorphic to the ideal lattice of a locally matricial algebra (a direct limit of F-algebras of type $\mathbb{M}_{n_1}(F) \times \cdots \times \mathbb{M}_{n_k}(F)$, where F is a field).
Theorem (G. Bergman 1986)

A distributive algebraic lattice with at most \(\aleph_0\) compact elements is isomorphic to the ideal lattice of a locally matricial algebra (a direct limit of \(F\)-algebras of type \(\mathbb{M}_{n_1}(F) \times \cdots \times \mathbb{M}_{n_k}(F)\), where \(F\) is a field).

Theorem (R 2004)

A distributive algebraic lattice with compact elements closed under finite meets is isomorphic to the ideal lattice of a locally matricial algebra.
Theorem (G. Bergman 1986)

A distributive algebraic lattice with at most \aleph_0 compact elements is isomorphic to the ideal lattice of a locally matricial algebra (a direct limit of F-algebras of type $\mathbb{M}_{n_1}(F) \times \cdots \times \mathbb{M}_{n_k}(F)$, where F is a field).

Theorem (R 2004)

A distributive algebraic lattice with compact elements closed under finite meets is isomorphic to the ideal lattice of a locally matricial algebra.

Theorem (F. Wehrung 2005)

A distributive algebraic lattice with at most \aleph_1 compact elements is isomorphic to the ideal lattice of a von Neumann regular ring.
A dimension group is a partially ordered abelian group which is unperforated, directed, and satisfies the interpolation property.
Definition

A dimension group is a partially ordered abelian group which is unperforated, directed, and satisfies the interpolation property.

Theorem (K.R. Goodearl, D.E. Handelman 1986)

Every dimension group of size at most \(\aleph_1 \) is represented as \(K_0(R) \) of some locally matricial algebra.
Definition

A dimension group is a partially ordered abelian group which is unperforated, directed, and satisfies the interpolation property.

Theorem (K.R. Goodearl, D.E. Handelman 1986)

Every dimension group of size at most \aleph_1 is represented as $K_0(R)$ of some locally matricial algebra.

Theorem (F. Wehrung 1998)

There is a vector space with interpolation and order unit, of size \aleph_2, which is not isomorphic to $K_0(R)$ of any von Neumann regular ring.
Theorem (R 2004)

There is an algebraic distributive lattice with \aleph_2 compact elements not isomorphic to the lattice of convex subgroups (\(=\) ideals) of any dimension group.
Theorem (R 2004)

There is an algebraic distributive lattice with \aleph_2 compact elements not isomorphic to the lattice of convex subgroups (= ideals) of any dimension group.

Theorem (F. Wehrung 2005)

There is a distributive join-semilattice with zero, S, of size \aleph_1, non isomorphic to the maximal semilattice quotient of any strongly separative Riesz-monoid. In particular, the ideal lattice, L, of S is not isomorphic to the lattice of convex subgroups of any dimension group.
Ideal lattices of dimension groups

Theorem (R 2004)

There is an algebraic distributive lattice with ℵ₂ compact elements not isomorphic to the lattice of convex subgroups (= ideals) of any dimension group.

Theorem (F. Wehrung 2005)

There is a distributive join-semilattice with zero, S, of size ℵ₁, non isomorphic to the maximal semilattice quotient of any strongly separative Riesz-monoid. In particular, the ideal lattice, L, of S is not isomorphic to the lattice of convex subgroups of any dimension group.

Corollary

The lattice L is not isomorphic to the ideal lattice of any unit-regular ring, in particular, the ideal lattice of any locally matricial algebra.
Theorem (F. Wehrung 1998)

There is a partially ordered vector-space with interpolation, E, not isomorphic to $K_0(R)$ of any von-Neumann regular ring. The size of E is \aleph_2.

Theorem (F. Wehrung 1998)

There is a partially ordered vector-space with interpolation, E, not isomorphic to $K_0(R)$ of any von-Neumann regular ring. The size of E is \aleph_2.

Theorem (F. Wehrung 1999)

The maximal semilattice quotient S of the positive cone of E (from the previous theorem) is not isomorphic to the join-semilattice finitely generated ideals of any von-Neumann regular ring.
Theorem (F. Wehrung 1998)

There is a partially ordered vector-space with interpolation, \(E \), not isomorphic to \(K_0(R) \) of any von-Neumann regular ring. The size of \(E \) is \(\aleph_2 \).

Theorem (F. Wehrung 1999)

The maximal semilattice quotient \(S \) of the positive cone of \(E \) (from the previous theorem) is not isomorphic to the join-semilattice finitely generated ideals of any von-Neumann regular ring.

Theorem (R, F. Wehrung, J. Tůma)

There is an algebraic distributive lattice \(D \) with \(\aleph_2 \) compact elements which is not isomorphic to the congruence lattice of any algebra with almost permutable congruences. In particular, \(D \) is isomorphic to neither the submodule lattice of a module nor the lattice of normal subgroups of a group.
Theorem (N. Funayama, T. Nakayama 1942)

The congruence lattice of a lattice is distributive.
Theorem (N. Funayama, T. Nakayama 1942)

The congruence lattice of a lattice is distributive.

Problem (R.P. Dilworth 194?)

Is every distributive algebraic lattice isomorphic to a congruence lattice of a lattice?
<table>
<thead>
<tr>
<th>Theorem (N. Funayama & T. Nakayama 1942)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The congruence lattice of a lattice is distributive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem (R.P. Dilworth 194?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is every distributive algebraic lattice isomorphic to a congruence lattice of a lattice?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (R.P. Dilworth 194?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every finite distributive lattice is isomorphic to the congruence lattice of a finite lattice.</td>
</tr>
</tbody>
</table>
Theorem (N. Funayama, T. Nakayama 1942)

The congruence lattice of a lattice is distributive.

Problem (R.P. Dilworth 1942)

Is every distributive algebraic lattice isomorphic to a congruence lattice of a lattice?

Theorem (R.P. Dilworth 1942)

Every finite distributive lattice is isomorphic to the congruence lattice of a finite lattice.

Theorem (A.P. Huhn 1989)

Every algebraic distributive lattice with at most \aleph_1 compact elements is isomorphic to the congruence lattice of a lattice.
Theorem (M. Ploščica, J. Tůma, F. Wehrung 1998)

The congruence lattice of a free lattice with \aleph_2 free generators in any non-distributive lattice variety is not isomorphic to the congruence lattice of a lattice, with permutable congruences.
Solution to the congruence lattice problem

Theorem (M. Ploščica, J. Tůma, F. Wehrung 1998)

The congruence lattice of a free lattice with \aleph_2 free generators in any non-distributive lattice variety is not isomorphic to the congruence lattice of a lattice, with permutable congruences.

Theorem (F. Wehrung 2006)

There is an algebraic distributive lattice with $\aleph_{\omega+1}$ compact elements not isomorphic to the congruence lattice of a lattice.
Theorem (M. Ploščica, J. Tůma, F. Wehrung 1998)

The congruence lattice of a free lattice with \aleph_2 free generators in any non-distributive lattice variety is not isomorphic to the congruence lattice of a lattice, with permutable congruences.

Theorem (F. Wehrung 2006)

There is an algebraic distributive lattice with $\aleph_{\omega+1}$ compact elements not isomorphic to the congruence lattice of a lattice.

Theorem (R 2006)

There is an algebraic distributive lattice with \aleph_2 compact elements not isomorphic to the congruence lattice of a lattice.
Open problems

Problem (F. Wehrung)
Is every algebraic distributive lattice isomorphic to the congruence lattice of an algebra generating a congruence distributive variety?

Problem (G. Grätzer, E.T. Schmidt)
Is every algebraic distributive lattice isomorphic to the congruence lattice of an algebra with only finitely many non-nulary operations?