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Abstract. We construct a countable chain of Boolean semilattices, with

all inclusion maps preserving the join and the bounds, whose union cannot
be represented as the maximal semilattice quotient of the positive cone of
any dimension group. We also construct a similar example with a countable
chain of strongly distributive bounded semilattices. This solves a problem of

F. Wehrung.

Introduction

For a ring R, we denote by FP(R) the class of all finitely generated projective
right R modules. We denote by [A] the isomorphism class of a module A ∈ FP(R)
and by V (R) the monoid of all isomorphism classes of modules from FP(R), with
the operation of addition defined by [A] + [B] = [A⊕B]. If the ring R is von Neu-
mann regular, then the monoid V (R) satisfies the refinement property and the semi-
lattice Idc(R) of finitely generated two-sided ideals of R is isomorphic to the maxi-
mal semilattice quotient of V (R) [10, Proposition 4.6]. Modules A, B ∈ FP(R)
are stably equivalent, if there exists C ∈ FP(R) such that A ⊕ C ≃ B ⊕ C.
We denote by [A]s the stable equivalence class of A ∈ FP(R), and by Vs(R)
the quotient {[A]s | A ∈ FP(R)} of V (R) modulo the stable equivalence. We set
K0(R) = {[A]s − [B]s | A, B ∈ FP(R)} and define ([A]s − [B]s) + ([C]s − [D]s) =
[A ⊕ C]s − [B ⊕ D]s. Then K0(R) is an abelian group equipped with a preorder
determined by the positive cone Vs(R).

If the ring R is unit-regular, then the equivalence and the stable equivalence of
modules from FP(R) coincide, V (R) = Vs(R), K0(R) is a partially ordered abelian
group, and Idc(R) is isomorphic to the maximal semilattice quotient of its positive
cone V (R). The monoid V (R) satisfies the refinement property and it generates
K0(R). If R is a direct limit of von Neumann regular rings whose primitive factors
are artinian, in particular, if R is a locally matricial algebra (over a field), then
K0(R) is also unperforated [3, Theorem 15.12], that is, K0(R) is a dimension group

(see [4, 2]).
Our study of representations of distributive (∨, 0)-semilattices in maximal semi-

lattice quotients of dimension groups is motivated by the study of representations of
distributive (∨, 0)-semilattices as semilattices of two-sided ideals of locally matricial
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algebras. G.M. Bergman [1] proved that every countable distributive (∨, 0)-semi-
lattice is isomorphic to the join-semilattice of finitely generated ideals of some lo-
cally matricial algebra. By [5, Theorem 1.1], a dimension group of size at most ℵ1 is
isomorphic to K0(R) of some locally matricial algebra. It follows that a distributive
(∨, 0)-semilattices of size ℵ1 is isomorphic to the semilattice of finitely generated
ideals of a locally matricial algebra if and only if it is isomorphic to the maximal
semilattice quotient of the positive cone of some dimension group (such a group, if
it exists, can be always taken of size at most ℵ1).

It follows from a direct construction in [11] that a distributive (∨, 0)-semilattice
is isomorphic to the semilattice of two sided ideals of a von Neumann regular ring.
However the construction of F. Wehrung [12] gives an example of a distributive
(∨, 0)-semilattice of size ℵ1 not isomorphic to the maximal semilattice quotient of
the positive cone of any dimension group, and therefore not isomorphic to the semi-
lattice of finitely generated two-sided ideals of any locally matricial algebra. The
key idea of his construction consists of the formulation of a semilattice property,
denoted by URPsr [12, Definition 4.2], that is satisfied by the maximal semilat-
tice quotient of the positive cone of any dimension group, and the construction of
a distributive (∨, 0)-semilattice Sω1

of size ℵ1 that does not satisfy this property.
Further, he proved [12, Section 7] that a direct limit of a countable chain of distribu-
tive lattices and join-homomorphisms satisfies URPsr and formulated the following
problem [12, Problem 1]:

Problem 1. Let S = lim
−→n<ω

Dn with all Dn-s being distributive lattices with zero

and all transition maps being (∨, 0)-homomorphisms. Does there exists a dimension
group G such that S ≃ ∇(G+)?

We solve this problem by constructing a union of a countable chain of Boolean
semilattices, resp. strongly distributive (∨, 0, 1)-semilattices (such that all inclu-
sions are (∨, 0, 1)-homomorphisms), not isomorphic to the maximal semilattice quo-
tient of any Riesz monoid in which every nonzero element is anti-idempotent, and
therefore not isomorphic to the maximal semilattice quotient of the positive cone
of any dimension group.

Basic concepts

All monoids are written additively. A commutative monoid M is equipped with
the algebraic preordering : for all a, b ∈ M , a ≤ b if b = a + c for some c ∈ M . We
say that an element e of a commutative monoid is anti-idempotent provided that
2ne 6≤ ne (equivalently, (n + 1)e 6≤ ne), for every n ∈ N.

The class of all (∨, 0)-semilattices coincides with the class of all commutative
monoids in which every element is idempotent. On the other hand, for every
commutative monoid M , there exists a least congruence ≍ on M such that M/≍
is a (∨, 0)-semilattice (see [6]). The quotient M/≍, denoted by ∇(M), is called
the maximal semilattice quotient of M . The correspondence M → ∇(M) naturally
extends to a direct limits preserving functor from the category of all commutative
monoids to the category of all (∨, 0)-semilattices [6]. Given an element a of M , we
denote by a the corresponding element in ∇(M).

A commutative monoid M satisfies the refinement property provided that for
every a0, a1, b0, b1 ∈ M , the equality a0 + a1 = b0 + b1 implies that there exist cij ,
i, j = 0, 1, in M satisfying ai = ci0 + ci1 for every i = 0, 1, and bj = c0j + c1j for
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every j = 0, 1. We say that a commutative monoid M is a Riesz monoid provided
that for every a, b, c ∈ M with a ≤ b + c, there exist b′ ≤ b and c′ ≤ c in M with
a = b′+c′. Every commutative monoid satisfying the refinement property is a Riesz
monoid while the converse is not true in general. However, for join-semilattices i.e.,
monoids in which every element is an idempotent, these two properties coincide.
A (∨, 0)-semilattice satisfying the refinement property is called distributive (see [7,
Section II.5]).

A nonzero element x of a join-semilattice S is join-irreducible if x = y∨z implies
that x = y or x = z for every y, z ∈ S. We denote by J(S) the partially ordered set
of all join-irreducible elements of a join-semilattice S. A distributive join-semilattice
in which every element is a finite join of join-irreducible elements is called strongly

distributive.
A hereditary subset of a partially ordered set P is a subset H of P satisfying:

p ∈ P and q ≤ p implies that q ∈ H as well. We denote by H(P ) the distributive
lattice of all hereditary subsets of P . Notice that a (∨, 0)-semilattice is strongly
distributive if and only if it is isomorphic to Hc(P ), for some partially ordered
set P . A subset P of a (∨, 0)-semilattice S is dense, if 0 /∈ P and for every nonzero
a ∈ S, there is p ∈ P with p ≤ a.

We denote by G+ the positive cone of a partially ordered abelian group G, that
is, G+ = {a ∈ G | 0 ≤ a}. A partially ordered abelian group G is unperforated

if na ≥ 0 implies a ≥ 0 for all a ∈ G and every positive integer n. It is directed,
if each of its element is the difference of two elements from G+. It is easy to see
that a partially ordered abelian group is directed if and only if it is directed as
a partially ordered set. A partially ordered abelian group G is an interpolation

group if for every a0, a1, b0, and b1 ∈ G with ai ≤ bj , i, j = 0, 1, there exists c ∈ G
such that ai ≤ c ≤ bj , for every i, j = 0, 1. A partially ordered abelian group G
is an interpolation group if and only if its positive cone is a refinement monoid [4,
Proposition 2.1]. A dimension group is an unperforated, directed, interpolation
group.

An ordered vector space is a partially ordered vector space over the field of
rational numbers such that the multiplication by positive scalars is order-preserving.
A dimension vector space is an ordered vector space which is, as a partially ordered
abelian group, a dimension group.

We denote the first infinite ordinal by ω, its successor cardinal by ω1. Given
a set X, we denote by P(X) the set of all subsets of X and by [X]<ω the set of all
finite subsets of X. Given a Boolean algebra B and an element x ∈ B, we denote
by B ↾ x the Boolean algebra {y ∈ B | y ≤ x}. If x, y are elements of a partially
ordered set P such that there is no element of P smaller both than x and y, we
write x ⊥ y.

The construction

Let B be a Boolean algebra, let F be a filter of B, and let I be the dual ideal
of the filter F . Given a distributive (∨, 0)-semilattice S, we denote by S ×F B
the subsemilattice

S ×F B = ((S r {0}) × F ) ∪ ({0} × I)

of S ×B (see [8] and [12]). It could be proved similarly as [8, Lemma 3.3] that if S
is a distributive (∨, 0)-semilattice, then S ×F B is distributive. Here, we prove this
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fact alternatively, by presenting the (∨, 0)-semilattice S×F B as a union of a direct
system of its distributive (∨, 0)-subsemilattices.

Lemma 1. Let B be a Boolean algebra, let F be a filter of B, and let I be the dual

ideal of the filter F . Let S be a distributive (∨, 0)-semilattice. Then the (∨, 0)-se-
milattice S ×F B is distributive.

Proof. Let X be a basis of the ideal I. For all x ∈ X, set

Sx = {(0, u) | u ∈ B ↾ x} ∪ {(a, u ∨ (−x)) | a ∈ S r {0} and u ∈ B ↾ x}.

It is easy to see that Sx is a (∨, 0)-subsemilattice of S×F B isomorphic to S×(B↾x).
We will prove that S ×F B is a directed union of the distributive (∨, 0)-semi-

lattices Sx. Trivially we have that {0}× I ⊆
⋃

x∈X Sx. Let a be a nonzero element
of S and let u ∈ F . Then for some x ∈ X, −x ≤ u, whence (u ∧ x) ∨ (−x) = u,
and so (a, u) ∈ Sx. Therefore (S r {0}) × F ⊆

⋃

x∈X Sx, and we have proved that
S ×F B =

⋃

x∈X Sx. It is obvious from the definition that x ≤ y implies Sx ⊆ Sy,
which implies that the union is directed. This completes the proof. �

Remark 2. Let F denote the Fréchet filter on P(ω). Then

S ×F P(ω) = lim
−→
n∈ω

(

S × P(n + 1)
)

,

with the transition maps being the one-to-one (∨, 0)-embeddings defined by

fn,m(a, F ) =

{

(a, F ∪ {n + 1, . . . ,m}) : a > 0,

(a, F ) : a = 0,

where n < m are natural numbers, a ∈ S, and F ⊆ {0, . . . , n}. In particular, if
S is a Boolean join-semilattice or a strongly distributive (∨, 0)-semilattice, then
S ×F P(ω) is a directed union of a countable chain of Boolean join-semilattices or
strongly distributive (∨, 0)-semilattices, respectively. Moreover, if S has a greatest
element, then the transition maps are (∨, 0, 1)-homomorphisms.

We modify some notation from [8]. Let a, b be elements of a monoid M . Then

Q(a/b) = {n/m | n,m ∈ N and ∃k ∈ N : knb ≤ kma}

is a lower interval in Q+. Indeed, if n′/m′ ≤ n/m and n/m ∈ Q(a/b), then
knb ≤ kma for some natural number k, whence (kn)n′b ≤ kmn′a ≤ (kn)m′a. We
define (a/b) = supQ(a/b).

Lemma 3. Let a, b and c be elements of a monoid M . Then the following hold.

(i) (na/b) = n(a/b) for every positive integer n.

(ii) (a + b/c) ≥ (a/c) + (b/c).
(iii) Suppose that M is a Riesz monoid and that b ∧ c = 0. Then c ≤ a + b

implies c ≤ a. In particular, we have that (a + b/c) = (a/c) (compare to

[8, Corollary 2.5]).

Proof. (i) Observe that n′/nm ∈ Q(a/b) iff n′/m ∈ Q(na/b), for all n′, m ∈ N.
(ii) It is obvious that if k/n ∈ Q(a/c) and l/n ∈ Q(b/c), then k/n + l/n ∈

Q(a + b, c).
(iii) Let c ≤ a + b. Since M is a Riesz monoid, there are a′ ≤ a, b′ ≤ b

with c = a′ + b′. From b ∧ c = 0 it follows that b′ = 0, whence c ≤ a. For
the equality (a + b/c) = (a/c), it suffices to check that (a + b/c) ≤ (a/c). But if
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kmc ≤ kn(a + b) = kna + knb for some k, m, n ∈ N, then we have just proved that
kmc ≤ kna. �

We denote by (R+)ω, resp. (R+)(ω) the monoid of all maps from ω to R+, resp.
the monoid of all maps from ω to R+ with finite support. We denote by R the quo-
tient (R+)ω/(R+)(ω), and for all f ∈ (R+)ω, we denote by f the corresponding
element of ∇(R).

Let S be a (∨, 0)-semilattice, M a monoid, and let ι : S ×F P(ω) → ∇(M)
be an isomorphism. Fix a set E = {ei | i ∈ ω} of elements of M such that
ei = ι(0, {i}), for every i ∈ ω. For all a ∈ M and all i ∈ ω, define fa(i) = (a/ei).

Lemma 4. Let M be a Riesz monoid and ei, i ∈ ω, anti-idempotent elements of

M . Then (a/ei) < ∞, for all i ∈ ω and a ∈ M , that is, fa is a map from ω to R+,

for every a ∈ M .

Proof. Fix i ∈ ω, a ∈ M . Let (x,A) ∈ S ×F P(ω) be such that a = ι(x,A). Pick
b ∈ M satisfying b = ι(x,A r {i}). Then a ≤ b ∨ ei, hence a ≤ nb + nei, for some
positive integer n. Suppose that 2n < (a/ei). Then 2nkei ≤ ka, for some k ∈ N.
It follows that 2nkei ≤ knb + knei. Since b ∧ ei = 0, we have, by Lemma 3(iii),
that 2nkei ≤ knei, which contradicts the assumption that ei is anti-idempotent.
Therefore (a/ei) ≤ 2n. �

Lemma 5. If a = ι(x,A) and b = ι(x,B), then fa = f b, for every a, b ∈ M .

Proof. There exists a finite subset F of ω such that A ∪ F = B ∪ F . Pick c ∈ M
satisfying c = ι(0, F ). Then a ≤ b ∨ c, which means that a ≤ n(b + c) for some
n ∈ N. For every i ∈ ω r F , c ∧ ei = 0, and so, by Lemma 3, fa(i) ≤ fn(b+c)(i) =

(nb + nc/ei) = n(b/ei) = nfb(i). It follows that fa ≤ f b. Similarly we prove that
f b ≤ fa. �

Lemma 4 and Lemma 5 entitle us to define a monotone map µι,E : S → ∇(R)
as follows: Given x ∈ S, we pick A ∈ P(ω) such that (x,A) ∈ S ×F P(ω), we put
a = ι(x,A), and we define µι,E(x) = fa.

Lemma 6. Let M be a Riesz monoid, let S be a distributive (∨, 0)-semilattice, and

let ι : S ×F P(ω) → ∇(M) be an isomorphism. Let E = {ei | i ∈ ω} be a set of

anti-idempotent elements of M satisfying ei = ι(0, {i}) for all i ∈ ω. Finally, let

x ∈ S r{0}, and let {yα | α ∈ Ω} be an uncountable set of elements of S r{0} such

that x ≤ yα for every α ∈ Ω and yα∧yβ = 0 for every α 6= β in Ω (we will call such

a set a decomposition under x). Then there exists α ∈ Ω with µι,E(x) > µι,E(yα).

Proof. Let a, and bα, α ∈ Ω be elements of M satisfying a = ι(x, ω) and bα =
ι(yα, ω). Since a ≥ bα, for every α ∈ Ω, there are positive integers mα, α ∈ Ω, such
that mαa ≥ bα. Since the set Ω is uncountable, there are a positive integer m and
an uncountable subset U of Ω such that mα = m, for every α ∈ U . We can replace
a with ma, and so we can without loss of generality suppose that m = 1.

The map µι,E is monotone, and so µι,E(x) ≥ µι,E(yα), for every α ∈ U . Toward
a contradiction, suppose that µι,E(x) = µι,E(yα), for every α ∈ U . Then there are
positive integers nα and finite subsets Fα of ω such that nαfbα

(j) ≥ fa(j), for every
j ∈ ω r Fα. Since U is uncountable, there are n ∈ N and an infinite subset V of
U such that nα = n, for all α ∈ V . Pick distinct elements α0, . . . , αn from V . By
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[12, Lemma 2.3], there exist a finite subset F of ω and an element eF ∈ M with
eF = ι(0, F ) satisfying

n
∑

i=0

bαi
≤ a + eF .

According to Lemma 3(ii),
∑n

i=0(bαi
/ej) ≤ (

∑n
i=0 bαi

/ej), hence

n
∑

i=0

fbαi
(j) ≤ fa+eF

(j),

for every j ∈ ω. If j ∈ ω r F , the equality (a + eF /ej) = (a/ej) holds by
Lemma 3(iii), whence

n
∑

i=0

fbαi
(j) ≤ fa(j).

Pick a natural number j /∈ (
⋃n

i=0 Fαi
) ∪ F . Then

nfa(j) ≥ n

n
∑

i=0

fbαi
(j) =

n
∑

i=0

nfbαi
(j) ≥ (n + 1)fa(j),

hence fa(j) = 0, whence (a/ej) = 0, a contradiction as (0, {j}) ≤ (x, ω). �

Definition 1. Let κ be an infinite cardinal. We define the following properties of
a partially ordered set P :

(Aκ) Every decreasing sequence of elements of P of length at most κ has
a nonzero lower bound.

(B) Under every x ∈ P , there exists an uncountable set {yα | α ∈ Ω} of
elements of P such that yα ⊥ yβ , for every α 6= β in Ω.

Lemma 7. For every infinite cardinal κ, there exists a Boolean algebra Bκ of size

2κ such that Bκ r {0} satisfies both (Aκ) and (B).

Proof. For an ordinal number α, denote by ωα the set of all maps from α to ω, and
set

Pκ =
⋃

κ≤α<κ
+

ωα.

Order the set Pκ by reverse inclusion, that is, f ≤ g, if f is an extension of g,
for every f , g ∈ Pκ . Observe that Pκ is a tree of cardinality 2κ satisfying both
(Aκ) and (B). Denote by Lκ the sublattice of H(Pκ) generated by Pκ. Denote
by Bκ the Boolean algebra R-generated by Lκ [7, II.4. Definition 2]. Observe that
for every a 6≥ b in Lκ , there is p ∈ Pκ such that p ≤ b and p ∧ a = 0. By [7,
II.4. Lemma 3], there are a < b in Lκ such that b − a ≤ c, for every nonzero
element c ∈ Lκ . Pick p ∈ Pκ with p ≤ b and p ∧ a = 0. Then p ≤ c, and so Pκ is
a dense subset of Bκ. It follows that Bκ r {0} satisfies both (Aκ) and (B). It is
straightforward that the cardinality of Bκ is 2κ . �

Proposition 8. Let κ be an infinite cardinal. Let S be a distributive (∨, 0)-semi-

lattice such that the partially ordered set S r {0} satisfies both (Aκ) and (B). Sup-

pose that S ×F P(ω) is isomorphic, via an isomorphism ι, to ∇(M) for some Riesz

monoid M and that there are anti-idempotent elements ei, i ∈ ω with ei = ι(0, {i}).
Then ∇(R) contains a strictly decreasing sequence of length κ+.
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Proof. By transfinite induction up to κ+, we define a sequence {xα | α < κ+} of
elements of S r {0} inducing a strictly decreasing sequence {µι,E(xα) | α < κ+} of
elements of ∇(R). Let x0 be any nonzero element of S. Suppose that the sequence
{xα | α ≤ β} is defined for some β ≤ κ+. Since S r {0} satisfies property (B),
there is a decomposition {yγ | γ < Ω} under xβ . By Lemma 6, µι,E(xβ) > µι,E(yγ),
for some γ ∈ Ω, and so we can define xβ+1 = yγ . Let β < κ+ be a limit ordinal
and suppose that we have already defined the sequence {xα | α < β} such that
the sequence {µι,E(xα) | α < β} in ∇(R) is strictly decreasing. By (Aκ), there is
a lower bound xβ of {xα | α < β} in S r {0}. Since the map µι,E is monotone, we
obtain that µι,E(xα) > µι,E(xα+1) ≥ µι,E(xβ), for every α < β. �

Denote by e the supremum of the lengths of all strictly decreasing sequences in
∇(R).

Theorem 9. There is a directed union D of a countable chain of Boolean join-

semilattices (with (∨, 0, 1)-preserving inclusion maps) which is not isomorphic to

∇(M) for any Riesz monoid M in which every nonzero element is anti-idempotent.

The cardinality of D is 2e.

Proof. The (∨, 0, 1)-semilattice D = Be ×F P(ω) is a direct limit of a countable
chain of Boolean lattices and one-to-one (∨, 0, 1)-preserving transition maps (Re-
mark 2). Since, by Lemma 7, Be r {0} satisfies both (Ae) and (B), and M is
a Riesz monoid in which every nonzero element is anti-idempotent, the assertion
follows from Proposition 8. The cardinality of Be ×F P(ω) is clearly 2e. �

Remark 10. This result contrasts with the answer to the analogue of Problem 1 for
semilattices of compact congruences of lattices: Every direct limit of a countable
sequence of distributive lattices with zero and (∨, 0)-homomorphisms is isomorphic
to the semilattice Conc L of compact congruences of some relatively complemented

lattice L with zero [13, Corollary 21.3].

Theorem 11. There is a union H of a countable chain of strongly distributive

(∨, 0, 1)-semilattices (with (∨, 0, 1)-preserving inclusion maps) which is not isomor-

phic to the maximal semilattice quotient of any Riesz monoid in which every nonzero

element is anti-idempotent.

Proof. As in the proof of Theorem 9, H = Hc(Pe) ×F P(ω) is a direct limit
of a countable chain of strongly distributive (∨, 0, 1)-semilattices and one-to-one
(∨, 0, 1)-preserving transition maps (Remark 2). Now argue as in the proof of The-
orem 9. �

A commutative monoid M is conical if a ≤ 0 implies that a = 0 for all a ∈ M .
Since 2ne+x = ne implies 2(ne+x) = ne+x, the conical monoids without nonzero
idempotent elements are exactly conical monoids with all elements anti-idempotent.
The positive cone of any dimension group forms a conical monoid without nonzero
idempotent elements which satisfy the refinement property.

Corollary 12. There is a union of a countable chain of Boolean algebras, resp.

strongly distributive (∨, 0, 1)-semilattices (with (∨, 0, 1)-preserving inclusion maps)
which is not isomorphic to ∇(M) for any conical Riesz monoid M without nonzero-

idempotent elements. In particular, it is not isomorphic to ∇(G+) for any dimen-

sion group G.
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Recall [12] that a commutative monoid M is strongly separative if a + b = 2b
implies a = b for every a, b ∈ M . An element e of a commutative monoid M has
finite stable rank if there is k ∈ N such that ke + a ≤ e + b implies a ≤ b, for all
a, b ∈ M . It is straightforward that every element of a strongly separative monoid
has finite stable rank. In a conical monoid, every nonzero idempotent element has
infinite stable rank. Therefore, we can replace the assumption that the monoid
M has no nonzero idempotent elements by any of the following requirements: ev-
ery element of M has finite stable rank, M is strongly separative (compare to
[12, Corollary 5.3]). We could derive from Corollary 12 similar consequences to
the ones obtained from [12, Corollary 5.3] in [12, Section 6]. In particular, nei-
ther the (∨, 0, 1)-semilattice D nor the (∨, 0, 1)-semilattice H are isomorphic to
the join-semilattice of finitely generated ideals of any strongly separative von Neu-
mann regular ring, resp. the join-semilattice Conc L of all compact congruences of
any modular lattice L of locally finite length.

Remark 13. Observe that every element f ∈ ∇(R) is represented by a map with
rational values. It follows that the cardinality of ∇(R) is 2ℵ0 , and so we have
the estimate ℵ1 ≤ e ≤ 2ℵ0 . Of course, if 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2, then 2e = ℵ2. On
the other hand, ℵ2 < 2ℵ1 implies that ℵ2 < 2e.
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