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Abstract. We characterize abelian groups with a minimal generating set:
Let τA denote the maximal torsion subgroup of A. An infinitely generated
abelian group A of cardinality κ has a minimal generating set iff at least one
of the following conditions is satisfied:
(1) dim(A/pA) = dim(A/qA) = κ for at least two different primes p, q;
(2) dim(τA/pτA) = κ for some prime number p;
(3)

∑

{dim(A/(pA + B)) | dim(A/(pA + B)) < κ} = κ for every finitely
generated subgroup B of A.

Moreover, if the group A is uncountable, property (3) can be simplified to
(3’)

∑

{dim(A/pA) | dim(A/pA) < κ} = κ,
and if the cardinality of the group A has uncountable cofinality, then A has a
minimal generating set iff any of properties (1) and (2) is satisfied.

1. Introduction

For the notion of S-independence we refer to [3, pages 26 and 46]. In particular,
a subset X of a universal algebra A is called S-independent provided that x is not
in the subalgebra generated by X \ {x} for all x ∈ X. A subset X of A which is
both S-independent and generating is called a minimal generating set of A. One
should notice right away that minimal generating sets correspond to generating sets
minimal with respect to inclusion.

In general, unless the algebra A is finitely generated, the existence of a mini-
mal generating set is not guaranteed. The question of the existence of a minimal
generating set for various concrete algebraic structures, e.g. groups, rings, fields,
was studied in [1] and [4]. A deeper insight into this problem restricted to abelian
groups is in [6]. There the question of the existence of a minimal generating set
is decided for torsion and partially for torsion free abelian groups, and some non-
trivial examples are shown.

More should be said about [6]. The first author of this paper noticed that [6,
Theorem 3.1], [6, Lemma 5.3] (and consequently [6, Theorem 5.5]) are not correct.
In [6, Theorem 3.1] we have to restrict to torsion abelian groups while in [6, Lemma
5.3] some additional assumptions need to be added. In particular, there should not
be a single prime p such that all but finitely many torsion-free groups of rank 1 in
the direct sum decomposition are divisible by all primes q 6= p. In both cases we
wrongly applied [6, Proposition 1.5] as we assumed that if D is a divisible abelian
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group and A is an abelian group with a minimal generating set, say X, such that
gen(A) ≥ gen(D), then the direct sum A ⊕ D has a minimal generating set which
lifts X over D (following our terminology below). This holds only under some
additional assumptions (see Corollary 3.12), e.g., if the group A is torsion.

In this paper we correct both the results and we extend [6] to reach at the end
the complete description of abelian groups with a minimal generating set. Let us
outline the structure of the paper. This introduction is followed by Basic concept
where we sum up necessary definitions and terminology. In Section 3 we reprove
and generalize [6, Proposition 1.5] and [6, Lemma 2.1] which are main tools in
[6] and prove some other general statements which will be applied in the sequel.
Most of the time we restrict ourself to abelian groups, even though we believe that
some of these results permit further generalizations for modules over a ring. In
Section 4 we redo the characterization of torsion abelian groups with a minimal
generating set. The last two sections deal with torsion-free and general abelian
groups, respectively.

2. Basic concept

By card(X) we denote the cardinality of a set X. By cf(κ) we denote the
cofinality of a cardinal κ. Given a collection {κι | ι < I} of cardinals, we denote
by

∑

ι∈I κι the cardinality of its disjoint union. Given an ordinal σ and maps
f, g : σ → σ we use g ≤ f to denote that g(α) ≤ f(α) for every α < σ.

We denote by ω the first infinite ordinal, that is ω = {0, 1, 2, . . . }. Finite ordinals
will also be called natural numbers, in particular, 0 is a natural number. We will
unify each ordinal with the set of its predecessors, e.g., 2 = {0, 1}. By P we denote
the set of all prime numbers and we put p̂ = P \ {p} for all p ∈ P.

Let X be a set and let f : X → Y be a map. Given V ⊆ Y , we denote by [V ]f−1

the f -preimage of V , i.e., [V ]f−1 = {x ∈ X | f(x) ∈ V }. Similarly, given U ⊆ X,
we denote by f [U ] the f -image of U , i.e., f [U ] = {f(u) | u ∈ U}.

Let A be an abelian group. We denote by τA the maximal torsion subgroup of A
and by φA the torsion free quotient A/τA. Given a prime number p, we denote by
τpA the p-primary component of τA and we set τp̂A =

⊕

q∈p̂ τqA. Similarly, given
a domain R and an R-module A we denote by τA the maximal torsion submodule
of A and by φA the torsion free quotient A/τA.

All rings are supposed to be commutative. Given a ring R, an R-module A,
and a subset X ⊆ A, we denote by Span(X) the submodule generated by the set
X. Further, we denote by πX : A → A/Span(X) the canonical projection (sending
a 7→ a+Span(X) for all a ∈ A). We will use the notation B ≤ A to say that B is a
submodule of A. By gen(A) we denote the minimal cardinality of a generating set
of A.

Let R a ring an let I be an ideal of R. An R-module A is said to be I-divisible
provided that IA = A. In particular, given a ∈ Z, an abelian group A is said to be
a-divisible provided that aA = A.

3. General principles

Most of the results in [6] claiming the existence of a minimal generating set in a
certain class of abelian groups are based on two statements, namely [6, Proposition
1.5] and [6, Lemma 2.1]. In this section we closely examine and generalize them
(although we restrict ourselves to abelian groups). In particular we show that both
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these results are based on the same simple property of linear maps (Corollary 3.2
below). On top of that we prove some of their consequences which will be applied
in the rest of the paper.

We start with a nearly trivial observation. We leave its proof as an exercise.

Lemma 3.1. Let R be a ring, let A,B be R-modules, let C,D be submodules of
the module A, and let γ, δ ∈ homR(A,B). Let D ≤ ker δ and C ≤ ker γ. Then
(γ + δ)[C + D] = γ[D] + δ[C].

Corollary 3.2. Let R be a ring, let A, B be R-modules, and let γ, δ ∈ homR(A,B).
If ker γ + ker δ = A, then (γ + δ)[A] = γ[A] + δ[A].

Proof. By the assumption ker γ + ker δ = A, hence γ[A] = γ[ker δ] and δ[A] =
δ[ker γ]. Applying Lemma 3.1 we get that (γ + δ)[A] = (γ + δ)[ker γ + ker δ] =
γ[ker δ] + δ[ker γ] = γ[A] + δ[A]. �

Definition. Let R be a ring, let A, B be R-modules, and let α : A → B be an
R-linear map. Let X, resp. Y be a subset of A, resp. B. We say that X is
S-independent over Y via α provided that x /∈ Span(X \ {x}) + [SpanY ]α−1 for all
x ∈ X. We say shortly that X is S-independent over Y in case α is the identity
map. Similarly, we say that X is S-independent (via α) provided that Y = ∅.

Let Z be a subset of B/Span(Y ). We say X lifts Z over Y via α provided that
πY ◦α[X] = Z and the restriction πY ◦α ↾ X is one-to-one. We say shortly that X
lifts Z over Y provided that α is the identity map and we say that X lifts Z (over
α) if Y = ∅.

Let X ′ ⊆ A. We say that X and X ′ are S-equivalent via α over Y provided that
both the sets are S-independent via α over Y and (πY ◦ α)[X] = (πY ◦ α)[X ′] (i.e.,
they lift the same set via α over Y ). We say simply that X and X ′ are S-equivalent
over Y provided that the map α is the identity map.

Lemma 3.3. Let R be a ring, let A, B be R-modules and let α : A → B be an R-
linear map. Let {Xi | i ∈ I} be a collection of subsets of A. If Xj is S-independent
over α[

⋃

i6=j Xi] for all j ∈ I, then
⋃

i∈I Xi is S-independent via α.

Proof. Let j ∈ I and let x ∈ Xj . According to our assumption, we have that

x /∈ Span(Xj \ {x}) + [Span(α[
⋃

i6=j

Xi])]α
−1

= Span(Xj \ {x}) + Span(
⋃

i6=j

Xi) + ker α

⊇ Span(
⋃

i∈I

Xi \ {x}) + kerα.

This means that
⋃

i∈I Xi is S-independent via α. �

We are going to derive a couple of corollaries of this simple lemma, not in full
generality but in formulations allowing direct applications.

Corollary 3.4. Let A be an abelian group, let p0, p1 be a couple of different primes
and let Xi, for i ∈ 2, be a subset of p1−iA which lifts a basis of A/piA over piA.
Then X0 ∪ X1 is an S-independent subset of A.
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Proof. Since Xi lifts a basis of A/piA over piA and Xi ⊆ p1−iA we see that the set
Xi is S-independent over X1−i for all i ∈ 2. By Lemma 3.3 we conclude that the
set X0 ∪ X1 is S-independent. �

Corollary 3.5. Let A be an abelian group. Let {pi | i ∈ ω} be a set of primes
and {Xi | i ∈ ω} a set of subsets of A such that for all j ∈ ω, Xj ⊆ qjA, where
qj = p0 · · · pj−1 and it lifts a basis of A/(Bj + pjA) over Bj + pjA, where Bj =
Span(

⋃

i<j Xi). Then the set X =
⋃

i∈ω Xi is S-independent.

Proof. Fix j ∈ ω. Observe Xk ⊆ qkA ⊆ pjA for all k > j. It follows that
⋃

i6=j Xi

is contained in Bj + pjA and so Xj is S-independent over
⋃

i6=j Xi. Applying

Lemma 3.3, we conclude that the set X =
⋃

i∈ω Xi is S-independent. �

From now on, with a few exceptions, we restrict ourselves to abelian groups
aiming to complete the characterization of abelian groups with a minimal generating
sets. However, we believe that most of the results obtained on the way can be
generalized for wider classes of modules over commutative or even non-commutative
rings.

Lemma 3.6. Let A be an abelian group, let Y be a subset of A and let p0, p1 be
a couple of different primes such that card(Y ) ≤ dim(A/piA) for all i ∈ 2. Then
there are subsets Xi ⊆ p1−iA, i ∈ 2, such that Xi lifts a basis of A/piA over piA
for all i ∈ 2 and Y ⊆ Span(X0 ∪ X1).

Proof. We can without loss of generality assume that dim(A/p0A) ≤ dim(A/p1A).

Claim 1. There are subsets Z0 ⊆ Z1 of A such that Zi lifts a basis of A/piA over
piA for all i ∈ 2 and Z1 \ Z0 ⊆ p0A.

Proof of Claim 1. Put λi = dim(A/piA), i ∈ 2, and let {yι,i | ι < λi} lift a basis of
A/piA for all i = 0, 1. For all ι < λ1 put

zι =

{

p1yι,0 + p0yι,1 if ι < λ0,

p0yι,1 if λ0 ≤ ι < λ1.

It is straightforward to verify that the sets Zi = {zι | ι < λi}, i ∈ 2, satisfy the
desired properties. �Claim 1

Since Zi lifts a basis of A/piA, we have that A = Span(Zi) + piA for all i ∈ 2.
Since Z0 ⊆ Z1, we conclude that A = Span(Z1) + p0p1A. Thus there is a map
f : Y → p0p1A such that y ∈ Span(Z1) + f(y) for all y ∈ Y . Since card(Y ) ≤
dim(A/p0A) = card(Z0), there is a projection g : Z0 → Y . Put h = f ◦ g and
observe that h : Z0 → p0p1A is a map such that Y ⊆ Span(Z1) + h[Z0].

Let F denote a free abelian group with a basis Z0 × 2. Note that, since p0, p1

are different primes, a0p0 + a1p1 = 1 for some integers a0, a1. Let γ′ : Z0 × 2 → A
be a map defined by the correspondence (z, i) 7→ a1−ip1−iz. Let γ : F → A be a
unique extension of γ′ to a group homomorphism. Observe that γ[F ] = Span(Z0)
and ker γ ⊇ {a0p0(z, 0) − a1p1(z, 1) | z ∈ Z0}.

Let δ′ : Z0 × 2 → p0p1A be a map defined by the correspondence (z, i) 7→
(−1)ih(z)). Let δ : F → A be its unique extension to a group homomorphism.
Observe that δ[F ] = Span(h[Z0]) and ker δ ⊆ {(z, 0) + (z, 1) | z ∈ Z0}.

Claim 2. The equality F = ker γ + ker δ holds.
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Proof of Claim 2. Let z ∈ Z0. Since a0p0 + a1p1 = 1, we have that (z, 0) =
(a0p0 + a1p1)(z, 0) = (a0p0(z, 0) − a1p1(z, 1)) + a1p1((z, 0) + (z, 1)) ∈ ker γ + ker δ.
Now (z, 1) = ((z, 1)+(z, 0))−(z, 0) ∈ ker δ+(ker γ+ker δ) = ker γ+ker δ. �Claim 2

Put β = γ + δ. By Corollary 3.2 and Claim 2 we have that β[F ] = Span(Z0) +
Span(h[Z0]). Put X0 = β[Z0 × {0}] and X1 = β[Z0 × {1}] ∪ (Z1 \ Z0). Then
Span(X0∪X1) = Span(β[Z0×2])+Span(Z1\Z0) = β[Span(Z0×2)]+Span(Z1\Z0) =
β[F ] + Span(Z1 \ Z0) = (Span(Z0) + Span(h[Z0])) + Span(Z1 \ Z0) = (Span(Z0) +
Span(Z1 \ Z0)) + Span(h[Z0]) = Span(Z1) + Span(h[Z0]) ⊇ Y .

It is clear from the definition of the maps γ, δ that γ[Z0 × {i}] ⊆ p1−iA, for
all i ∈ 2, and δ[F ] ⊆ p0p1A. Thus β[Z0 × {i}] ⊆ p1−iA for all i ∈ 2. It follows
that X0 ⊆ p1A. Since by Claim 1 we have that Z1 \ Z0 ⊆ p0A, we infer that also
X1 ⊆ p0A.

Let z ∈ Z0 and i ∈ 2. Then β((z, i)) = γ((z, i)) + δ((z, i)) = a1−ip1−iz +
(−1)ih(z) = (aipi + a1−ip1−i)z − aipiz + (−1)ih(z) = z + (aipiz + (−1)ih(z)) ∈
z + piA. Thus X0 = β[Z0 × {0}] is S-equivalent to Z0 over p0A and X1 = β[Z0 ×
{1}] ∪ (Z1 \ Z0) is S-equivalent to Z1 over p1A. In particular, Xi lifts a basis of
A/piA over piA for all i ∈ 2. �

Notation. Let A be an abelian group. We will use the following notation:

Spec(A,<) = {p ∈ P | 0 < dim(A/pA) < gen(A)},

Spec(A,=) = {q ∈ P | dim(A/qA) = gen(A)}.

Proposition 3.7 ([6, Lemma 2.1]). Let A be an abelian group. If

card(Spec(A,=)) ≥ 2,

then A has a minimal generating set.

Proof. Let pi, i ∈ 2, be a couple of different primes from Spec(A,=) and let Y be
a generating set of A of a minimal cardinality. Then card(Y ) ≤ dim(A/piA) for all
i ∈ 2 and, applying Lemma 3.6, we get Xi ⊆ A such that Xi ⊆ p1−iA, Xi lifts a
basis of A/piA over piA, for all i ∈ 2, and Y ⊆ Span(X0 ∪X1). Since A = SpanY ,
we conclude that A = Span(X0 ∪ X1). It follows from Corollary 3.4 that the set
X0 ∪ X1 is S-independent. �

Proposition 3.8. Let A be a countable abelian group. If Spec(A/B,<) 6= ∅ for
every finitely generated subgroup B of A, then A has a minimal generating set.

Proof. Let Y = {yi | i ∈ ω} be a generating set of A (note that since A is countable,
we can as well put Y = A).

Claim 1. There is a sequence p0, p1, p2, . . . of primes and a sequence X0,X1,X2, . . .

of finite sets such that, putting q0 = 1, qj =
∏j−1

i=0 pi, and Bj = Span(
⋃j−1

i=0 Xi),
the following properties are satisfied for all j ∈ ω: Xj ⊆ qjA, Xj lifts a basis of
A/(pjA + Bj), and yj ∈ B2(j+1).

Proof of Claim 1. First observe that the assumptions of Proposition 3.8 imply that
Spec(A/B,<) is infinite for every finitely generated subgroup B of A. Indeed,
since the abelian group A is countable, there is a finitely generated subgroup Bp

of A with p(A/(B + Bp)) = A/(B + Bp), for every prime p ∈ Spec(A/B,<).
Thus if Spec(A/B,<) was finite, B′ = B +

∑

p∈Spec(A/B,<) Bp would have been a

finitely generated subgroup of A with Spec(A/B′, <) = ∅. (Note that Spec(A,=) =
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Spec(A/B′′,=) for every finitely generated subgroup B′′ of A.) This contradicts
our assumptions.

Let p0, p1 be two different primes from Spec(A,<). By Lemma 3.6 there are
subsets Xi, i ∈ 2, such that Xi ⊆ p1−iA, Xi lifts a basis of A/piA over piA, for
all i ∈ 2 and y0 ∈ Span(X0 ∪ X1). Since pi ∈ Spec(A,<), dim(A/piA) < ℵ0,
for all i ∈ ω, and so both the sets X0, X1 are finite. Since q0 = 1, we have
that X0 ⊆ q0A. Since q1 = p0 and X1 ⊆ p0A, we have that X1 ⊆ q1A. Since
B0 = Span(∅) = 0, X0 lifts a basis of A/(p0A + B0) over p0A + B0 = p0A. Since
X0 ⊆ p1A, B1 = Span(X0) ⊆ p1A, and so p1A + B1 = p1A. Thus X1 lifts a basis
of A/(p1A + B1) over p1A + B1. Since B2 = Span(X0 ∪ X1), y0 ∈ B2.

Let j ∈ ω and suppose that we have already picked prime numbers p0, . . . , p2j−1

and constructed finite sets X0, . . . ,X2j−1 satisfying the desired properties. Put
A′ = A/B2j and y′

j = yj + B2j ∈ A′. Observe that A = piA + B2j for every i ∈ 2j.
It follows that A = q2jA + B2j , whence A′ = q2jA

′. Since the constructed sets are
finite, the group B2j is finitely generated, hence, by our assumption, Spec(A′, <
) 6= ∅. As noted above, this set is in fact infinite. Pick a couple p2j , p2j+1 of
different primes from Spec(A′, <). By Lemma 3.6, there are sets X ′

i, i ∈ 2, such
that X ′

i ⊆ p2j+1−iA
′, X ′

i lifts a basis of A′/p2j+iA
′ over p2j+iA

′, for all i ∈ 2,
and y′

j ∈ Span(X ′
0 ∪ X ′

1). Since A = q2jA + B2j , there is X2j+i ⊆ p2j+1−iq2jA
lifting the set X ′

i over B2j , for all i ∈ 2. Clearly X2j ⊆ q2jA and, since X ′
0 lifts a

basis of A′/p2jA
′ over p2jA

′, X2j lifts a basis of A/(p2jA + B2j) over p2jA + B2j .
Since q2j+1 = p2jq2j , X2j+1 ⊆ q2j+1A and since X ′

1 lifts a basis of A′/p2j+1A
′ over

p2j+1A
′, we get that X2j+1 lifts a basis of A/(p2j+1A + B2j) over p2j+1A + B2j .

Since X2j ⊆ p2j+1A, we have that B2j+1 = Span(X2j) + B2j ⊆ p2j+1A + B2j .
We conclude that X2j+1 lifts a basis of A/(p2j+1A + B2j+1) over p2j+1A + B2j+1.
Finally, since y′

j ∈ Span(X ′
0 ∪ X ′

1), yj ∈ Span(X2j ∪ X2j+1) + B2j = B2(j+1).
�Claim 1

Put X =
⋃

j∈ω Xj and observe that the set X is S-independent by Corollary 3.5.

Since yj ∈ B2j ⊆ Span(X) for all j ∈ ω, Y ⊆ Span(X), and so X generates A. It
follows that X is a minimal generating set of A. �

Proposition 3.10 below guarantee the existence of a minimal generating set in
an uncountable abelian group under hypothesis similar to those of Proposition 3.8.
In order to demonstrate closer similarity of both the statements we reformulate
Proposition 3.8 as follows:

Corollary 3.9. Let A be a countable abelian group. If for every finitely generated
subgroup B of A

∑

p∈Spec(A,<)

dim(A/(pA + B)) = gen(A),

then A has a minimal generating set.

Now the promised proposition:

Proposition 3.10. Let A be an uncountable abelian group. Suppose that

(3.1)
∑

p∈Spec(A,<)

dim(A/pA) = gen(A).

Then A has a minimal generating set.
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Proof. Put κ = gen(A). Observe that the equality (3.1) can be satisfied only
if cf(κ) = ℵ0. In this case there is a sequence p0, p1, p2, . . . of primes from
Spec(A,<) such that, having denoted λi = dim(A/piA), we get an increasing se-
quence ℵ0 < λ0 < λ1 < λ2 < · · · of cardinals whose supremum is κ. Similarly as
in Proposition 3.8 set q0 = 1 and qj+1 = qjpj for all j ∈ ω. Let Y = {yι | ι < κ}
be a generating set of A. For each i ∈ ω put Yi = {yι | ι < λi}.

From now on the proof closely follows the proof of Proposition 3.8.

Claim 1. There is a collection {Xj | j ∈ ω} of subsets of A such that Xj ⊆ qjA, for

all j ∈ ω and, putting Bj = Span(
⋃j−1

i=0 Xi), the set Xj lifts a basis of A/(pjA+Bj)
over pjA + Bj and Yj ⊆ B2(j+1), for all j ∈ ω.

Proof of Claim 1. Repeatedly applying Lemma 3.6, we will construct inductively
the sets Xj , j ∈ ω, adding a couple of them in each step. By Lemma 3.6, there
are subsets X0 ⊆ p1A and X1 ⊆ p0A such that Xi lifts a basis of A/piA over piA
for all i ∈ 2 and Y0 ⊆ B2 = Span(X0 ∪ X1). Notice that X1 ⊆ p0A = q1A and
B1 = Span(X0) ⊆ p1A, hence p1A + B1 = p1A. Thus the sets X0,X1 satisfy the
required properties.

Let 1 ≤ j ∈ ω and suppose that we have constructed sets X0, . . . ,X2j−1 so
that the required properties are satisfied. Put Y ′ = {yι + B2j | ι < λ2j} and
A′ = A/B2j . Since A = piA + B2j for each i ∈ 2j, we have A = q2jA + B2j and
thus A′ = q2jA

′. Observe that dim(A′/pkA′) = λk, for all 2j ≤ k ∈ ω. Indeed,
dim(A′/pkA′) ≤ dim(A/pkA) ≤ dim(A′/pkA′) + gen(B2j), and, since gen(B2j) ≤
∑2j−1

i=0 card(Xi) ≤
∑2j−1

i=0 λi < λ2j , we get that λk = dim(A/pkA) = dim(A′/pkA′).
By Lemma 3.6 there are X ′

i ⊆ p2j+1−iA
′ such that X ′

i lifts a basis of A′/p2j+iA
′

over p2j+iA
′, for all i ∈ 2, and Y ′ ⊆ Span(X ′

0 ∪ X ′
1). Since A′ = q2jA

′, there
are X2j+i ⊆ p2j+1−iq2jA lifting X ′

i over B2j , for i ∈ 2. Clearly X2j ⊆ q2jA
and X2j+1 ⊆ p2jq2jA = q2j+1A. Since X ′

0 lifts a basis of A′/p2jA
′ over p2jA

′,
X2j lifts a basis of A/(p2jA + B2j) over p2jA + B2j . Since X ′

1 lifts a basis of
A′/p2j+1A

′ over p2j+1A
′, X2j+1 lifts a basis of A/(p2j+1A+B2j) over p2j+1A+B2j .

Since X2j ⊆ p2j+1A, it follows that X2j+1 lifts a basis of A/(p2j+1A + B2j+1)
over p2j+1A + B2j+1. Finally, since Y ′ ⊆ Span(X ′

0 ∪ X ′
1), we conclude that Yj ⊆

Span(X2j ∪ X2j+1) + B2j = B2(j+1). �Claim 1

Set X =
⋃

i∈ω Xi. It follows from Claim 1 that Yj ⊆ Span(X) for all j ∈ ω, hence
Y ⊆ Span(X), whence Span(X) = A. The set X is S-independent by Corollary 3.5.
It follows that X is a minimal generating set of A. �

Lemma 3.11 ([6, Proposition 1.5]). Let A be an abelian group with a minimal
generating set and let B be a group such that Ext(A,B) = 0. If gen(A) ≥ gen(B),
then A ⊕ B has a minimal generating set.

Proof. It is clear if A is finitely generated. Suppose otherwise and let X be a
minimal generating set of A. Let F be a free abelian group with a basis X and let
γ : F → A be a unique projection extending the identity map on X. Put K = ker γ.
Since a subgroup of a free abelian group is free [5, Theorem 10.18], K is free. We
will consider two cases. First suppose that gen(K) < gen(A) = card(X) and pick
any prime p. Then dim(A/pA) = dim(F/pF + K) = card(X) = gen(A), indeed,
gen(K) < card(X). It follows that A satisfies the assumptions of Proposition 3.7,
and so it has a minimal generating set. It remains to assume that gen(K) = gen(A).
Since gen(A) ≥ gen(B) and K is free, there is a projection δ′ : K → B. Since
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Ext(A,B) = 0, the projection δ′ extends to a homomorphism δ : F → B. Since
δ[K] = δ[F ], K + ker(δ) = F . Since K = ker(γ), we conclude that F = ker(γ) +
ker(δ). By Corollary 3.2 (γ + δ)[F ] = γ[F ] + δ[F ] = A ⊕ B. Since F = Span(X),
we get that Span((γ + δ)[X]) = A⊕B. Since X (as a basis of F ) is S-independent
via γ, it is S-independent via γ + δ over B (note that [B](γ + δ)−1 = K), and so it
is S-independent via γ + δ. It follows that (γ + δ)[X] is a minimal generating set of
A ⊕ B.

�

Note that in the second case the minimal generating set lifts X over B. Some
obvious properties of A would guarantee that gen(K) = gen(A).

Corollary 3.12. Let A be an abelian group with an infinite minimal generating set
X and let B be an such that gen(B) ≤ card(X) and Ext(A,B) = 0. Suppose that
either card(τA) = card(X) or A has no free direct summand of rank equal card(X).
Then A ⊕ B has a minimal generating set which lifts X over B.

4. Torsion groups

Starting with torsion abelian groups, we correct [6, Theorem 3.1], formulated
in [6] for all uncountable abelian groups. The theorem holds under the additional
assumption that the group in question is torsion but it is not true in general as fol-
lows from Corollary 5.3. Then we rephrase the characterization of countable torsion
abelian groups with a minimal generating set (see [6, Lemma 4.3]) and combining
the countable and uncountable cases we reformulate properties characterizing tor-
sion abelian groups with a minimal generating set [6, Theorem 4.4].

Lemma 4.1. Let A be an infinitely generated abelian group. If
∑

p∈P

dim(A/pA) < card(A),

then A has not a minimal generating set.

Proof. Note that since the group A is infinitely generated, card(A) = gen(A). For
every prime number p there is a subset Xp of A such that card(Xp) = dim(A/pA)
and A = Span(Xp)+pA. Put B = Span(

⋃

p∈P
Xp). Since gen(B) ≤

∑

p∈P
dimA/pA <

gen(A) and gen(A) is infinite, gen(B) < gen(A). It follows that gen(B) < gen(A/B)
and since p(A/B) = A/B for every prime number p, the abelian group A/B is di-
visible. Then A has not a minimal generating set by [6, Lemma 1.3]. �

Lemma 4.2. Let λ ≤ κ be infinite cardinals and let X be a subset of κ of cardinality
κ. Then there is a map h : X → κ such that h(ξ) ≤ ξ and card([{ξ}]h−1) = λ for
all ξ ∈ X.

Proof. Let {Xα | α < λ} be a partition of the set X into λ pairwise disjoint subsets
of cardinality κ. Let Xα = {xα,ξ | ξ < κ}, where xα,β < xα,γ whenever β < γ < κ,
for all α < λ. By induction we easily prove that ξ ≤ xα,ξ for all α < λ and ξ < κ.
Defining h(xα,ξ) = ξ for all α < λ and all ξ < κ we get the map h with the desired
properties. �

Lemma 4.3. Let λ ≤ κ be infinite cardinals, let Y be a set of cardinality κ, and
let f : Y → κ be a map such that card([{ξ}]f−1) ≤ λ for every ξ < κ. Then there
is a map g : Y → κ such that g ≤ f and card([{ξ}]g−1) = λ for all ξ < κ.
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Proof. Put X = f [Y ], let h : X → κ be a map from Lemma 4.2, and set g = h ◦ f .
The desired properties of the map g follows readily from the properties of h. �

Lemma 4.4. Let A be an uncountable abelian group. If dim(τA/pτA) = gen(A)
for some prime number p, then A has a minimal generating set.

Proof. Let κ denote the cardinality of A. Let Uτ be a subset of τA lifting a basis of
τA/pτA over pτA. Since τA is pure subgroup of A (e.g., see [2, p. 77 C)]), pτA =
τA ∩ pA. It follows that Uτ lifts a linearly independent subset of A/pA over pA.
Let Uτ ⊆ U , where U lifts a basis of A/pA over pA. Let U = {uι | ι ∈ κ} be some
ordering of the set U . Put Iτ = {ι ∈ κ | uι ∈ Uτ} and observe that card(Iτ ) = κ.
Find pairwise disjoint subsets Iq, q ∈ p̂, of κ such that card(Iq) = dim(A/qA) for
all q ∈ p̂ and card(I∗) = κ, where we set I∗ = Iτ \

⋃

q∈p̂ Iq. For each q ∈ p̂ pick a

subset Yq = {aι | ι ∈ Iq} of A such that A = Span(Yq) + qA. Put vι = paι + quι

for all ι ∈ Iq and all q ∈ p̂, and vι = uι for all ι ∈ κ \ Iq. Set V = {vι | ι ∈ κ} and
B = Span(V ). Observe that V lifts a basis of A/pA over pA and A = B + qA for
all q ∈ p̂. It follows that D = A/B is divisible.

Decompose D = ⊕α<κDα into a direct sum of at most countable divisible groups.
For each α < κ pick a countable subgroup Eα of A such that Dα = (Eα+B)/B and
a countable subset Jα of κ such that Eα∩B ⊆ Span(Vα), where Vα = {vι | ι ∈ Jα}.
Let f : κ → κ be a map defined by

f(ξ) =

{

min{α | ξ ∈ Jα} if ξ ∈ Jα for some α ∈ κ;

ξ otherwise.

Put f∗ = f ↾ I∗. Observe that [{α}]f−1 ⊆ Jα ∪ {α}, in particular, [{α}]f−1 is at
most countable for every α ∈ κ. Consequently, [{α}](f∗)−1 is at most countable,
for every α ∈ κ. By Lemma 4.3, there is a map g∗ : I∗ → κ such that g∗ ≤ f∗ and
card([{α}](g∗)−1) = ℵ0 for all α ∈ κ. Let g : κ → κ be a map such that g ↾ I∗ = g∗

and g ↾ (κ \ I∗) = f ↾ (κ \ I∗). Observe that ξ ∈ Jα implies that f(ξ) ≤ α, for all
ξ and α from κ. It follows that Jα ⊆ [α + 1]g−1 for all α ∈ κ.

Put Gα = {vι | ι ∈ [{α}]g−1}, resp. G<α = {vι | ι ∈ [α]g−1}, and set
Bα = Span(Gα), resp. B<α = Span(G<α), for all α ∈ κ. Observe that, since
card([{α}](g∗)−1) = ℵ0, we have that card(Gα ∩ τA) = ℵ0, for all α ∈ κ. Now put

Cα = B<α+1/B<α ≃ Bα/(Bα ∩ B<α),

for all α ∈ κ. Since Jα ⊆ [α + 1]g−1, we have that Vα ⊆ G<α+1, hence Eα ∩ B ⊆
B<α+1, for all α ∈ κ. It follows that

Dα = (Eα + B)/B ≃ Eα/(Eα ∩ B) = Eα/(Eα ∩ B<α+1) ≃ (Eα + B<α+1)/B<α+1,

for all α < κ. Consequently, Dα ⊕ Cα+1 ≃ (Eα + B<α+2)/B<α+1, for all α ∈
κ. The set V lifts a basis of A/pA over pA, in particular, it is S-independent.
It follows that Gα+1 lifts a minimal generating set of Cα+1 over B<α+1, for all
α ∈ κ. Denote this set by Hα+1 (note that Hα+1 = πB<α+1

[Gα+1] for all α ∈ κ).
Since card([{α}](g∗)−1) = ℵ0, we have that card(Gα+1 ∩ τA) = ℵ0, we infer that
card(Hα+1 ∩ τ(A/B<α+1)) = ℵ0, for all α ∈ κ. It follows that, for all α ∈ κ,
the direct sum Dα ⊕ Cα+1 has a minimal generating set, say Wα+1, which lifts
Hα+1 over Dα by Corollary 3.12. Since Dα is divisible, the set Wα+1 is formed by
suitable elements vι + peι + B<α+1, where ι ∈ [{α + 1}]g−1 and eι ∈ Eα for all
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ι ∈ [{α + 1}]g−1. Given α ∈ κ and ι ∈ [{α}]g−1, we define

(4.1) xι =

{

vι provided that ordinal α has no predecessor,

vι + peι otherwise,

and put X = {xι | ι ∈ κ}.

Claim 1. The set X forms a minimal generating set of A.

Proof of Claim 1. It is straightforward to see that the set X is S-independent, in-
deed, xι + pA = vι + pA for every ι ∈ κ, whence X lifts a basis of A/pA over
pA.

It remains to verify that A = Span(X). Put Xα = {xι | ι ∈ [{α}]g−1}, resp.
X<α = {xι | ι ∈ [α]g−1}, and set Aα = Span(Xα), resp. A<α = Span(X<α), for all
α ∈ κ. By transfinite induction on β ∈ κ we prove simultaneously that B<β ⊆ A<β

and Eα ⊆ A<β , whenever β = α + 2.
First, observe that B<0 = A<0 = Span(∅) = {0}. Now let 0 < β ∈ κ, and

suppose that the assertion holds for all α ∈ β. If β is a limit ordinal, then B<β =
⋃

α<β B<α ⊆
⋃

α<β A<α = A<β , by the induction hypothesis. Let β = α+1, where
the ordinal α has no predecessor. Then B<α ⊆ A<α by the induction hypothesis.
Since α has no predecessor, it follows from (4.1) that Gα = Vα, hence Aα =
Bα, whence B<α+1 ⊆ A<α+1. Finally suppose that β = α + 2 for some α ∈ κ.
Then Xα+1 lifts Wα+1 over B<α+1 by (4.1) and B<α+1 ⊆ A<α+1 by the induction
hypothesis. Since Wα+1 forms a minimal generating set of Dα⊕Cα+1, we conclude
that Eα + B<α+2 ⊆ A<α+2. �Claim 1

This verification concludes the proof of the statement. �

Proposition 4.5. Let A be a torsion abelian group. If Spec(A,=) 6= ∅, then A has
a minimal generating set.

Proof. If A is uncountable, them the proposition follows from Lemma 4.4. Suppose
that the group A is countable and decompose it into A = R⊕D, where R is reduced
and D is divisible. Then dim(R/pR) = dim(A/pA) = ℵ0, for some prime number p.
In particular, R is infinite. Since R is torsion, it cannot be finitely generated, hence
it has an infinite minimal generating set by [6, Lemma 4.3]. Applying Lemma 3.11,
we conclude that A has a minimal generating set. �

Lemma 4.6. Let A be a countable torsion abelian group. If Spec(A,<) is infinite,
then A has a minimal generating set.

Proof. Let B a finitely generated subgroup of A. Since B is torsion, it is finite,
hence pB = B for all but finitely many primes. Thus there is a finite subset
F ⊆ P such that dim(A/(pA + B)) = dim(A/pA) for all p ∈ P \ F . It follows that
Spec(A,<) \ F ⊆ Spec(A/B,<), thus Spec(A/B,<) is infinite, in particular, it is
non-empty. By Proposition 3.8, A has a minimal generating set. �

Lemma 4.7. Let A be an abelian p-group and let B be its basic subgroup. There
is a minimal generating set X of B which lifts a basis of A/pA over pA.

Proof. The group B is a direct sum of cyclic p-groups, say B =
⊕

x∈X Cx, where
X denotes a set of generators of the cyclic summands in the decomposition and Cx

is a finite cyclic group generated by x for all x ∈ X. Obviously, the set X lifts a
basis of B/pB over pB. Since B is a basic subgroup of A, the factor group A/B is
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divisible, whence A = B + pA, and B is pure subgroup of A, whence pB = B ∩ pA.
It follows that there is a natural isomorphism

B/pB = B/(pA ∩ B) ≃ (B + pA)/pA = A/pA,

given by the correspondence x + pB 7→ x + pA, x ∈ X. We conclude that X lifts a
basis of A/pA over pA. �

Theorem 4.8. Let A be a torsion abelian group of an infinite cardinality κ and
let B be its basic subgroup. Then the following are equivalent.

(1) A has a minimal generating set.
(2) card(B) = κ.
(3)

∑

p∈P
dim(A/pA) = κ.

Proof. (1 ⇒ 2) Since B is a basic subgroup of A, the factor group A/B is divisible
and the implication follows from [6, Lemma 1.3]. (2 ⇒ 3) By Lemma 4.7, τpB has
a minimal generating set Xp which lifts a basis of τpA/pτpA over pτpA, for every
p ∈ P. Since pτp̂A = τp̂A, we get that dim(A/pA) = dim(τpA/pτpA) = card(Xp),
for all p ∈ P. Since B is an infinite torsion group,

card(B) = gen(B) = card(
⋃

p∈P

Xp) =
∑

p∈P

card(Xp) =
∑

p∈P

dim(A/pA).

(3 ⇒ 1) If A is countable, then (3) implies that either Spec(A,=) 6= ∅ or Spec(A,<)
is infinite and we infer that A has a minimal generating set by Proposition 4.5
or by Lemma 4.6, respectively. If A is uncountable, then (3) implies that either
Spec(A,=) 6= ∅ or

∑

p∈Spec(A,<) dim(A/pA) = κ. Then A has a minimal generating

set by Proposition 4.5 or by Proposition 3.10, respectively. �

Theorem 4.8 can be simplified in case the cofinality of the cardinality of the
group A is uncountable. Indeed, in this case

∑

p∈Spec(A,<) dim(A/pA) < gen A,

and we can simplify the statement of the previous theorem as follows:

Corollary 4.9. Let A be a torsion abelian group such that cf(card(A)) > ℵ0. Then
A has a minimal generating set iff dim(A/pA) = κ for some prime number p (i.e.,
Spec(A,=) 6= ∅).

5. Torsion free abelian groups

In [6] we did not succeed to characterize torsion free abelian groups with a
minimal generating set. Here we complete this characterization. What in [6] was
missing is Lemma 5.2. Roughly saying, it states that for a torsion free abelian
group A to have a minimal generating set one prime in Spec(A,=) is not enough.
We prove its more general version applicable also for mixed groups.

Definition. Let A be an abelian group and let X ⊆ A. We say that a X is Z-
linearly independent if the only vanishing linear combination of elements of X with
integer coefficients is a trivial combination.

The next lemma is well-known, we leave the proof to the reader.

Lemma 5.1. Let A be a torsion free abelian group and let p be a prime number.
Then every X ⊆ A which lifts a linearly independent subset of A/pA over pA is
Z-linearly independent.
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Lemma 5.2. Let A be an abelian group. Suppose that there is a prime number p
and a subset U of A with card(U) < gen(A) such that A = qA + Span(U) for all
q ∈ p̂ and τA ⊆ pA + Span(U). Then A has not a minimal generating set.

Proof. We start with proving that the abelian group A is not finitely generated.
Suppose otherwise. Since a finitely generated abelian group is a direct sum of
cyclic groups [5, Crollary 10.22], we observe that

⋂

p∈P
pA = 0. It follows from our

assumptions that τA ⊆ pA + Span(U) for all p ∈ P, hence τA ⊆ Span(U). Since
the group Span(U) is finitely generated, we get that Span(U) ≃ τA ⊕ φSpan(U).
The equality rankφSpan(U) = rankA would imply that Span(U) ≃ A which is
not the case, since gen(Span(U)) ≤ card U < gen(A). Applying [5, Exercise 10.15],
we get that the group φSpan(U) has not finite index in φA. It follows that the
factor group A/Span(U) is not finite. Since it is finitely generated, it has a free
direct summand. But then A/Span(U) is not divisible by any prime number, which
contradicts our assumptions.

For the rest of the proof assume that A is not finitely generated. Towards a
contradiction, suppose that A has a minimal generating set X. Pick a finite Xu ⊆ X
such that u ∈ Span(Xu), for every u ∈ U , and put Y =

⋃

u∈U Xu. Observe that
either U is finite and then Y is finite as well or ℵ0 ≤ card(U) = card(Y ). Put
Z = X \ Y . Since the group A is not finitely generated and card(U) < gen(A) =
card(X), we infer that card(Y ) < card(X), and so card(Z) = card(X). Further
deduce from the properties of the set U that A = qA + Span(Y ) for all q ∈ p̂ and
τA ⊆ pA + Span(Y ).

Claim 1. The set Z lifts a linearly independent subset of A/(pA + Span(Y )) over
pA + Span(Y ).

Proof of Claim 1. Let Z denote the collection of all subsets of Z which are S-
independent over pA+Span(Y ), i.e., those subsets, which lift a linearly independent
subset of A/(pA+Span(Y )) over pA+Span(Y ). The set Z has a maximal element,
say Z ′, by Zorn’s lemma. Suppose that Z ′ 6= Z and put X ′ = Z ′ ∪ Y . Then
A/Span(X ′) is a nontrivial divisible group with a minimal generating set (lifted by
nonempty X \ X ′), which cannot be the case. �Claim 1

Since τA ⊆ pA + Span(Y ), the set Z is S-independent over τA. Put ZF =
πτA(Z). The set Z, and so the set ZF as well, lifts a linearly independent subset of
A/(pA + Span(Y )) over pA + Span(Y ) by Claim 1. Since τA ⊆ pA + Span(Y ), we
get that ZF lifts a linearly independent subset of A/(pA+τA) ≃ (A/τA)/p(A/τA).
By Lemma 5.1 we get that ZF is a Z-linearly independent subset of A/τA. That
is, Span(ZF) = Span(Z) + τA/τA is a free subgroup of A/τA. Put YF = πτA(Y )
and note that Span(YF) = (τA + SpanY )/τA and Span(ZF) + Span(YF) = A/τA.
Since card(YF) ≤ card(Y ) < card(Z) = card(ZF) and the group Span(ZF) is free
of rank card(ZF), we infer that the group

A/(τA + Span(Y )) ≃ (A/τA)
/

Span(YF) = (Span(ZF + Span(YF))/Span(YF)

≃ Span(ZF)/(Span(ZF) ∩ Span(YF))

has a nontrivial free direct summand. But this is impossible, since the group
A/(τA + Span(Y )) is divisible by every q ∈ p̂. �

Notice that Lemma 5.2 generalizes [6, Lemma 1.3]. For a torsion free abelian
group we have its following corollary:



13

Corollary 5.3. Let A be a torsion free abelian group. Suppose that there is a
prime number p and a subset Y ⊆ A of cardinality less than gen(A) such that
A = qA + Span(Y ) for every prime q 6= p. Then A has not a minimal generating
set.

Theorem 5.4. A torsion free abelian group A has a minimal generating set iff
either card(Spec(A,=)) ≥ 2 or

(5.1)
∑

p∈Spec(A,<)

dim(A/(pA + B)) = gen(A),

for every finitely generated subgroup B of A.

Proof. (⇐) If card(Spec(A,=)) ≥ 2, then the group A has a minimal generating set
due to Proposition 3.7, while if (5.1) is satisfied, then A is not finitely generated and
it has a minimal generating set by Proposition 3.10, resp. Proposition 3.8 in case
that gen(A) > ℵ0, resp. gen(A) = ℵ0. Note that if gen(A) > ℵ0, then the equation
(5.1) can be simplified to (3.1). (⇒) A finitely generated torsion free abelian group
A is free, in which case Spec(A,=) = P. Thus we can assume that A is not finitely
generated. Suppose that card(Spec(A,=) ≤ 1. Then dim(A/pA) < gen(A) for
all but a single prime, say p. Suppose that there is a subgroup B of A generated
by a finite set Y0 such that

∑

p∈Spec(A,<) dim(A/(pA + B)) < gen(A). It follows

that there is a subset Y of A containing Y0 such that card(Y ) < gen(A) and
Span(Y ) + qA = A for every prime q 6= p. We conclude that A has not a minimal
generating set by Corollary 5.3. �

In case the cardinality of A is of an uncountable cofinality, we can remove (5.1)
from the previous statement.

Corollary 5.5. Let A be a torsion free abelian group. If the cardinality of A has un-
countable cofinality, then the group A has a minimal generating set iff card(Spec(A,=
)) ≥ 2.

6. Mixed Groups - General Case

One would expect that combining the characterization in torsion and torsion-free
case would suffice to characterize all abelian groups with a minimal generating set.
It is quite true in the uncountable case while for countable abelian groups we need
one more result, namely Lemma 6.4. Thus we will treat the uncountable and count-
able case separately and combine both the cases to gain the final characterization
in Theorem 6.6.

6.1. Uncountable abelian groups.

Theorem 6.1. Let A be an abelian group of an uncountable cardinality κ. Then A
has a minimal generating set iff at least one of the following conditions is satisfied:

(1) card(Spec(A,=)) ≥ 2;
(2) dim(τA/pτA) = κ for some prime number p;
(3)

∑

p∈Spec(A,<) dim(A/pA) = κ.

Proof. (⇐) If Spec(A,=) has at least two elements, then A has a minimal generating
set by Proposition 3.7, if dim(τA/pτA) = κ, for some prime number p, then A has
a minimal generating set by Lemma 4.4, and, finally, if

∑

p∈Spec(A,<) dim(A/pA) =

κ, then A has a minimal generating set by Proposition 3.10. (⇒) Suppose that
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∑

p∈Spec(A,<) dim(A/pA) < κ. If Spec(A,=) = ∅, then
∑

p∈P
dim(A/pA) < κ and

the group A has not a minimal generating set by Lemma 4.1. Let Spec(A,=) = {p}
for a single prime p. Then there is a subset Y ⊆ A with card(Y ) < κ such
that A = qA + Span(Y ) for all q ∈ p̂. If, moreover, dim(τA/pτA) < κ, then
τA ⊆ pA + Span(Z) for some Z ⊆ A with card(Z) < κ. Putting U = Y ∪ Z, we
conclude that A has not a minimal generating set by Lemma 5.2. �

Corollary 6.2. Let A be an abelian group and suppose that cardinality of A is of an
uncountable cofinality. Then A has a minimal generating set if either card(Spec(A,=
)) ≥ 2 or dim(τA/pτA) = card(A) for some prime number p.

Combining Theorem 6.1 with Theorem 4.8 and Theorem 5.4 we get readily an-
other of its corollaries.

Corollary 6.3. Let A be an uncountable abelian group. Then A has a minimal
generating set iff either τA has a minimal generating set and card(τA) = card(A)
or A/τA has a minimal generating set and card(A/τA) = card(A).

6.2. Countable abelian groups and the final statement.

Lemma 6.4. Let A be a countable abelian group such that dim(τA/pτA) = ℵ0 for
some prime p. Then A has a minimal generating set.

Proof. If there is a prime q 6= p such that dim(A/qA) = ℵ0, then Spec(A,=) ≥ 2
and A has a minimal generating set by Proposition 3.7. Thus we can suppose that
Spec(A,=) = {p}. If Spec(A/B,<) 6= ∅ for every finitely generated subgroup B of
A, then A has a minimal generating set by Proposition 3.8. So assume that there
is a finitely generated subgroup B of A such that A = qA + B for all q ∈ p̂. Since
the subgroup B is finitely generated, dim(τ(A/B)

/

pτ(A/B)) = ℵ0 and A has a
minimal generating set iff A/B has a minimal generating set by [6, Lemma 5.1].
Observe that the factor group A/B is divisible by every q ∈ p̂. Thus replacing A
with A/B, we can without loss of generality assume that qA = A for all q ∈ p̂.

Put T = τA, Φ = φA, and A′ = A/pT . Observe that τA′ = T/pT is a bounded
subgroup of A′, hence it is its direct summand by [5, Corollary 10.42] . There-
fore A′ = τA′ ⊕ φA′ ≃ (T/pT ) ⊕ Φ. Let Z ′ ⊆ Φ lift a basis of Φ/pΦ. Put
Φ′ = Φ/Span(Z ′). Recall that dim(T/pT ) = ℵ0, and so we can pick linearly in-
dependent Y ′′ ⊆ T/pT such that dim(Span(Y ′′)) = codim(Span(Y ′′)) = ℵ0. Put
A′′ = Span(Y ′′) ⊕ Φ′. Observe that the group Φ′ is divisible, hence A′′ has a
minimal generating set Y ′ which lifts Y ′′ over Φ′ by Corollary 3.12. Let Z be
a subset of A which lifts Z ′ over pT , and let Y be a subset of A which lifts Y ′

over Span(Z) + pT . Denote by C the subgroup of A generated by Y ∪ Z. Ob-
serve that A = C + T , hence the group T ′ = A/C ≃ T/(C ∩ T ) is torsion. Since
dim(T ′/pT ′) = codim(Span(Y ′′)) = ℵ0, the group T ′ has a minimal generating
set X ′ by Proposition 4.5. Note that X ′ lifts a basis of T ′/pT ′ over pT ′, indeed,
T ′ = Span(X ′) + pT ′ and if T ′ = Span(X ′′) + pT ′ for some X ′′ ( X ′, we would
get a nontrivial divisible group T ′/Span(X ′′) with a minimal generating set (cor-
responding to the canonical image of X ′ \ X ′′ 6= ∅).

Let X lift X ′ over C. Note that Y lifts a linearly independent subset of A/(pA+
Span(Z)) over pA + Span(Z) and X lifts a linearly independent subset of A/(pA +
C) = A/(pA+Span(Y ∪Z)) over pA+Span(Y ∪Z). It follows that X ∪Y ∪Z lifts
a linearly independent subset of A/pA, in particular, the union X ∪Y ∪Z forms an
S-independent subset of A. Since A = Span(X)+C and C = Span(Y ∪Z), we have
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that A = Span(X ∪ Y ∪ Z). We conclude that X ∪ Y ∪ Z is a minimal generating
set of A. �

Theorem 6.5. Let A be an infinitely generated countable abelian group. Then A
has a minimal generating set iff at least one of the following conditions is satisfied:

(1) card(Spec(A,=)) ≥ 2;
(2) dim(τA/pτA) = ℵ0 for some prime number p;
(3) Spec(A/B,<) 6= ∅ for every finitely generated subgroup B of A.

Proof. (⇐) If Spec(A,=) ≥ 2, then A has a minimal generating set by Propo-
sition 3.7, if dim(τA/pτA) = ℵ0 for some prime number p, then has a minimal
generating set by Lemma 6.4, and if Spec(A/B,<) 6= ∅ for every finitely generated
subgroup B of A, then the existence of a minimal generating set of A follows from
Proposition 3.8. (⇒) Suppose that Spec(A/B,<) = ∅ for some finitely generated
subgroup B of A. Note that Spec(A,=) = Spec(A/B,=) and dim(τA/pτA) = ℵ0

iff dim(τA/B/pτA) = ℵ0 for each prime number p. By [6, Lemma 5.1], the group
A has minimal generating set iff the factor-group A/B has a minimal generating
set. Thus, replacing A by A/B, we can without loss of generality assume that
Spec(A,<) = ∅. If Spec(A,=) = ∅, then A is divisible and so it has not a minimal
generating set. If Spec(A,=) = {p} for a single prime p and dim(τA/pτA) < ℵ0,
then A has not a minimal generating set by Lemma 5.2. �

Note that applying Corollary 3.9, we can replace property (3) in Theorem 6.5 by
requiring that

∑

p∈Spec(A,<) dim(A/(pA+B)) = gen(A) for every finitely generated

subgroup B of A. Combining Theorem 6.1 and Theorem 6.5 treating uncountable
and countable case, respectively, we get the final statement of the paper character-
izing abelian groups with a minimal generating set.

Theorem 6.6. Let A be an infinitely generated abelian group. The group A has a
minimal generating set iff at least one of the following conditions is satisfied:

(1) card(Spec(A,=)) ≥ 2;
(2) dim(τA/pτA) = gen(A) for some prime number p;
(3)

∑

p∈Spec(A,<) dim(A/(pA + B)) = gen(A) for every finitely generated sub-

group B of A.

Moreover, if the group A is uncountable, property (3) can be simplified to

(3’)
∑

p∈Spec(A,<) dim(A/pA) = gen(A),

and if the cardinality of the group A has uncountable cofinality, then A has a min-
imal generating set iff any of properties (1) and (2) is satisfied.
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