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Abstract. We study a question whether a generating set of subspaces of a
right vector space of a bounded finite dimension contains a generating subset
minimal with respect to inclusion. We obtain partial positive results as well
as a complete answer to the set theoretic analogy of the question.

1. Introduction

All rings are supposed to be associative with a unit element. By R-modules we
will mean right modules over a ring R. Let SubM , resp. Subk M denote the set of
all finitely generated submodules of an R-module M , resp. the set of all submodules
of M generated by at most k-elements.

Given a ring R, an R-module M , and a subset X of M we denote by SpanR(X)
the submodule of M generated by X. However, for a set F of submodules we will
often prefer the notation

∑

F for a submodule generated by
⋃

F.
Let R be a ring, let M be an R-module and let N be a submodule of M . We

say that a set X of elements of M is weakly independent over N provided that

x /∈ N + Span (X \ {x}) ,

for all x ∈ X. We say that the set X is weakly independent if it is weakly indepen-
dent over the zero submodule. If M = N + Span(X) and X is weakly independent
over N we will call F a weak basis of M over N . A weak basis of M over a zero
submodule will be called a weak basis of M . A left R-module possessing a weak ba-
sis is called weakly based and the module is called regularly weakly based providing
each of generating sets of the module contains a weak basis.

We will apply a similar concept of the weak independence on sets of submodules
of a module. In particular, given a ring R, a left R-module M , and its submodule
N , we say that a set F of submodules of M is weakly independent over N provided
that

S * N +
∑

(F \ {S}) ,

for all S ∈ F. We say plainly that F is weakly independent if it is weakly independent
over the zero submodule. Further, the set F is a weak basis of M provided that F is
weakly independent and

∑

F = M . The set F of submodules of M is weakly based
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providing it contains a weak basis and it is regularly weakly based if each F′ ⊆ F

with
∑

F′ = M contains a weak basis.
Compare the above defined concept of weak independence to the usual notion of

independence of modules: In particular, a set F of submodules of M is independent
over N provided that

S ∩
∑

(F \ {S}) ⊆ N,

for all S ∈ F, and F is independent provided that it is independent over the zero
submodule.

Nashier and Nichols in [8] asked to characterize rings over which all right mod-
ules are regularly weakly based and proved that such rings must be right perfect.
Specifically, they asked whether all modules over right perfect rings are regularly
weakly based. In [5] the authors reduced the question to: “Are all modules over
semisimple rings regularly weakly based?” By well-known Wedderburn-Artin theo-
rem, semisimple rings correspond to finite direct products of simple artinian rings.

Being aware of this, it seems natural to decompose the original problem into two
special cases:

(1) Is every right module over a simple artinian ring regularly weakly based?
(2) Is every module over a finite product of division rings regularly weakly

based?

In the paper we concentrate on the first one, proving some partial results and
extracting a particular question whose answer should give a decisive clue to above
stated problems. Yet before that, let us discuss briefly the second case. It is
connected to the problem of characterization of regularly weakly based modules
over Dedekind domains that the authors aimed in [5]. They proved that a regularly
weakly based module over a Dedekind domain is isomorphic to a direct sum F ⊕B
of a finitely generated free module F and a bounded torsion module B. This,
together with [5, Lemma 3.1], reduces the problem to bounded torsion modules
which, in fact, correspond to modules over non trivial factors of Dedekind domains.
Furthermore, we can factor out the multiple by the Jacobson radicals of the factors,
which is nilpotent (see [5, Lemma 2.3]), and even reduce the problem to modules
over finite direct product of fields. This, indeed, corresponds to the commutative
version of the second case.

Let R be a ring, n a positive integer, and let M be a right module over the full
matrix ring S = Mn(R). We denote by eeeij , i, j = 1, . . . , n, the matrix units of S.
Then there is a one-to-one correspondence, say φ, between cyclic submodules of
M and submodules of the right R-module Meee11 generated by at most n elements
given by

xS 7→ SpanR{xeee11, xeee21, . . . , xeeen1}.

Moreover, x ∈ SpanS(Y ), for a given x ∈ M and Y ⊆ M if and only if φ(xS) ⊆
∑

φ(Y ). This is folklore. It follows that elements x1, . . . , xn ∈ M are weakly
independent if and only if the corresponding submodules φ(x1S), . . . , φ(xnS) of an
R-module Meee11 are. Therefore the S-module M is weakly based if and only if the
set Subn(Meee11) is weakly based.

A ring R is simple right artinian ring if and only if it has a simple right generator
[1, Proposition 13.5], say T . As T is simple, its endomorphism ring, D, is a division
ring. If these holds true, then R is isomorphic to the full matrix ring Mn(D) for
some positive integer n [1, Theorem 13.4]. Following the discussion above a right
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R-module M is weakly based if and only if the set Subn(Meee11) of right D-vector
spaces is weakly based. Thus the problem whether all right artinian rings are
regularly weakly based is equivalent to the following:

Problem 1.1. Given a positive integer n and a vector space V over a division ring,
is the set Subn(V ) regularly weakly based?

We will attack this problem, first proving its set theoretic analogy, then proving
that every F ⊆ Subn(V ) such that V =

∑

F and satisfying

S =
⊕

i∈I

(S ∩ Ui) for all S ∈ F.

for some decomposition V =
⊕

i∈I Ui into a direct sum of finitely dimensional
subspaces contains a weak basis, and finally generalizing this to the case when one
of the subspaces Ui, say W , is of an infinite dimension and dim(S ∩W ) ≤ 1 for all
S ∈ F.

2. Set theoretic problems

We start our attack to Problem 1.1 from another perspective, solving a purely
set theoretic version of the problem. Despite relative simplicity of the solution, it
is not trivial, and we believe that it is noteworthy on its own. First we need to
clarify the notation and develop terminology to state the problem and describe its
solution.

We let On denote the ordered class of all ordinal numbers and ω the first infinite
ordinal (corresponding with the set of all nonnegative integers). We identify each
ordinal number with the set of all its predecessors.

Given a set X, we denote by |X| its size. By P(X) we denote the set of all
subsets of X and, given a positive integer n, we denote by [X]<ω, resp. [X]≤n, the
set of all finite subsets of the set X, resp. the set of all subsets of X of size at most
n.

Fix a couple of sets C,D, a binary relation Θ ⊆ C × D and subsets A ⊆ C and
B ⊆ D. We define

AΘ = {d ∈ D | (a, d) ∈ Θ for some a ∈ A},

ΘB = {c ∈ C | (c, b) ∈ Θ for some b ∈ B}.

Given a ∈ A, b ∈ B, we will write aΘ, Θb for {a}Θ, Θ{b}, respectively.
We say that A covers B (or A is a cover of B) whenever B ⊆ AΘ. We say that

A is a cover providing it covers the whole D.
We say that A is minimal on B provided that for all a ∈ A there is b ∈ B such

that (a, b) ∈ Θ but (a, b′) /∈ Θ for all b 6= b′ ∈ B. Observe that A is minimal on
B iff there is W ⊆ B such that (A × W ) ∩ Θ forms a graph of a surjective map
W → A0. Formally, we say that W ⊆ B witnesses the minimality of A provided
that A ⊆ ΘW and |A ∩ Θw| = 1 for all w ∈ W , and A is minimal on B iff B
contains a subset witnessing the minimality. The subset A is said to be minimal
providing it is minimal on the whole D.

By a minimal cover of B we mean A ⊆ C covering B minimal on B. Observe
that a minimal cover of B is its cover minimal w.r.t. inclusion. A minimal cover is
a minimal cover of D.
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We say that A is bounded by a positive integer n on B provided that

(2.1) |aΘ ∩ B| ≤ n

for all a ∈ A. We say that A is bounded on B provided that it is bounded by n
on B for some n ∈ N. The set A is bounded by n, resp. bounded providing it is
bounded by n on D, resp. bounded on D.

Proposition 2.1. Let A be a cover of B bounded on B. Then A contains a minimal
cover of B.

Proof. We will proceed by induction on n such that A is bounded by n on B. When
n = 1, we use that A covers B and pick for all b ∈ B some θ(b) ∈ A such that
(b, θ(b)) ∈ Θ. We put M = {θ(b) | b ∈ B} and observe that Θ ∩ (M × B) equals to
the graph of θ. It follows that M is a minimal cover of B. Suppose that 1 < n and
that the statement holds for all n′ < n.

Applying Zorn’s lemma we find A0 ⊆ A maximal with respect to the property

(2.2) |B ∩ aΘ ∩ a′Θ| = ∅

for all a 6= a′ in A0. We put B1 = B r A0Θ and A1 = A r A0. It follows from the
maximality of A0 that aΘ ∩ A0Θ 6= ∅ for all a ∈ A1. From this we infer that A1

is bounded by n − 1 on B1. By the induction hypothesis we find a minimal cover
M1 ⊆ A1 of B1. Let W1 ⊆ B1 be witnessing the minimality of A1.

Put W0 = B r M1Θ and M0 = {a ∈ A0 | aΘ ∩ W0 6= ∅}. It follows from
(2.2) that M0 is minimal on W0 and W0 witnesses the minimality. Since M1 covers
B1 = B r A0Θ, we have that W0 ⊆ A0Θ, whence M0 covers W0. We conclude
that M = M1 ∪ M2 covers B = B1 ∪ W0. By the definition, M1Θ ∩ W0 = ∅. Since
M0 ⊆ A0, we have that M0Θ ∩ B1 = ∅, whence M0Θ ∩ W1 = ∅. It follows that M
is minimal on B and W = W0 ∪W1 witnesses the minimality. We conclude that M
is a minimal cover of B. �

Let Y ⊆ X be sets and A ⊆ P(X). We say that A is a cover of Y if Y ⊆
⋃

A.
A minimal cover of Y is its cover minimal w.r.t. inclusion. Let n be a positive
integer.

Applying Proposition 2.1 when Θ corresponds to the relation of “∈” on X×P(X)
we get the following corollary:

Corollary 2.2. Let Y ⊆ X be sets. Then every cover A ⊆ P(X) of Y such that
for some positive integer n, |Y ∩ S| ≤ n for all S ∈ A contains a minimal cover.

Let X be a set and A,B ⊆ P(X). We say that A saturates B provided that
T ∩

⋃

A 6= ∅ for all T ∈ B and A is said to be minimal saturating B if A is minimal
w.r.t. inclusion such that it saturates B.

Putting
Θ = {(S, T ) ∈ P(X) × P(X) | S ∩ T 6= ∅},

we get the following corollary of Proposition 2.1

Corollary 2.3. Let X be a set and A,B ⊆ P(X). If A saturates B and there is a
positive integer n such that

|{T ∈ B | S ∩ T 6= ∅}| ≤ n

for all S ∈ A, then A contains a subset which is minimal saturating on B.

The next lemma, concluding the section, is closely related to Proposition 2.1.
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Lemma 2.4. Let n ∈ N, let X be a set and A ⊆ [X]n, B ⊆ P(X). If A saturates
B then it contains a subset minimal saturating B.

Proof. We proceed by induction on n in the same fashion as in Proposition 2.1. �

3. Modular problem

Within this section fix a division ring D. By a vector space we mean a right
vector space over D.

Definition. Let F be a collection of subspaces of a vector space V . We say that a
subspace U of V is F-distributive provided that

(3.1) U ∩
∑

G =
∑

T∈G

(U ∩ T )

for all G ⊆ F. Observe that U is F-distributive iff (3.1) holds for all finite subsets
G of F.

Lemma 3.1. Let V be a vector space, let F ⊆ SubV , and let H ⊆ F. Further, let
G be an independent subset of F, let σ an ordinal number, and let 〈Gα | α < σ〉 be
a decreasing family (i.e. Gα ⊇ Gβ for all α ≤ β < σ) of subsets of G. Finally, let U
be a finitely generated F-distributive subspace of V . Then

(3.2) U ∩

(

∑ ⋂

α<σ

Ga +
∑

H

)

= U ∩
(

∑

Gβ +
∑

H

)

for some β < σ.

Proof. First observe that the assumptions that the family 〈Gα | α < σ〉 is decreasing
and the sets Gα are independent implies

(3.3)
∑ ⋂

α<σ

Gα =
⋂

α<σ

∑

Gα

(a weaker assumption that the union
⋃

α<σ Gα is independent would guarantee
(3.3)). Applying (3.3) and the distributivity of U we get that

(3.4) U ∩

(

∑ ⋂

α<σ

Ga +
∑

H

)

=

(

⋂

α<σ

∑

T∈Ga

(U ∩ T )

)

+
(

U ∩
∑

H

)

.

For each α < σ put Uα =
∑

T∈Ga

(U ∩ T ). Then 〈Uα | α < σ〉 is a decreasing
family of subspaces of U and, since U is finitely generated, there is β < σ with
Uβ =

⋂

α<σ Uα. Substituting this to (3.4) and using distributivity of U again, we
conclude with (3.2). �

For F ⊆ SubV let ∆(F) denote the set of all finitely generated F-distributive
subspaces of

∑

F. It is easy to see from the definition that U∩
∑

F is F-distributive
for every F-distributive U ∈ SubV . Thus

∆(F) = {U ∩
∑

F | U is a finitely generated F-distributive subspace of V }.

Corollary 3.2. Let V be a vector space, F ⊆ SubV , and let G be an independent
subset of F. Let β be an ordinal number and 〈Gα | α < β〉 a decreasing family of
subsets of G. Suppose that H ⊆ F satisfies that

∑

∆(F) ⊆
∑

Gα +
∑

H, for all α < β.



6 DANIEL HERDEN, MICHAL HRBEK, PAVEL R UŽIČKA

Then
∑

∆(F) ⊆
∑ ⋂

α<β

Gα +
∑

H.

Given a set F of subspaces of a vector space V and a subspace X of V we will
use the notation

FX = {(S + X)/X | S ∈ F}.

Lemma 3.3. Let F be a set of subspaces of a vector space V , let F0 ⊆ F, and let
W =

∑

F0. If a subspace U of V is F-distributive, then the factor (U + W )/W is
FW distributive.

Proof. We need to verify that for every G ⊆ F,

(U + W ) ∩
∑

T∈G

(T + W ) =
∑

T∈G

(U + W ) ∩ (T + W ).

Applying modularity and F-distributivity of U we get that

(U + W ) ∩
∑

T∈G

(T + W ) =

(

∑

T∈G

U ∩ (T + W )

)

+ W.

Using modularity again we conclude that
(

∑

T∈G

U ∩ (T + W )

)

+ W =
∑

T∈G

(U + W ) ∩ (T + W ).

�

Corollary 3.4. Let F be a set of subspaces of a vector space V , let F0 ⊆ F, and
let W =

∑

F0. Then

∆(F)W ⊆ ∆(FW ).

Theorem 3.5. Let V be a vector space, let k be a positive integer, and let F ⊆
Subk V . Then there is a weakly independent K ⊆ F with

∑

∆(F) ⊆
∑

K.

Proof. We proceed by induction on k (such that F ⊆ Subk V ). The proof is ele-
mentary when k = 1. Suppose that k > 1 and that the statement holds whenever
F ⊆ Subk−1 V .

First, we find, applying Zorn’s lemma, a maximal independent subset G of F.
Next, we are going to construct stepwise a decreasing family 〈Gi | i < ω〉 of subsets
of G and an increasing family 〈Hi | i < ω〉 (i.e. Hi ⊆ Hj for all i ≤ j < ω) of
subsets of F such that, for all n < ω,

(1n) Gn is independent over
∑

Hn,
(2n) Hn+1 is weakly independent over

∑

Gn,
(3n)

∑

∆(F) ⊆
∑

Hn+1 +
∑

Gn.

We put H0 = ∅ and G0 = G; thus property (10) is trivially satisfied. Further,
we set W0 =

∑

G0. Since G is maximal independent, S ∩ W0 6= 0 for all S ∈ F. It
follows that FW0 ⊆ Subk−1 (V/W0). By the induction hypothesis, there is H1 ⊆ F

weakly independent over W0 with
∑

∆(FW0) ⊆
∑

H
W0

1 ; in particular, property
(20) holds true. By Corollary 3.4 we have that ∆(F)W0 ⊆ ∆(FW0), hence ∆(F) ⊆
∑

H1 + W0 =
∑

H1 +
∑

G0; this is (30).
Let n < ω and suppose that we have constructed sets Hn, Hn+1 and Gn so

that properties (1n − 3n) are satisfied. In order to take the next step, we use
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Zorn’s lemma to find Gn+1 ⊆ Gn maximal independent over
∑

Hn+1. This ensures
property (1n+1). We put Wn+1 =

∑

Hn+1 +
∑

Gn+1. Since Gn+1 is a maximal

subset of Gn independent over
∑

Hn+1, the inclusion G
Wn+1

n ⊆ Subk−1(V/Wn+1)
holds true. By the induction hypothesis, there is H′

n+1 ⊆ Gn weakly indepen-

dent over Wn+1 with ∆(G
Wn+1

n ) ⊆
∑

(H′
n+1)

Wn+1 . By Corollary 3.4 we have that

∆(Gn)Wn+1 ⊆ ∆(G
Wn+1

n ). The inclusion Gn ⊆ F implies that ∆(F) ⊆ ∆(Gn),
whence

∑

∆(F)Wn+1 ⊆ ∆(Gn)Wn+1 . Altogether we get that
∑

∆(F)Wn+1 ⊆
∑

(H′
n+1)

Wn+1 ,
hence

∑

∆(F) ⊆
∑

H′
n+1 + Wn+1 =

∑

H′
n+1 +

∑

Hn+1 +
∑

Gn+1 =
∑

(H′
n+1 ∪

Hn+1) +
∑

Gn+1. Put Hn+2 = H′
n+1 ∪Hn+1. We readily see that property (3n+1)

is satisfied. It follows from the construction that H′
n+1 is weakly independent over

∑

Hn+1 +
∑

Gn+1 and that Gn ⊇ H′
n+1 ∪ Gn+1. The latter together with (2n) im-

plies that Hn+1 is weakly independent over
∑

H′
n+1 +

∑

Gn+1. We conclude that
Hn+2 is weakly independent over

∑

Gn+1 which is the remaining property (3n+1).
Put Gω =

⋂

n<ω Gn, Hω =
⋃

n<ω Hn and K = Gω + Hω. For each n ∈ ω,
property (1n) implies that Gω is independent over

∑

Hn, whence we get that Gω

is independent over
∑

Hω. Property (2n) clearly implies that Hn+1 is weakly
independent over

∑

Gω, whence Hω is weakly independent over
∑

Gω. We conclude
that the set K is weakly independent.

Property (3n) implies
∑

∆(F) ⊆
∑

Gn +
∑

Hω. Applying Corollary 3.2 we infer
that

∑

∆(F) ⊆
∑⋂

n<ω Gn +
∑

Hω =
∑

Gω +
∑

Hω =
∑

K. This concludes the
proof. �

Corollary 3.6. Let V be a vector space, let k be a positive integer, and let F ⊆
Subk V be such that V =

∑

F. Suppose that there is a decomposition V =
⊕

i∈I Ui

of V into a direct sum of finitely generated subspaces Ui of V such that

(3.5) S =
⊕

i∈I

(S ∩ Ui) for all S ∈ F.

Then F contains a weak basis of V .

Proof. With regard to Theorem 3.5, it suffices to verify that (3.5) implies that
U = {Ui | i ∈ I} ⊆ ∆(F). Towards this end, we get from (3.5) that for all F0 ⊆ F

and all j ∈ I the equality

Uj ∩
∑

F0 = Uj ∩
∑

S∈F0

⊕

i∈I

(S ∩ Ui) = Uj ∩
⊕

i∈I

∑

S∈F0

(Ui ∩ S) =
∑

S∈F0

(Uj ∩ S)

holds true. This is the F-distributivity of Uj , and so U ⊆ ∆(F). �

4. The weak extension property

Lemma 4.1. Let V be a vector space, let k be a positive integer, and let F ⊆
Subk V . Let G,H ⊆ F be such that G is independent, H is weakly independent over
∑

G and
∑

∆(F) ⊆
∑

G +
∑

H. Then there is G′ ⊆ G weakly independent over
∑

H such that
∑

∆(F) ⊆
∑

G′ +
∑

H.

Proof. We put G0 = G, H1 = H and continue as in the proof of Theorem 3.5. �

Definition. Let V be a vector space and let F ⊆ SubV . We say that the set F has
a weak extension property provided that for all G ⊆ F, every weakly independent
subset of G extends to a weak basis of

∑

G.
We say that F is good provided that whenever

∑

∆(F) ⊆ H =
∑

H for some
H ⊆ F, the set FH has a weak extension property.
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Theorem 4.2. Let V be a vector space and let k be a positive integer. Then every
good F ⊆ Subk(V ) contains a weak basis of

∑

F.

Proof. We proceed by induction on k. The statement is clear when k = 1. Let
k > 1 and suppose that the statement holds whenever F ⊆ Subk−1 V .

We start with finding G,H ⊆ F such that G is independent, H is weakly inde-
pendent over

∑

G and

(4.1)
∑

F =
∑

G +
∑

H.

We find G as a maximal independent subset of F by Zorn’s lemma. It follows from
the maximality of G that S ∩

∑

G 6= 0 for all S ∈ F, whence, putting G =
∑

G, we
have that FG ⊆ Subk−1(V/G). Thus, by the induction hypothesis, there is H ⊆ F

weakly independent over
∑

G with
∑

F =
∑

G +
∑

H.
Next we are going to construct stepwise an decreasing class 〈Gα | α ∈ On〉 and

an increasing class 〈Cα | α ∈ On〉 of subsets of G such that, putting

Hβ = H ∪
⋃

α∈β

Cα (β ∈ On),

the following properties are satisfied for all β ∈ On:

(1β) Gβ is weakly independent over
∑

Hβ and
∑

∆(F) ⊆
∑

Gβ +
∑

Hβ .
(2β) Cβ forms a weak basis of

∑

F over
∑

Gβ +
∑

H.

Step 0: Note that, by the definition, H0 = H. Applying Lemma 4.1, we find
G0 ⊆ G weakly independent over

∑

H such that
∑

∆(F) ⊆
∑

G0 +
∑

H.
This is property (10). Since F is good and

∑

F ⊆
∑

G +
∑

H, there is a
weak basis C0 ⊆ G of

∑

F over
∑

G0 +
∑

H. Thus we have (20) as well.
Step β for β = α + 1: We imitate the initial step. First observe that Hβ =

H ∪ Cα and, applying Lemma 4.1, find Gβ ⊆ Gα weakly independent over
∑

Hβ such that
∑

∆(F) ⊆
∑

Gβ +
∑

Hβ , in particular, property (1β)
holds true. Since Gβ ⊆ Gα, it follows from property (2α) that Cα is weakly
independent over

∑

Gα +
∑

H. Now, since F is good and
∑

F ⊆
∑

G +
∑

H, there is Cβ a weak basis of
∑

F over
∑

Gβ +
∑

H with Cα ⊆ Cβ ⊆ G.
Thus we have gained property (2β).

Step β for β a limit ordinal: We put

Gβ =
⋂

α∈β

Gα.

Since Gα is weakly independent over
∑

Hα, by (1α), for all α ∈ β, we
infer that Gβ is weakly independent over

∑

Hα for all α ∈ β. Since, by
its definition, Hβ =

⋃

α∈β Hα, we conclude that Gβ is weakly independent

over
∑

Hβ . Properties (1α), α ∈ β, give us that
∑

∆(F) ⊆
∑

Gα +
∑

H,
for all α ∈ β. Applying Corollary 3.2, we infer that

(4.2)
∑

∆(F) ⊆
∑

Gβ +
∑

H.

Thus property (1β) holds true. It follows from (2α), α ∈ β, that the union
⋃

α∈β Cα is weakly independent over
∑

Gβ +
∑

H. Since F is good, it

follows from equality (4.1) and inclusion (4.2) that there is a weak basis Cβ

of
∑

F over
∑

Gβ +
∑

H satisfying
⋃

α∈β Cα ⊆ Cβ ⊆ G. We conclude that

property (2β) is satisfied.
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Since Subk V does not form a proper class, there is α ∈ On with Cα = Cα+1. From
(1α+1), we get that Gα+1 is weakly independent over

∑

Cα +
∑

H and from (2α+1)
we get that Cα = Cα+1 forms a weak basis of

∑

F over
∑

Gα+1+
∑

H; in particular
∑

F =
∑

Cα +
∑

Gα+1 +
∑

H. Since both Gα+1 and Cα are included in G, we infer
that H is weakly independent over Gα+1 ∪ Cα. Summing it up, we get that the
union Gα+1 ∪ Cα ∪ H forms the desired weak basis of

∑

F selected from F. �

Corollary 4.3. Let V be a vector space, let k be a positive integer, and let F ⊆
Subk V . Put D =

∑

∆(F) and suppose that FD ⊆ Sub1(V/D). Then F contains a
weak basis of

∑

F.

A particular case of this statement extends Corollary 3.6 as follows:

Corollary 4.4. Let V be a vector space, let k be a positive integer, and let F ⊆
Subk V be such that V =

∑

F. Suppose that there is a decomposition V = W ⊕
⊕

i∈I Ui, where all Ui are finitely dimensional such that

dim(S ∩ W ) ≤ 1 and S = (S ∩ W ) ⊕
⊕

i∈I

(S ∩ Ui) for all S ∈ F.

Then F contains a weak basis of V .

In view of Corollary 4.4 we formulate the following problem, which seems to be
the next step when trying to decide Problem 1.1:

Problem 4.1. Let V be a vector space and let F ⊆ SubV be such that V =
∑

F.
Let n be a positive integer and suppose that there is a decomposition V = W1 ⊕
· · · ⊕ Wn such that for all S ∈ F:

(4.3) dim(S ∩ Wi) ≤ 1, for all i = 1, . . . , n, and S =
n
⊕

i=1

(S ∩ Wi).

Does such F contain a weak basis of V ?

A particular task would be the case Problem 4.1 when n = 2. Finally notice that
assumption (4.3) can be placed with considering modules over a finite product of
copies of the division ring D. A slight generalization of this, considering a product
of (not necessarily same) division rings, is then the case (2) of our original problem.
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