LECTURE 9
 Groups acting on sets

PAVEL RU゚ŽIČKA

Abstract

We study groups acting on sets. We call sets equipped with an action of a group \boldsymbol{G}-sets. We define an orbit and a stabilizer of an element of a \boldsymbol{G}-sets. We prove the Burnside's lemma and the class formula and we show some applications of these results. In particular, we introduce some ideas of the Pólya's theory of counting.

9.1. \boldsymbol{G}-sets, orbits, and stabilizers. Let $\boldsymbol{G}=(G, \cdot)$ be a group. An action of the group \boldsymbol{G} on a set X is a homomorphism

$$
\alpha: \boldsymbol{G} \rightarrow \boldsymbol{S}_{X}
$$

A set X equipped with an action of a group G on X is often referred to as a G-set.

Having fixed an action α of the group \boldsymbol{G} on a set X, we put $\alpha(g)(x)=g \cdot x$, for all $g \in G$ and $x \in X$. Thus the action corresponds to the map $G \times X \rightarrow X$ given by $\langle g, x\rangle \mapsto g \cdot x$. It is easily seen from the definition of a group homomorphism that
(i) $(f \cdot g) \cdot x=f \cdot(g \cdot x)$, for all $f, g \in G$ and all $x \in X$.
(ii) $u_{\boldsymbol{G}} \cdot x=x$, for all $x \in X$.

On the other hand,
Lemma 9.1. Any map $G \times X \rightarrow X$ satisfying properties (i) and (ii) corresponds to an action of the group G on the set X.

Proof. For each $g \in G$ we define a map $\alpha(g): X \rightarrow X$ by $\alpha(g)(x)=g \cdot x$, $x \in X$.

First we prove that $\alpha(g)$ is a bijection for all $g \in G$. Let $g \in G$ and $x \in X$. Then

$$
g^{-1} \cdot \alpha(g)(x)=g^{-1} \cdot(g \cdot x)=\left(g^{-1} \cdot g\right) \cdot x=u_{\boldsymbol{G}} \cdot x=x
$$

hence the image $\alpha(g)(x)$ determines x, whence $\alpha(g)$ is one-to-one. Since

$$
\alpha(g)\left(g^{-1} \cdot x\right)=g \cdot\left(g^{-1} \cdot x\right)=\left(g \cdot g^{-1}\right) \cdot x=u_{\boldsymbol{G}} \cdot x=x
$$

the map $\alpha(g)$ maps the set X onto X. We conclude that $\alpha(g)$ is a bijection, and so α is a map from \boldsymbol{G} to \boldsymbol{S}_{X}.

The Lecture and the tutorial took place in Malá strana, room S11, on December 4, 2018.

For all $f, g \in G$ and all $x \in X$ we have that

$$
\alpha(f \cdot g)(x)=(f \cdot g) \cdot x=f \cdot(g \cdot x)=\alpha(f)(\alpha(g)(x)),
$$

hence $\alpha(f \cdot g)=\alpha(f) \circ \alpha(g)$. We conclude that $\alpha: \boldsymbol{G} \rightarrow \boldsymbol{S}_{X}$ is a group homomorphism.

Let X be a \boldsymbol{G}-set. For each $x \in X$, we set

$$
G_{x}:=\{g \in G \mid g \cdot x=x\} .
$$

Lemma 9.2. Let X be $a \boldsymbol{G}$-set. The set G_{x} determines a subgroup \boldsymbol{G}_{x} of \boldsymbol{G}, for every $x \in X$.

Proof. A simple verification gives that

$$
f \cdot x=g \cdot x=x \Longrightarrow(f \cdot g) \cdot x=f \cdot(g \cdot x)=f \cdot x=x,
$$

for all $f, g \in G$, and

$$
g \cdot x=x \Longrightarrow g^{-1} \cdot x=g^{-1} \cdot(g \cdot x)=\left(g^{-1} \cdot g\right) \cdot x=u_{\boldsymbol{G}} \cdot x=x
$$

for all $g \in G$.
We call the subgroup \boldsymbol{G}_{x} the stabilizer ${ }^{1}$ of x. Next we define

$$
\mathcal{O}_{\boldsymbol{G}}(x):=\{g \cdot x \mid g \in \boldsymbol{G}\} .
$$

The set $\mathcal{O}_{G}(x)$ is called a G-orbit of x.
Lemma 9.3. Let X be a \boldsymbol{G}-set. The binary relation $\sim_{\boldsymbol{G}}$ defined on the set X by $y \sim_{G} x$ if $y=g \cdot x$ for some $g \in G$ is an equivalence on X and \boldsymbol{G}-orbits correspond to blocks of $\sim_{\boldsymbol{G}}$.
Proof. Since $x=u_{\boldsymbol{G}} \cdot x$, the relation $\sim_{\boldsymbol{G}}$ is reflexive. If $y=g \cdot x$, then $x=u_{\boldsymbol{G}} \cdot x=\left(g^{-1} \cdot g\right) \cdot x=g^{-1} \cdot(g \cdot x)=g^{-1} \cdot y$, and so $\sim_{\boldsymbol{G}}$ is symmetric. Finally, if $x=f \cdot y$ and $y=g \cdot z$, then $x=f \cdot y=f \cdot(g \cdot z)=(f \cdot g) \cdot z$, hence \sim_{G} is transitive. We conclude that \sim_{G} is an equivalence on X. It is clear from the definition of G-orbits that they correspond to blocks of \sim_{G}.
Lemma 9.4. Let X be $a \boldsymbol{G}$-set and $x \in X$. Then

$$
\begin{equation*}
\left|\mathcal{O}_{\boldsymbol{G}}(x)\right|=\left[\boldsymbol{G}: \boldsymbol{G}_{x}\right] . \tag{9.1}
\end{equation*}
$$

Proof. Observe that

$$
f \cdot x=g \cdot x \Longleftrightarrow g^{-1} \cdot f \in G_{x},
$$

for all $f, g \in G$. Applying Lemma 4.2, we see that elements of the \boldsymbol{G}-orbit $\mathcal{O}_{\boldsymbol{G}}(x)$ correspond to left cosets of \boldsymbol{G}_{x}. Equation (9.1) readily follows.

Corollary 9.5. Let X be $a \boldsymbol{G}$-set and $x \in X$. Then

$$
|G|=\left|\mathcal{O}_{G}(x)\right| \cdot\left|G_{x}\right| .
$$

[^0]9.2. Counting orbits. Let X be a \boldsymbol{G}-set. We denote by X / \boldsymbol{G} the set
$$
X / \boldsymbol{G}:=\left\{\mathcal{O}_{\boldsymbol{G}}(x) \mid x \in X\right\}
$$
of all G-orbits of X.
Lemma 9.6. Let X be a \boldsymbol{G}-set. Then
\[

$$
\begin{equation*}
|X / \boldsymbol{G}|=\frac{1}{|G|} \sum_{x \in X}\left|G_{x}\right| \tag{9.1}
\end{equation*}
$$

\]

Proof. Let Δ be a set of representatives of \boldsymbol{G}-orbits, i.e., Δ picks one element from each \boldsymbol{G}-orbit. Then we have that

$$
\begin{equation*}
|X / \boldsymbol{G}|=|\Delta|=\sum_{y \in \Delta} \frac{\left|\mathcal{O}_{\boldsymbol{G}}(y)\right|}{\left|\mathcal{O}_{\boldsymbol{G}}(y)\right|}=\sum_{y \in \Delta} \sum_{x \in \mathcal{O}_{\boldsymbol{G}}(y)} \frac{1}{\left|\mathcal{O}_{\boldsymbol{G}}(x)\right|}=\sum_{x \in G} \frac{1}{\left|\mathcal{O}_{\boldsymbol{G}}(x)\right|} \tag{9.2}
\end{equation*}
$$

It follows from Corollary 9.5 that

$$
\frac{1}{\left|\mathcal{O}_{G}(x)\right|}=\frac{\left|G_{x}\right|}{|G|}
$$

for all $x \in X$. We conclude from (9.2) that

$$
|X / \boldsymbol{G}|=\sum_{x \in G} \frac{1}{\left|\mathcal{O}_{G}(x)\right|}=\sum_{x \in G} \frac{\left|G_{x}\right|}{|G|}=\frac{1}{|G|} \sum_{x \in G}\left|G_{x}\right|
$$

For each $g \in G$ we define

$$
X_{g}:=\{x \in X \mid g \cdot x=x\} .
$$

Observe (see Figure 1) that

$$
\begin{equation*}
\sum_{x \in X}\left|G_{x}\right|=|\{\langle g, x\rangle \in G \times X \mid g \cdot x=x\}|=\sum_{g \in G}\left|X_{g}\right| \tag{9.3}
\end{equation*}
$$

Lemma 9.7 (Burnside's Lemma 2). Let X be $a \boldsymbol{G}$-set. Then

$$
\begin{equation*}
|X / \boldsymbol{G}|=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right| \tag{9.4}
\end{equation*}
$$

Proof. Apply Lemma 9.6 and equation (9.3).
Burnside's lemma can be elegantly applied to solve some combinatorial problems.

Let \mathcal{C} be a (finite) set of colors. By a \mathcal{C}-coloring of a set X we mean a map $\gamma: X \rightarrow \mathcal{C}$. We denote by ${ }^{X} \mathcal{C}$ the set of all \mathcal{C}-colorings of the set X. A group G acting on the set X naturally acts on ${ }^{X} \mathcal{C}$ via

$$
\begin{equation*}
(g \cdot \gamma)(x)=\gamma(g \cdot x), \quad \text { for all } \quad x \in X \tag{9.5}
\end{equation*}
$$

for all $\langle g, \gamma\rangle \in G \times{ }^{X} \mathcal{C}$.

[^1]

Figure 1. The set $\{\langle g, x\rangle \mid g \cdot x=x\}$
Lemma 9.8. Let $\alpha: \boldsymbol{G} \rightarrow \boldsymbol{S}_{X}$ be an action of a group G on a set X and \mathcal{C} a set of colors. Then

$$
\left|{ }^{\mathcal{C}} X_{g}\right|=|\mathcal{C}|^{k},
$$

where k is the number of cycles of $\alpha(g) \in S_{X}$, for all $g \in G$.
Proof. Let $g \in G$ and γ be a \mathcal{C}-coloring of the set X. It follows from (9.5) that $g \cdot \gamma=\gamma$ if and only if $\gamma(x)=\gamma(g \cdot x)$, for all $x \in X$. This is equivalent to all elements of each cycle of $\alpha(g)$ having the same color. Therefore the size of ${ }^{\mathcal{C}} X_{g}$ is the number of all possible colorings of cycles of g, which is $|\mathcal{C}|^{k}$.
Example 9.9. By coloring the faces of a cube by n colors, we can obtain exactly

$$
\frac{n^{2}}{24}\left(n^{4}+3 n^{2}+12 n+8\right)
$$

distinct cubes.
Proof. Let \mathcal{C} be the set of n given colors. Two colorings of faces of a cube give identical cubes if and only they can be obtained from each other by
rotations. The group \boldsymbol{R} of all rotations of a cube acts on the set X of all faces of a cube (via the map $\alpha: \boldsymbol{R} \rightarrow \boldsymbol{S}_{X}$) and consequently \boldsymbol{R} acts on the set of all colorings of the faces by colors from \mathcal{C}. Therefore the number of distinct cubes obtained by coloring faces of a cube equals to the size of the set ${ }^{\mathcal{C}} X / \boldsymbol{R}$ of all \boldsymbol{R}-orbits of ${ }^{\mathcal{C}} X$. Conjugated rotations act on X as conjugated permutations and so they have the same type (see Theorem 5.4), in particular, they have the same number of cycles. We have the following rotation of a cube:
(i) 1 identity u which corresponds to the type $\langle 6,0,0,0\rangle$, and so $\left|{ }^{\mathcal{C}} X_{u}\right|=$ n^{6}
(ii) 3 rotation p over the axes connecting the centers of two opposite edges over the angle 180°. Then type $\alpha(p)=\langle 2,2,0,0\rangle$, and so $\left.\right|^{\mathcal{C}} X_{p} \mid=n^{4}$,
(iii) 6 flips r, that is, rotations over axes connecting the centers of two opposite faces over the angle 180°. Then type $\alpha(r)=\langle 0,3,0,0\rangle$, and so $\left|{ }^{\mathcal{C}} X_{r}\right|=n^{3}$,
(iv) 8 rotations s over diagonals of the cube. Then type $\alpha(s)=\langle 0,0,2,0\rangle$, and so $\left|{ }^{\mathcal{C}} X_{s}\right|=n^{2}$,
(v) 6 rotations t over axes connecting the centers of two opposite faces over the angle 90°. Then type $\alpha(t)=\langle 2,0,0,1\rangle$, and so $\left.\right|^{\mathcal{C}} X_{t} \mid=n^{3}$.
According to Example 6.12 the group \boldsymbol{R} is isomorphic to \boldsymbol{S}_{4} and so it has 24 elements. Applying Burnside's lemma we compute that

$$
\left.\right|^{\mathcal{C}} X / \boldsymbol{R} \left\lvert\,=\frac{1}{24}\left(n^{6}+3 n^{4}+6 n^{3}+8 n^{2}+6 n^{3}\right)=\frac{n^{2}}{24}\left(n^{4}+3 n^{2}+12 n+8\right)\right.
$$

9.3. Translations and the Lagrange's theorem revised. We denote by $\mathcal{P}(X)$ the set of all subsets of a set X. Given a group \boldsymbol{G}, we set

$$
\Lambda(g)(X):=g \cdot X, \quad \text { for all } g \in G, X \subseteq G
$$

Thus $\Lambda(g): \mathcal{P}(G) \rightarrow \mathcal{P}(G)$ is a map with an inverse $\Lambda\left(g^{-1}\right)$. It is straightforward to verify that $\Lambda: G \rightarrow S_{\mathcal{P}(G)}$ is an action of the group \boldsymbol{G} on the set $\mathcal{P}(X)$.

Let \boldsymbol{H} be a subgroup of the group \boldsymbol{G}. The stabilizer

$$
\boldsymbol{G}_{H}=\{g \in G \mid g \cdot H=H\}
$$

is the group \boldsymbol{H} itself and the \boldsymbol{G}-orbit of H is the set

$$
\mathcal{O}_{\boldsymbol{G}}(H)=\{g \cdot H \mid g \in G\}
$$

of all left cosets of \boldsymbol{H}. The Lagrange's theorem is then follows from Lemma 9.4 and Corollary 9.5, indeed

$$
|G|=\left|\mathcal{O}_{\boldsymbol{G}}(H)\right| \cdot\left|G_{H}\right|=[\boldsymbol{G}: \boldsymbol{H}] \cdot|H| .
$$

9.4. Conjugations and the class formula. Let \boldsymbol{G} be a group. An isomorphism $\boldsymbol{G} \rightarrow \boldsymbol{G}$ is called an automorphism of the group \boldsymbol{G}. It is straightforward that automorphisms of \boldsymbol{G} are closed under composition and inverses, and so they form a group which we denote by $\operatorname{Aut}(\boldsymbol{G})$.

Recall that ${ }^{f} g=f \cdot g \cdot f^{-1}$ denotes the conjugation of an element $g \in G$ by an element $f \in G$. Observe that

$$
\begin{equation*}
{ }^{f}(g \cdot h)=f \cdot(g \cdot h) \cdot f^{-1}=\left(f \cdot g \cdot f^{-1}\right)\left(f \cdot h \cdot f^{-1}\right)={ }^{f} g \cdot{ }^{f} h \tag{9.1}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{f \cdot g} h=(f \cdot g) \cdot h \cdot(f \cdot g)^{-1}=f \cdot g \cdot h \cdot g^{-1} \cdot f^{-1}={ }^{f}\left({ }^{g} h\right), \tag{9.2}
\end{equation*}
$$

for all $f, g, h \in G$. It follows from (9.1) and (9.2) that the conjugation by an element $f \in G$ induces an automorphism G with the inverse given by the conjugation by f^{-1}. The automorphisms induced by conjugations are called inner automorphisms. They form a subgroup of $\operatorname{Aut}(\boldsymbol{G})$ which we denote by $\operatorname{Inn}(\boldsymbol{G})$. Moreover, it follows from (9.2) that the map $\phi: \boldsymbol{G} \rightarrow \operatorname{Aut}(\boldsymbol{G})$ given by $f \mapsto\left(g \mapsto{ }^{f} g\right)$ corresponds to the action

$$
\begin{aligned}
G \times G & \rightarrow G \\
\langle f, g\rangle & \mapsto{ }^{f} g
\end{aligned}
$$

of the group \boldsymbol{G} on the set G. It is straightforward to see that the image of ϕ is the subgroup $\operatorname{Inn}(\boldsymbol{G})$ of all inner automorphisms and the kernel of ϕ is the center of \boldsymbol{G} (cf. 6.2).

Let Δ be a set of representatives of orbits of ϕ. The orbits of ϕ correspond to conjugacy classes of \boldsymbol{G}. Since G is a disjoint union of the conjugacy classes, we have that

$$
\begin{equation*}
|G|=\sum_{g \in \Delta}\left|\mathcal{O}_{G}(g)\right| . \tag{9.3}
\end{equation*}
$$

Lemma 9.10. Let \boldsymbol{G} be a group acting on itself by conjugation. Then

$$
Z(\boldsymbol{G})=\left\{g \in G \mid \mathcal{O}_{\boldsymbol{G}}(g)=\{g\}\right\} .
$$

Proof. Let $g \in G$. Then

$$
{ }^{f} g=g \Longleftrightarrow f \cdot g \cdot f^{-1}=g \Longleftrightarrow f \cdot g=g \cdot f
$$

for all $f \in G$. Therefore ${ }^{f} g=g$ for all $f \in G$ if and only if $g \in Z(\boldsymbol{G})$.
It follows that $Z(\boldsymbol{G}) \subseteq \Delta$ and we infer from (9.3) that

$$
\begin{equation*}
|G|=|Z(\boldsymbol{G})|+\sum_{g \in \Delta \backslash Z(\boldsymbol{G})}\left|\mathcal{O}_{\boldsymbol{G}}(g)\right| \tag{9.4}
\end{equation*}
$$

Let $\boldsymbol{u}_{\boldsymbol{G}}$ denote the trivial subgroup of \boldsymbol{G}. It follows from Lemma 9.4 that $\left|\mathcal{O}_{\boldsymbol{G}}(g)\right|=\left[\boldsymbol{G}: \boldsymbol{G}_{g}\right]$, for all $g \in G$. This allow us to reformulate (9.3) as

$$
\begin{equation*}
\left[\boldsymbol{G}: \boldsymbol{u}_{\boldsymbol{G}}\right]=\sum_{g \in \Delta}\left[\boldsymbol{G}: \boldsymbol{G}_{g}\right] \tag{9.5}
\end{equation*}
$$

and (9.4) can be stated in the form

$$
\begin{equation*}
|G|=|Z(\boldsymbol{G})|+\sum_{g \in \Delta \backslash Z(\boldsymbol{G})}\left[\boldsymbol{G}: \boldsymbol{G}_{g}\right] . \tag{9.6}
\end{equation*}
$$

Equation (9.5) is often referred to as the class formula. We show some nontrivial applications of (9.6) which, indeed, is a version of the class formula.

Let \boldsymbol{G} be a group and $g \in G$. Then $o(g)$ is the order of the cyclic group generated by g, hence $o(g)||G|$ due to the Lagrange's theorem. According to Lemma 8.3 if a group G is cyclic that for every $m||G|$ there is a unique subgroup of \boldsymbol{G} of order m. The subgroup is necessarily cyclic, due to Lemma 8.2, and so generated by an element of order m. In general, finite groups may not have subgroups of order m for every divisor m of their order. For example, the alternating group of permutations $\boldsymbol{A}_{\mathbf{5}}$ has order $5!/ 2=60$ but it has no a subgroup of order 30 . Otherwise the subgroup would be normal due to Exercise 4.3 which would contradict the simplicity $\boldsymbol{A}_{\mathbf{5}}$ justified by Theorem 7.7. Nevertheless we prove that a finite group \boldsymbol{G} has an element (and consequently a subgroup) of order p for every prime divisor p of $|G|$.

Theorem 9.11 (Cauchy). Let \boldsymbol{G} be a finite group and p a prime dividing its order. Then there is $g \in G$ with $o(g)=p$.

Proof. We prove the theorem by induction on the order of \boldsymbol{G}. If $|G|=p$, then \boldsymbol{G} is necessarily cyclic and each of its non-unit elements has order p.

Suppose first that the group \boldsymbol{G} is Abelian (i.e, comutative ${ }^{3}$) If \boldsymbol{G} is cyclic, it has an element of order p due to Lemma 8.3. Otherwise \boldsymbol{G} has a proper non-trivial subgroup, say \boldsymbol{H}. Since $|G|=|G / H| \cdot|H|$ due to Lagrange's theorem, either $p||H|$ or $p||G / H|$. In the first case we are done by the induction hypothesis, since $|H|<|G|$. If the latter holds true, the factor group $\boldsymbol{G} / \boldsymbol{H}$ contains an element of order p again by the induction hypothesis. Therefore there is an element $g \in G \backslash H$ such that $g^{p} \in H$. Put $q=o\left(g^{p}\right)$ and observe that $o\left(g^{q}\right)=p$.

Now let \boldsymbol{G} be an arbitrary finite group. If there is a proper subgroup \boldsymbol{H} of \boldsymbol{G} such that $p||H|$, then \boldsymbol{H} contains an element of order p by the induction hypothesis. Otherwise $p \nmid\left|G_{g}\right|$, hence $p \mid\left[\boldsymbol{G}: \boldsymbol{G}_{g}\right]$, for all $g \in \Delta \backslash Z(\boldsymbol{G})$. Formula (9.6) gives that

$$
|Z(\boldsymbol{G})|=|G|-\sum_{g \in \Delta \backslash Z(\boldsymbol{G})}\left[\boldsymbol{G}: \boldsymbol{G}_{g}\right]
$$

Since the right hand side is divisible by p, we conclude that $p||Z(\boldsymbol{G})|$. Since the group $Z(\boldsymbol{G})$ is commutative, we are done by the previous paragraph.

There is another tricky proof of Theorem 9.11.

[^2]Proof. [Another proof of Theorem 9.11] Let X denote the set

$$
X:=\left\{\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle \in G^{p} \mid g_{0} \cdot g_{1} \cdots g_{p-1}=u_{\boldsymbol{G}}\right\}
$$

Observe that a tuple $\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle$ belongs to X if and only if

$$
g_{p-1}=\left(g_{0} \cdot g_{1} \cdots g_{p-2}\right)^{-1}=g_{p-2}^{-1} \cdot g_{p-3}^{-1} \cdots g_{0}^{-1}
$$

Therefore g_{p-1} is determined by the previous entrances $g_{0}, g_{1}, \ldots, g_{p-2}$, and these can be arbitrary. We infer that $|X|=|G|^{p-1}$.

Observe that the set X is closed under cyclic permutations. Indeed, if $\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle \in X$, equivalently $g_{0} \cdot g_{1} \cdots g_{p-1}=u_{\boldsymbol{G}}$, then $g_{1} \cdots g_{p-1} \cdot g_{0}=$ $g_{0}^{-1} \cdot\left(g_{0} \cdot g_{1} \cdots g_{p-1}\right) \cdot g_{0}=u_{\boldsymbol{G}}$, equivalently, $\left\langle g_{1}, \cdots, g_{p-1}, g_{0}\right\rangle \in X$.

Let the cyclic group \mathbb{Z}_{p} act on the set X by cyclic permutations, that is

$$
i \cdot\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle=\left\langle g_{i}, g_{1+_{p}} i, \ldots, g_{p-1+_{p} i}\right\rangle
$$

for all $i \in \mathbb{Z}_{p}$ and $\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle \in X$. The set X is a disjoint union of G-orbits. Therefore, picking a set Δ of representatives of the orbits, we have the equality

$$
\begin{equation*}
p^{p-1}=|X|=\sum_{\boldsymbol{g} \in \Delta}\left|\mathcal{O}_{\mathbb{Z}_{p}}(\boldsymbol{g})\right| \tag{9.7}
\end{equation*}
$$

Since the size of an orbit of a tuple $\boldsymbol{g}=\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle$ is the index of its stabilizer, it divides $\left|\mathbb{Z}_{p}\right|=p$. Therefore every orbit has either p elements or a single element. Let Y denote the set of p-tuples from X whose orbits are singleton. It follows from (9.7) that $p||Y|$.

Observe that $\left\langle g_{0}, g_{1}, \ldots, g_{p-1}\right\rangle \in Y$ if and only if $g_{0}=g_{1}=\cdots=g_{p-1}$ and $g_{0}^{p}=u_{\boldsymbol{G}}$. In particular, the tuple $\left\langle u_{\boldsymbol{G}}, u_{\boldsymbol{G}}, \ldots, u_{\boldsymbol{G}}\right\rangle$ belongs to Y. Therefore the set Y has at least p-elements. It follows that there is a non-unit element $g \in G$ with $g^{p}=u_{\boldsymbol{G}}$. We conclude that $o(g)=p$.

ExERCISES

Exercise 9.1. Let p be a prime number and \boldsymbol{G} a group of size p^{n} for some positive integer n. Prove that $a \boldsymbol{G}$-set X with $p \nmid|X|$ contains an element x such that $g \cdot x=x$ for all $g \in G$.

Exercise 9.2. Let p be a prime and \boldsymbol{G} a sub-group of the group of all automorphisms of a finitely generated vector space \boldsymbol{V} over the field \mathbb{Z}_{p}. Prove that if $|\boldsymbol{G}|=p^{n}$, for some $n \in \mathbb{N}$, then
(i) There is a non-zero vector $\boldsymbol{v} \in V$ such that $f(\boldsymbol{v})=\boldsymbol{v}$, for all $f \in G$.
(ii) There is a basis of \boldsymbol{V} such that all endomorphisms from \boldsymbol{G} are represented with respect to the bases by upper triangular matrices.

Exercise 9.3. Count the number of all colorings of a regular tetrahedron by n colors up to rotations.

Exercise 9.4. Suppose we color tiles of a chessboard by n colors. How many distinct boards we can obtain?

Exercise 9.5. Suppose that we are making necklaces each from k beads. How many distinct necklaces we can make when we use beads of n colors? How many distinct necklaces can be made from 5 blue and 5 red beads?

Exercise 9.6. Prove Lemma 9.4 and Corollary 9.5 directly without applying Lagrange's theorem.

Exercise 9.7. Let \boldsymbol{G} be a group. Prove that $\operatorname{Inn}(\boldsymbol{G}) \unlhd \operatorname{Aut}(\boldsymbol{G})$ and that $\operatorname{Inn}(\boldsymbol{G}) \simeq \boldsymbol{G} / Z(\boldsymbol{G})$.

[^0]: ${ }^{1}$ Some authors call \boldsymbol{G}_{x} the isotropy subgroup of x.

[^1]: ${ }^{2}$ Burnside's lemma is actually due to Frobenius (1887).

[^2]: ${ }^{3}$ Commutative groups are usually called Abelian groups in tribute to Norwegian mathematician Niels Henrik Abel (1802-1829).

