LECTURE 9 Groups acting on sets

PAVEL RŮŽIČKA

ABSTRACT. We study groups acting on sets. We call sets equipped with an action of a group G-sets. We define an orbit and a stabilizer of an element of a G-sets. We prove the Burnside's lemma and the class formula and we show some applications of these results. In particular, we introduce some ideas of the Pólya's theory of counting.

9.1. *G*-sets, orbits, and stabilizers. Let $G = (G, \cdot)$ be a group. An *action* of the group *G* on a set *X* is a homomorphism

$$\alpha \colon \boldsymbol{G} \to \boldsymbol{S}_X.$$

A set X equipped with an action of a group G on X is often referred to as a G-set.

Having fixed an action α of the group G on a set X, we put $\alpha(g)(x) = g \cdot x$, for all $g \in G$ and $x \in X$. Thus the action corresponds to the map $G \times X \to X$ given by $\langle g, x \rangle \mapsto g \cdot x$. It is easily seen from the definition of a group homomorphism that

- (i) $(f \cdot g) \cdot x = f \cdot (g \cdot x)$, for all $f, g \in G$ and all $x \in X$.
- (ii) $u_{\mathbf{G}} \cdot x = x$, for all $x \in X$.

On the other hand,

Lemma 9.1. Any map $G \times X \to X$ satisfying properties (i) and (ii) corresponds to an action of the group G on the set X.

Proof. For each $g \in G$ we define a map $\alpha(g) \colon X \to X$ by $\alpha(g)(x) = g \cdot x$, $x \in X$.

First we prove that $\alpha(g)$ is a bijection for all $g \in G$. Let $g \in G$ and $x \in X$. Then

$$g^{-1} \cdot \alpha(g)(x) = g^{-1} \cdot (g \cdot x) = (g^{-1} \cdot g) \cdot x = u_{\boldsymbol{G}} \cdot x = x,$$

hence the image $\alpha(g)(x)$ determines x, whence $\alpha(g)$ is one-to-one. Since

$$\alpha(g)(g^{-1}\cdot x) = g \cdot (g^{-1}\cdot x) = (g \cdot g^{-1}) \cdot x = u_{\boldsymbol{G}} \cdot x = x,$$

the map $\alpha(g)$ maps the set X onto X. We conclude that $\alpha(g)$ is a bijection, and so α is a map from **G** to S_X .

The Lecture and the tutorial took place in Malá strana, room S11, on December 4, 2018.

For all $f, g \in G$ and all $x \in X$ we have that

$$lpha(f\cdot g)(x)=(f\cdot g)\cdot x=f\cdot (g\cdot x)=lpha(f)(lpha(g)(x)),$$

hence $\alpha(f \cdot g) = \alpha(f) \circ \alpha(g)$. We conclude that $\alpha \colon \mathbf{G} \to \mathbf{S}_X$ is a group homomorphism. \Box

Let X be a **G**-set. For each $x \in X$, we set

$$G_x := \{ g \in G \mid g \cdot x = x \}.$$

Lemma 9.2. Let X be a G-set. The set G_x determines a subgroup G_x of G, for every $x \in X$.

Proof. A simple verification gives that

$$f\cdot x = g\cdot x = x \implies (f\cdot g)\cdot x = f\cdot (g\cdot x) = f\cdot x = x,$$

for all $f, g \in G$, and

$$g \cdot x = x \implies g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1} \cdot g) \cdot x = u_{\mathbf{G}} \cdot x = x,$$

where $a \in G$

for all $g \in G$.

We call the subgroup G_x the *stabilizer*¹ of x. Next we define

 $\mathcal{O}_{\boldsymbol{G}}(x) := \{ g \cdot x \mid g \in \boldsymbol{G} \}.$

The set $\mathcal{O}_{\boldsymbol{G}}(x)$ is called a *G*-orbit of x.

Lemma 9.3. Let X be a **G**-set. The binary relation $\sim_{\mathbf{G}}$ defined on the set X by $y \sim_{\mathbf{G}} x$ if $y = g \cdot x$ for some $g \in G$ is an equivalence on X and **G**-orbits correspond to blocks of $\sim_{\mathbf{G}}$.

Proof. Since $x = u_{\mathbf{G}} \cdot x$, the relation $\sim_{\mathbf{G}}$ is reflexive. If $y = g \cdot x$, then $x = u_{\mathbf{G}} \cdot x = (g^{-1} \cdot g) \cdot x = g^{-1} \cdot (g \cdot x) = g^{-1} \cdot y$, and so $\sim_{\mathbf{G}}$ is symmetric. Finally, if $x = f \cdot y$ and $y = g \cdot z$, then $x = f \cdot y = f \cdot (g \cdot z) = (f \cdot g) \cdot z$, hence $\sim_{\mathbf{G}}$ is transitive. We conclude that $\sim_{\mathbf{G}}$ is an equivalence on X. It is clear from the definition of \mathbf{G} -orbits that they correspond to blocks of $\sim_{\mathbf{G}}$. \Box

Lemma 9.4. Let X be a G-set and $x \in X$. Then

$$(9.1) \qquad \qquad |\mathcal{O}_{\boldsymbol{G}}(x)| = [\boldsymbol{G}:\boldsymbol{G}_x].$$

Proof. Observe that

$$f \cdot x = g \cdot x \iff g^{-1} \cdot f \in G_x,$$

for all $f, g \in G$. Applying Lemma 4.2, we see that elements of the **G**-orbit $\mathcal{O}_{\mathbf{G}}(x)$ correspond to left cosets of \mathbf{G}_x . Equation (9.1) readily follows. \Box

Corollary 9.5. Let X be a G-set and $x \in X$. Then

 $|G| = |\mathcal{O}_{\boldsymbol{G}}(x)| \cdot |G_x|.$

 $\mathbf{2}$

¹Some authors call G_x the *isotropy subgroup* of x.

9.2. Counting orbits. Let X be a G-set. We denote by X/G the set

$$X/\boldsymbol{G} := \{\mathcal{O}_{\boldsymbol{G}}(x) \mid x \in X\}$$

of all G-orbits of X.

Lemma 9.6. Let X be a G-set. Then

(9.1)
$$|X/G| = \frac{1}{|G|} \sum_{x \in X} |G_x|.$$

Proof. Let Δ be a set of representatives of G-orbits, i.e., Δ picks one element from each G-orbit. Then we have that

(9.2)
$$|X/G| = |\Delta| = \sum_{y \in \Delta} \frac{|\mathcal{O}_G(y)|}{|\mathcal{O}_G(y)|} = \sum_{y \in \Delta} \sum_{x \in \mathcal{O}_G(y)} \frac{1}{|\mathcal{O}_G(x)|} = \sum_{x \in G} \frac{1}{|\mathcal{O}_G(x)|}.$$

It follows from Corollary 9.5 that

$$\frac{1}{|\mathcal{O}_{\boldsymbol{G}}(x)|} = \frac{|G_x|}{|G|},$$

for all $x \in X$. We conclude from (9.2) that

$$|X/G| = \sum_{x \in G} \frac{1}{|\mathcal{O}_G(x)|} = \sum_{x \in G} \frac{|G_x|}{|G|} = \frac{1}{|G|} \sum_{x \in G} |G_x|.$$

For each $g \in G$ we define

$$X_g := \{ x \in X \mid g \cdot x = x \}.$$

Observe (see Figure 1) that

(9.3)
$$\sum_{x \in X} |G_x| = |\{\langle g, x \rangle \in G \times X \mid g \cdot x = x\}| = \sum_{g \in G} |X_g|.$$

Lemma 9.7 (Burnside's Lemma²). Let X be a G-set. Then

(9.4)
$$|X/\boldsymbol{G}| = \frac{1}{|G|} \sum_{g \in G} |X_g|$$

Proof. Apply Lemma 9.6 and equation (9.3).

Burnside's lemma can be elegantly applied to solve some combinatorial problems.

Let \mathcal{C} be a (finite) set of colors. By a \mathcal{C} -coloring of a set X we mean a map $\gamma: X \to \mathcal{C}$. We denote by ${}^{X}\mathcal{C}$ the set of all \mathcal{C} -colorings of the set X. A group G acting on the set X naturally acts on ${}^{X}\mathcal{C}$ via

(9.5)
$$(g \cdot \gamma)(x) = \gamma(g \cdot x), \text{ for all } x \in X,$$

for all $\langle g, \gamma \rangle \in G \times {}^X \mathcal{C}.$

 $^{^{2}}$ Burnside's lemma is actually due to Frobenius (1887).

FIGURE 1. The set $\{\langle g, x \rangle \mid g \cdot x = x\}$

Lemma 9.8. Let $\alpha: \mathbf{G} \to \mathbf{S}_X$ be an action of a group G on a set X and C a set of colors. Then

 $|^{\mathcal{C}}X_g| = |\mathcal{C}|^k,$

where k is the number of cycles of $\alpha(g) \in S_X$, for all $g \in G$.

Proof. Let $g \in G$ and γ be a \mathcal{C} -coloring of the set X. It follows from (9.5) that $g \cdot \gamma = \gamma$ if and only if $\gamma(x) = \gamma(g \cdot x)$, for all $x \in X$. This is equivalent to all elements of each cycle of $\alpha(g)$ having the same color. Therefore the size of ${}^{\mathcal{C}}X_g$ is the number of all possible colorings of cycles of g, which is $|\mathcal{C}|^k$.

Example 9.9. By coloring the faces of a cube by n colors, we can obtain exactly

$$\frac{n^2}{24} \left(n^4 + 3n^2 + 12n + 8 \right)$$

distinct cubes.

Proof. Let C be the set of n given colors. Two colorings of faces of a cube give identical cubes if and only they can be obtained from each other by

4

rotations. The group \mathbf{R} of all rotations of a cube acts on the set X of all faces of a cube (via the map $\alpha : \mathbf{R} \to \mathbf{S}_X$) and consequently \mathbf{R} acts on the set of all colorings of the faces by colors from \mathcal{C} . Therefore the number of distinct cubes obtained by coloring faces of a cube equals to the size of the set ${}^{\mathcal{C}}X/\mathbf{R}$ of all \mathbf{R} -orbits of ${}^{\mathcal{C}}X$. Conjugated rotations act on X as conjugated permutations and so they have the same type (see Theorem 5.4), in particular, they have the same number of cycles. We have the following rotation of a cube:

- (i) 1 identity u which corresponds to the type $\langle 6, 0, 0, 0 \rangle$, and so $|{}^{\mathcal{C}}X_u| = n^6$,
- (ii) 3 rotation p over the axes connecting the centers of two opposite edges over the angle 180°. Then type $\alpha(p) = \langle 2, 2, 0, 0 \rangle$, and so $|{}^{\mathcal{C}}X_p| = n^4$,
- (iii) 6 flips r, that is, rotations over axes connecting the centers of two opposite faces over the angle 180°. Then type $\alpha(r) = \langle 0, 3, 0, 0 \rangle$, and so $|{}^{\mathcal{C}}X_r| = n^3$,
- (iv) 8 rotations s over diagonals of the cube. Then type $\alpha(s) = \langle 0, 0, 2, 0 \rangle$, and so $|{}^{\mathcal{C}}X_s| = n^2$,
- (v) 6 rotations t over axes connecting the centers of two opposite faces over the angle 90°. Then type $\alpha(t) = \langle 2, 0, 0, 1 \rangle$, and so $|^{\mathcal{C}}X_t| = n^3$.

According to Example 6.12 the group \mathbf{R} is isomorphic to S_4 and so it has 24 elements. Applying Burnside's lemma we compute that

$$|^{\mathcal{C}}X/\mathbf{R}| = \frac{1}{24} \left(n^6 + 3n^4 + 6n^3 + 8n^2 + 6n^3 \right) = \frac{n^2}{24} \left(n^4 + 3n^2 + 12n + 8 \right).$$

9.3. Translations and the Lagrange's theorem revised. We denote by $\mathcal{P}(X)$ the set of all subsets of a set X. Given a group G, we set

$$\Lambda(g)(X) := g \cdot X, \quad \text{for all } g \in G, X \subseteq G.$$

Thus $\Lambda(g): \mathcal{P}(G) \to \mathcal{P}(G)$ is a map with an inverse $\Lambda(g^{-1})$. It is straightforward to verify that $\Lambda: G \to S_{\mathcal{P}(G)}$ is an action of the group G on the set $\mathcal{P}(X)$.

Let H be a subgroup of the group G. The stabilizer

$$\boldsymbol{G}_H = \{ g \in G \mid g \cdot H = H \}$$

is the group H itself and the G-orbit of H is the set

$$\mathcal{O}_{\boldsymbol{G}}(H) = \{g \cdot H \mid g \in G\}$$

of all left cosets of H. The Lagrange's theorem is then follows from Lemma 9.4 and Corollary 9.5, indeed

$$|G| = |\mathcal{O}_{\boldsymbol{G}}(H)| \cdot |G_H| = [\boldsymbol{G} : \boldsymbol{H}] \cdot |H|.$$

P. RŮŽIČKA

9.4. Conjugations and the class formula. Let G be a group. An isomorphism $G \to G$ is called an *automorphism* of the group G. It is straightforward that automorphisms of G are closed under composition and inverses, and so they form a group which we denote by Aut(G).

Recall that ${}^fg = f \cdot g \cdot f^{-1}$ denotes the conjugation of an element $g \in G$ by an element $f \in G$. Observe that

(9.1)
$${}^{f}(g \cdot h) = f \cdot (g \cdot h) \cdot f^{-1} = (f \cdot g \cdot f^{-1})(f \cdot h \cdot f^{-1}) = {}^{f}g \cdot {}^{f}h$$

and

(9.2)
$${}^{f \cdot g}h = (f \cdot g) \cdot h \cdot (f \cdot g)^{-1} = f \cdot g \cdot h \cdot g^{-1} \cdot f^{-1} = {}^{f}({}^{g}h),$$

for all $f, g, h \in G$. It follows from (9.1) and (9.2) that the conjugation by an element $f \in G$ induces an automorphism G with the inverse given by the conjugation by f^{-1} . The automorphisms induced by conjugations are called *inner automorphisms*. They form a subgroup of $\operatorname{Aut}(G)$ which we denote by $\operatorname{Inn}(G)$. Moreover, it follows from (9.2) that the map $\phi \colon G \to \operatorname{Aut}(G)$ given by $f \mapsto (g \mapsto {}^{f}g)$ corresponds to the action

$$\begin{array}{l} G \times G \to G \\ \langle f, g \rangle \mapsto {}^{f}g \end{array}$$

of the group G on the set G. It is straightforward to see that the image of ϕ is the subgroup Inn(G) of all inner automorphisms and the kernel of ϕ is the center of G (cf. 6.2).

Let Δ be a set of representatives of orbits of ϕ . The orbits of ϕ correspond to conjugacy classes of G. Since G is a disjoint union of the conjugacy classes, we have that

(9.3)
$$|G| = \sum_{g \in \Delta} |\mathcal{O}_{G}(g)|.$$

Lemma 9.10. Let G be a group acting on itself by conjugation. Then

$$Z(\boldsymbol{G}) = \{g \in G \mid \mathcal{O}_{\boldsymbol{G}}(g) = \{g\}\}.$$

Proof. Let $g \in G$. Then

$${}^{f}g = g \iff f \cdot g \cdot f^{-1} = g \iff f \cdot g = g \cdot f,$$

for all $f \in G$. Therefore ${}^{f}g = g$ for all $f \in G$ if and only if $g \in Z(G)$. \Box

It follows that $Z(\mathbf{G}) \subseteq \Delta$ and we infer from (9.3) that

(9.4)
$$|G| = |Z(G)| + \sum_{g \in \Delta \setminus Z(G)} |\mathcal{O}_G(g)|.$$

Let $u_{\mathbf{G}}$ denote the trivial subgroup of \mathbf{G} . It follows from Lemma 9.4 that $|\mathcal{O}_{\mathbf{G}}(g)| = [\mathbf{G} : \mathbf{G}_g]$, for all $g \in G$. This allow us to reformulate (9.3) as

(9.5)
$$[\boldsymbol{G}:\boldsymbol{u}_{\boldsymbol{G}}] = \sum_{g \in \Delta} [\boldsymbol{G}:\boldsymbol{G}_g]$$

6

and (9.4) can be stated in the form

(9.6)
$$|G| = |Z(G)| + \sum_{g \in \Delta \setminus Z(G)} [G : G_g].$$

Equation (9.5) is often referred to as *the class formula*. We show some non-trivial applications of (9.6) which, indeed, is a version of the class formula.

Let G be a group and $g \in G$. Then o(g) is the order of the cyclic group generated by g, hence $o(g) \mid |G|$ due to the Lagrange's theorem. According to Lemma 8.3 if a group G is cyclic that for every $m \mid |G|$ there is a unique subgroup of G of order m. The subgroup is necessarily cyclic, due to Lemma 8.2, and so generated by an element of order m. In general, finite groups may not have subgroups of order m for every divisor m of their order. For example, the alternating group of permutations A_5 has order 5!/2 = 60 but it has no a subgroup of order 30. Otherwise the subgroup would be normal due to Exercise 4.3 which would contradict the simplicity A_5 justified by Theorem 7.7. Nevertheless we prove that a finite group Ghas an element (and consequently a subgroup) of order p for every prime divisor p of |G|.

Theorem 9.11 (Cauchy). Let G be a finite group and p a prime dividing its order. Then there is $g \in G$ with o(g) = p.

Proof. We prove the theorem by induction on the order of G. If |G| = p, then G is necessarily cyclic and each of its non-unit elements has order p.

Suppose first that the group G is Abelian (i.e, comutative³) If G is cyclic, it has an element of order p due to Lemma 8.3. Otherwise G has a proper non-trivial subgroup, say H. Since $|G| = |G/H| \cdot |H|$ due to Lagrange's theorem, either $p \mid |H|$ or $p \mid |G/H|$. In the first case we are done by the induction hypothesis, since |H| < |G|. If the latter holds true, the factor group G/H contains an element of order p again by the induction hypothesis. Therefore there is an element $g \in G \setminus H$ such that $g^p \in H$. Put $q = o(g^p)$ and observe that $o(g^q) = p$.

Now let G be an arbitrary finite group. If there is a proper subgroup H of G such that $p \mid |H|$, then H contains an element of order p by the induction hypothesis. Otherwise $p \nmid |G_g|$, hence $p \mid [G : G_g]$, for all $g \in \Delta \setminus Z(G)$. Formula (9.6) gives that

$$|Z(\boldsymbol{G})| = |G| - \sum_{g \in \Delta \setminus Z(\boldsymbol{G})} [\boldsymbol{G} : \boldsymbol{G}_g].$$

Since the right hand side is divisible by p, we conclude that $p \mid |Z(G)|$. Since the group Z(G) is commutative, we are done by the previous paragraph. \Box

There is another tricky proof of Theorem 9.11.

³Commutative groups are usually called *Abelian groups* in tribute to Norwegian mathematician Niels Henrik Abel (1802 - 1829).

P. RŮŽIČKA

Proof. [Another proof of Theorem 9.11] Let X denote the set

$$X := \{ \langle g_0, g_1, \dots, g_{p-1} \rangle \in G^p \mid g_0 \cdot g_1 \cdots g_{p-1} = u_{\boldsymbol{G}} \}.$$

Observe that a tuple $\langle g_0, g_1, \ldots, g_{p-1} \rangle$ belongs to X if and only if

$$g_{p-1} = (g_0 \cdot g_1 \cdots g_{p-2})^{-1} = g_{p-2}^{-1} \cdot g_{p-3}^{-1} \cdots g_0^{-1}$$

Therefore g_{p-1} is determined by the previous entrances $g_0, g_1, \ldots, g_{p-2}$, and these can be arbitrary. We infer that $|X| = |G|^{p-1}$.

Observe that the set X is closed under cyclic permutations. Indeed, if $\langle g_0, g_1, \ldots, g_{p-1} \rangle \in X$, equivalently $g_0 \cdot g_1 \cdots g_{p-1} = u_{\mathbf{G}}$, then $g_1 \cdots g_{p-1} \cdot g_0 = g_0^{-1} \cdot (g_0 \cdot g_1 \cdots g_{p-1}) \cdot g_0 = u_{\mathbf{G}}$, equivalently, $\langle g_1, \cdots, g_{p-1}, g_0 \rangle \in X$.

Let the cyclic group \mathbb{Z}_p act on the set X by cyclic permutations, that is

$$i \cdot \langle g_0, g_1, \dots, g_{p-1} \rangle = \langle g_i, g_{1+pi}, \dots, g_{p-1+pi} \rangle,$$

for all $i \in \mathbb{Z}_p$ and $\langle g_0, g_1, \ldots, g_{p-1} \rangle \in X$. The set X is a disjoint union of G-orbits. Therefore, picking a set Δ of representatives of the orbits, we have the equality

(9.7)
$$p^{p-1} = |X| = \sum_{\boldsymbol{g} \in \Delta} |\mathcal{O}_{\mathbb{Z}_p}(\boldsymbol{g})|.$$

Since the size of an orbit of a tuple $\boldsymbol{g} = \langle g_0, g_1, \ldots, g_{p-1} \rangle$ is the index of its stabilizer, it divides $|\mathbb{Z}_p| = p$. Therefore every orbit has either p elements or a single element. Let Y denote the set of p-tuples from X whose orbits are singleton. It follows from (9.7) that $p \mid |Y|$.

Observe that $\langle g_0, g_1, \ldots, g_{p-1} \rangle \in Y$ if and only if $g_0 = g_1 = \cdots = g_{p-1}$ and $g_0^p = u_{\mathbf{G}}$. In particular, the tuple $\langle u_{\mathbf{G}}, u_{\mathbf{G}}, \ldots, u_{\mathbf{G}} \rangle$ belongs to Y. Therefore the set Y has at least p-elements. It follows that there is a non-unit element $g \in G$ with $g^p = u_{\mathbf{G}}$. We conclude that o(g) = p. \Box

EXERCISES

Exercise 9.1. Let p be a prime number and G a group of size p^n for some positive integer n. Prove that a G-set X with $p \nmid |X|$ contains an element x such that $g \cdot x = x$ for all $g \in G$.

Exercise 9.2. Let p be a prime and G a sub-group of the group of all automorphisms of a finitely generated vector space V over the field \mathbb{Z}_p . Prove that if $|G| = p^n$, for some $n \in \mathbb{N}$, then

- (i) There is a non-zero vector $\boldsymbol{v} \in V$ such that $f(\boldsymbol{v}) = \boldsymbol{v}$, for all $f \in G$.
- (ii) There is a basis of V such that all endomorphisms from G are represented with respect to the bases by upper triangular matrices.

Exercise 9.3. Count the number of all colorings of a regular tetrahedron by n colors up to rotations.

Exercise 9.4. Suppose we color tiles of a chessboard by n colors. How many distinct boards we can obtain?

Exercise 9.5. Suppose that we are making necklaces each from k beads. How many distinct necklaces we can make when we use beads of n colors? How many distinct necklaces can be made from 5 blue and 5 red beads?

Exercise 9.6. Prove Lemma 9.4 and Corollary 9.5 directly without applying Lagrange's theorem.

Exercise 9.7. Let G be a group. Prove that $\text{Inn}(G) \trianglelefteq \text{Aut}(G)$ and that $\text{Inn}(G) \simeq G/Z(G)$.