
LECTURE 9

Groups acting on sets

PAVEL RŮŽIČKA

Abstract. We study groups acting on sets. We call sets equipped
with an action of a group G-sets. We define an orbit and a stabilizer of
an element of a G-sets. We prove the Burnside’s lemma and the class
formula and we show some applications of these results. In particular,
we introduce some ideas of the Pólya’s theory of counting.

9.1. G-sets, orbits, and stabilizers. Let G = (G, ·) be a group. An
action of the group G on a set X is a homomorphism

α : G → SX .

A set X equipped with an action of a group G on X is often referred to as
a G-set .

Having fixed an action α of the groupG on a setX, we put α(g)(x) = g ·x,
for all g ∈ G and x ∈ X. Thus the action corresponds to the mapG×X → X
given by 〈g, x〉 7→ g · x. It is easily seen from the definition of a group
homomorphism that

(i) (f · g) · x = f · (g · x), for all f, g ∈ G and all x ∈ X.
(ii) uG · x = x, for all x ∈ X.

On the other hand,

Lemma 9.1. Any map G×X → X satisfying properties (i) and (ii) corre-
sponds to an action of the group G on the set X.

Proof. For each g ∈ G we define a map α(g) : X → X by α(g)(x) = g · x,
x ∈ X.

First we prove that α(g) is a bijection for all g ∈ G. Let g ∈ G and x ∈ X.
Then

g−1 · α(g)(x) = g−1 · (g · x) = (g−1 · g) · x = uG · x = x,

hence the image α(g)(x) determines x, whence α(g) is one-to-one. Since

α(g)(g−1 · x) = g · (g−1 · x) = (g · g−1) · x = uG · x = x,

the map α(g) maps the set X onto X. We conclude that α(g) is a bijection,
and so α is a map from G to SX .
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For all f, g ∈ G and all x ∈ X we have that

α(f · g)(x) = (f · g) · x = f · (g · x) = α(f)(α(g)(x)),

hence α(f · g) = α(f) ◦ α(g). We conclude that α : G → SX is a group
homomorphism. �

Let X be a G-set. For each x ∈ X, we set

Gx := {g ∈ G | g · x = x}.

Lemma 9.2. Let X be a G-set. The set Gx determines a subgroup Gx of
G, for every x ∈ X.

Proof. A simple verification gives that

f · x = g · x = x =⇒ (f · g) · x = f · (g · x) = f · x = x,

for all f, g ∈ G, and

g · x = x =⇒ g−1 · x = g−1 · (g · x) = (g−1 · g) · x = uG · x = x,

for all g ∈ G. �

We call the subgroup Gx the stabilizer1 of x. Next we define

OG(x) := {g · x | g ∈ G}.

The set OG(x) is called a G-orbit of x.

Lemma 9.3. Let X be a G-set. The binary relation ∼G defined on the
set X by y ∼G x if y = g · x for some g ∈ G is an equivalence on X and
G-orbits correspond to blocks of ∼G.

Proof. Since x = uG · x, the relation ∼G is reflexive. If y = g · x, then
x = uG · x = (g−1 · g) · x = g−1 · (g · x) = g−1 · y, and so ∼G is symmetric.
Finally, if x = f · y and y = g · z, then x = f · y = f · (g · z) = (f · g) · z, hence
∼G is transitive. We conclude that ∼G is an equivalence on X. It is clear
from the definition of G-orbits that they correspond to blocks of ∼G. �

Lemma 9.4. Let X be a G-set and x ∈ X. Then

(9.1) |OG(x)| = [G : Gx].

Proof. Observe that

f · x = g · x ⇐⇒ g−1 · f ∈ Gx,

for all f, g ∈ G. Applying Lemma 4.2, we see that elements of the G-orbit
OG(x) correspond to left cosets of Gx. Equation (9.1) readily follows. �

Corollary 9.5. Let X be a G-set and x ∈ X. Then

|G| = |OG(x)| · |Gx|.

1Some authors call Gx the isotropy subgroup of x.
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9.2. Counting orbits. Let X be a G-set. We denote by X/G the set

X/G := {OG(x) | x ∈ X}

of all G-orbits of X.

Lemma 9.6. Let X be a G-set. Then

(9.1) |X/G| =
1

|G|

∑

x∈X

|Gx|.

Proof. Let ∆ be a set of representatives ofG-orbits, i.e., ∆ picks one element
from each G-orbit. Then we have that

(9.2) |X/G| = |∆| =
∑

y∈∆

|OG(y)|

|OG(y)|
=

∑

y∈∆

∑

x∈OG(y)

1

|OG(x)|
=

∑

x∈G

1

|OG(x)|
.

It follows from Corollary 9.5 that

1

|OG(x)|
=

|Gx|

|G|
,

for all x ∈ X. We conclude from (9.2) that

|X/G| =
∑

x∈G

1

|OG(x)|
=

∑

x∈G

|Gx|

|G|
=

1

|G|

∑

x∈G

|Gx|.

�

For each g ∈ G we define

Xg := {x ∈ X | g · x = x}.

Observe (see Figure 1) that

(9.3)
∑

x∈X

|Gx| = |{〈g, x〉 ∈ G×X | g · x = x}| =
∑

g∈G

|Xg|.

Lemma 9.7 (Burnside’s Lemma2). Let X be a G-set. Then

(9.4) |X/G| =
1

|G|

∑

g∈G

|Xg|.

Proof. Apply Lemma 9.6 and equation (9.3). �

Burnside’s lemma can be elegantly applied to solve some combinatorial
problems.

Let C be a (finite) set of colors. By a C-coloring of a set X we mean a
map γ : X → C. We denote by XC the set of all C-colorings of the set X. A
group G acting on the set X naturally acts on XC via

(9.5) (g · γ)(x) = γ(g · x), for all x ∈ X,

for all 〈g, γ〉 ∈ G× XC.

2Burnside’s lemma is actually due to Frobenius (1887).
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{〈g, x〉 | g · x = x}
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Xg

Figure 1. The set {〈g, x〉 | g · x = x}

Lemma 9.8. Let α : G → SX be an action of a group G on a set X and C
a set of colors. Then

|CXg| = |C|k,

where k is the number of cycles of α(g) ∈ SX , for all g ∈ G.

Proof. Let g ∈ G and γ be a C-coloring of the set X. It follows from (9.5)
that g · γ = γ if and only if γ(x) = γ(g · x), for all x ∈ X.This is equivalent
to all elements of each cycle of α(g) having the same color. Therefore the
size of CXg is the number of all possible colorings of cycles of g, which is

|C|k. �

Example 9.9. By coloring the faces of a cube by n colors, we can obtain
exactly

n2

24

(

n4 + 3n2 + 12n+ 8
)

distinct cubes.

Proof. Let C be the set of n given colors. Two colorings of faces of a cube
give identical cubes if and only they can be obtained from each other by
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rotations. The group R of all rotations of a cube acts on the set X of all
faces of a cube (via the map α : R → SX) and consequently R acts on
the set of all colorings of the faces by colors from C. Therefore the number
of distinct cubes obtained by coloring faces of a cube equals to the size
of the set CX/R of all R-orbits of CX. Conjugated rotations act on X as
conjugated permutations and so they have the same type (see Theorem 5.4),
in particular, they have the same number of cycles. We have the following
rotation of a cube:

(i) 1 identity u which corresponds to the type 〈6, 0, 0, 0〉, and so |CXu| =
n6,

(ii) 3 rotation p over the axes connecting the centers of two opposite
edges over the angle 180o. Then typeα(p) = 〈2, 2, 0, 0〉, and so
|CXp| = n4,

(iii) 6 flips r, that is, rotations over axes connecting the centers of two
opposite faces over the angle 180o. Then typeα(r) = 〈0, 3, 0, 0〉,
and so |CXr| = n3,

(iv) 8 rotations s over diagonals of the cube. Then typeα(s) = 〈0, 0, 2, 0〉,
and so |CXs| = n2,

(v) 6 rotations t over axes connecting the centers of two opposite faces
over the angle 90o. Then typeα(t) = 〈2, 0, 0, 1〉, and so |CXt| = n3.

According to Example 6.12 the group R is isomorphic to S4 and so it has
24 elements. Applying Burnside’s lemma we compute that

|CX/R| =
1

24

(

n6 + 3n4 + 6n3 + 8n2 + 6n3
)

=
n2

24

(

n4 + 3n2 + 12n+ 8
)

.

�

9.3. Translations and the Lagrange’s theorem revised. We denote by
P(X) the set of all subsets of a set X. Given a group G, we set

Λ(g)(X) := g ·X, for all g ∈ G,X ⊆ G.

Thus Λ(g) : P(G) → P(G) is a map with an inverse Λ(g−1). It is straight-
forward to verify that Λ: G → SP(G) is an action of the group G on the set
P(X).

Let H be a subgroup of the group G. The stabilizer

GH = {g ∈ G | g ·H = H}

is the group H itself and the G-orbit of H is the set

OG(H) = {g ·H | g ∈ G}

of all left cosets ofH. The Lagrange’s theorem is then follows from Lemma 9.4
and Corollary 9.5, indeed

|G| = |OG(H)| · |GH | = [G : H] · |H|.
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9.4. Conjugations and the class formula. Let G be a group. An iso-
morphism G → G is called an automorphism of the group G. It is straight-
forward that automorphisms ofG are closed under composition and inverses,
and so they form a group which we denote by Aut(G).

Recall that fg = f · g · f−1 denotes the conjugation of an element g ∈ G
by an element f ∈ G. Observe that

(9.1) f (g · h) = f · (g · h) · f−1 = (f · g · f−1)(f · h · f−1) = fg · fh

and

(9.2) f ·gh = (f · g) · h · (f · g)−1 = f · g · h · g−1 · f−1 = f (gh),

for all f, g, h ∈ G. It follows from (9.1) and (9.2) that the conjugation by an
element f ∈ G induces an automorphism G with the inverse given by the
conjugation by f−1. The automorphisms induced by conjugations are called
inner automorphisms. They form a subgroup of Aut(G) which we denote
by Inn(G). Moreover, it follows from (9.2) that the map φ : G → Aut(G)
given by f 7→ (g 7→ fg) corresponds to the action

G×G → G

〈f, g〉 7→ fg

of the group G on the set G. It is straightforward to see that the image of
φ is the subgroup Inn(G) of all inner automorphisms and the kernel of φ is
the center of G (cf. 6.2).

Let ∆ be a set of representatives of orbits of φ. The orbits of φ correspond
to conjugacy classes of G. Since G is a disjoint union of the conjugacy
classes, we have that

(9.3) |G| =
∑

g∈∆

|OG(g)|.

Lemma 9.10. Let G be a group acting on itself by conjugation. Then

Z(G) = {g ∈ G | OG(g) = {g}}.

Proof. Let g ∈ G. Then

fg = g ⇐⇒ f · g · f−1 = g ⇐⇒ f · g = g · f,

for all f ∈ G. Therefore fg = g for all f ∈ G if and only if g ∈ Z(G). �

It follows that Z(G) ⊆ ∆ and we infer from (9.3) that

(9.4) |G| = |Z(G)|+
∑

g∈∆\Z(G)

|OG(g)|.

Let uG denote the trivial subgroup of G. It follows from Lemma 9.4 that
|OG(g)| = [G : Gg], for all g ∈ G. This allow us to reformulate (9.3) as

(9.5) [G : uG] =
∑

g∈∆

[G : Gg]
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and (9.4) can be stated in the form

(9.6) |G| = |Z(G)|+
∑

g∈∆\Z(G)

[G : Gg].

Equation (9.5) is often referred to as the class formula. We show some non-
trivial applications of (9.6) which, indeed, is a version of the class formula.

Let G be a group and g ∈ G. Then o(g) is the order of the cyclic
group generated by g, hence o(g) | |G| due to the Lagrange’s theorem.
According to Lemma 8.3 if a group G is cyclic that for every m | |G| there
is a unique subgroup of G of order m. The subgroup is necessarily cyclic,
due to Lemma 8.2, and so generated by an element of order m. In general,
finite groups may not have subgroups of order m for every divisor m of their
order. For example, the alternating group of permutations A5 has order
5!/2 = 60 but it has no a subgroup of order 30. Otherwise the subgroup
would be normal due to Exercise 4.3 which would contradict the simplicity
A5 justified by Theorem 7.7. Nevertheless we prove that a finite group G
has an element (and consequently a subgroup) of order p for every prime
divisor p of |G|.

Theorem 9.11 (Cauchy). Let G be a finite group and p a prime dividing
its order. Then there is g ∈ G with o(g) = p.

Proof. We prove the theorem by induction on the order of G. If |G| = p,
then G is necessarily cyclic and each of its non-unit elements has order p.

Suppose first that the group G is Abelian (i.e, comutative3) If G is cyclic,
it has an element of order p due to Lemma 8.3. Otherwise G has a proper
non-trivial subgroup, say H. Since |G| = |G/H| · |H| due to Lagrange’s
theorem, either p | |H| or p | |G/H|. In the first case we are done by
the induction hypothesis, since |H| < |G|. If the latter holds true, the
factor group G/H contains an element of order p again by the induction
hypothesis. Therefore there is an element g ∈ G \H such that gp ∈ H. Put
q = o(gp) and observe that o(gq) = p.

Now let G be an arbitrary finite group. If there is a proper subgroup H of
G such that p | |H|, then H contains an element of order p by the induction
hypothesis. Otherwise p ∤ |Gg|, hence p | [G : Gg], for all g ∈ ∆ \ Z(G).
Formula (9.6) gives that

|Z(G)| = |G| −
∑

g∈∆\Z(G)

[G : Gg].

Since the right hand side is divisible by p, we conclude that p | |Z(G)|. Since
the group Z(G) is commutative, we are done by the previous paragraph. �

There is another tricky proof of Theorem 9.11.

3Commutative groups are usually called Abelian groups in tribute to Norwegian math-
ematician Niels Henrik Abel (1802 - 1829).
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Proof. [Another proof of Theorem 9.11] Let X denote the set

X := {〈g0, g1, . . . , gp−1〉 ∈ Gp | g0 · g1 · · · gp−1 = uG}.

Observe that a tuple 〈g0, g1, . . . , gp−1〉 belongs to X if and only if

gp−1 = (g0 · g1 · · · gp−2)
−1 = g−1

p−2 · g
−1
p−3 · · · g

−1
0 .

Therefore gp−1 is determined by the previous entrances g0, g1, . . . , gp−2, and
these can be arbitrary. We infer that |X| = |G|p−1.

Observe that the set X is closed under cyclic permutations. Indeed, if
〈g0, g1, . . . , gp−1〉 ∈ X, equivalently g0 ·g1 · · · gp−1 = uG, then g1 · · · gp−1 ·g0 =

g−1
0 · (g0 · g1 · · · gp−1) · g0 = uG, equivalently, 〈g1, · · · , gp−1, g0〉 ∈ X.
Let the cyclic group Zp act on the set X by cyclic permutations, that is

i · 〈g0, g1, . . . , gp−1〉 = 〈gi, g1+pi, . . . , gp−1+pi〉,

for all i ∈ Zp and 〈g0, g1, . . . , gp−1〉 ∈ X. The set X is a disjoint union of
G-orbits. Therefore, picking a set ∆ of representatives of the orbits, we have
the equality

(9.7) pp−1 = |X| =
∑

ggg∈∆

|OZp
(ggg)|.

Since the size of an orbit of a tuple ggg = 〈g0, g1, . . . , gp−1〉 is the index of its
stabilizer, it divides |Zp| = p. Therefore every orbit has either p elements or
a single element. Let Y denote the set of p-tuples from X whose orbits are
singleton. It follows from (9.7) that p | |Y |.

Observe that 〈g0, g1, . . . , gp−1〉 ∈ Y if and only if g0 = g1 = · · · = gp−1 and
gp0 = uG. In particular, the tuple 〈uG, uG, . . . , uG〉 belongs to Y . Therefore
the set Y has at least p-elements. It follows that there is a non-unit element
g ∈ G with gp = uG. We conclude that o(g) = p. �

Exercises

Exercise 9.1. Let p be a prime number and G a group of size pn for some
positive integer n. Prove that a G-set X with p ∤ |X| contains an element x
such that g · x = x for all g ∈ G.

Exercise 9.2. Let p be a prime and G a sub-group of the group of all
automorphisms of a finitely generated vector space V over the field Zp. Prove
that if |G| = pn, for some n ∈ N, then

(i) There is a non-zero vector vvv ∈ V such that f(vvv) = vvv, for all f ∈ G.
(ii) There is a basis of V such that all endomorphisms from G are

represented with respect to the bases by upper triangular matrices.

Exercise 9.3. Count the number of all colorings of a regular tetrahedron by
n colors up to rotations.

Exercise 9.4. Suppose we color tiles of a chessboard by n colors. How many
distinct boards we can obtain?
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Exercise 9.5. Suppose that we are making necklaces each from k beads.
How many distinct necklaces we can make when we use beads of n colors?
How many distinct necklaces can be made from 5 blue and 5 red beads?

Exercise 9.6. Prove Lemma 9.4 and Corollary 9.5 directly without applying
Lagrange’s theorem.

Exercise 9.7. Let G be a group. Prove that Inn(G) E Aut(G) and that
Inn(G) ≃ G/Z(G).


