
LECTURE 8

Cyclic groups and the Euler’s function

PAVEL RŮŽIČKA

Abstract. We characterize cyclic groups up to isomorphism. We prove
that a subgroup and a factor group of a cyclic group is cyclic. We prove
that a finite cyclic group contains a unique subgroup of order m for
every divisor m of its order. We study orders of products of commuting
elements of a group. We prove that a finite subgroup of a multiplicative
group of all non-zero elements of a field is cyclic. Then we will study the
sets of generators of cyclic groups. We will compute the Euler function
and we will prove the Euler’s, the (small) Fermat’s, and the Wilson’s
theorems.

8.1. Congruence modulo n. Let Z denote the group of all integers with
the operation of addition. Since the group is commutative, all subgroups of
Z are normal. According to Exercise 7.2 all subgroups of Z are of the form
n · Z for a positive integer n.

Let a, b, and n be integers. We say integer a is congruent to b modulo n,
and write

a ≡ b (mod n)

if n | a − b. Observe that a ≡ b (mod n) if and only of a − b ∈ n · Z.
Therefore a is congruent to b modulo n if and only if a ≡n·Z b (cf. Lesson
4). It follows from Lemma 4.3 that the binary relation of being congruent
modulo n is an equivalence on Z.

8.2. Transversals. Let G be a group and H a subgroup of the group G.
A left (respectively right) transversal for H is a set picking one element
from each left (respectively right) coset of H. If H is a normal subgroup of
G, then left and right transversals for H coincide. Clearly the size of a left
(and right) transversal equals to the index of H in G.

Let G be a group, N a normal subgroup of G, and T a transversal for N .
We define a binary operation ·N on T so that s·N t ≡N s·t, i.e, s·N t is the T -
representative of the coset (s·t)·N . Thus we get a group structure on the set
T . The mapping τN : T → G/N given by t 7→ t ·N induces an isomorphism
of the groups (T, ·N ) and G/N . The existence of the isomorphism allows
us to replace the factor group G/N by the group (T, ·N ), which is usefully
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especially when we have an efficient algorithm that computes s ·N t for all
s, t ∈ T .

The set {0, 1, . . . , n − 1} forms a transversal for the subgroup n · Z in
the additive group Z of all integers. Let +n denote the binary operation
on the transversal {0, 1, . . . , n − 1} as above, i.e., 0 ≤ a +n b ≤ n − 1 and
a +n b ≡ a + b (mod n) for all a, b ∈ {0, 1, . . . , n − 1}. We will call the
operation +n addition modulo n. We set

Zn := ({0, 1, . . . , n− 1},+n).

For an integer z and a positive integer n let z mod n denote the element from
{0, 1, . . . , n − 1} such that z mod n ≡ z (mod n). In other words z mod n
is the remainder of z when dividing by n. The map

πn : Z → Zn

z 7→ z mod n

is easily seen to be a group epimorphism with kernel n · Z. Due to the
Homomorphism theorem there is a unique isomorphism σ : Z/n · Z → Zn

satisfying πn = σ ◦ πZ/n·Z. Notice that σ is inverse to the isomorphism τ
introduced above.

8.3. Cyclic groups. Let us define the order of a finite group G to be the
number of elements of G and let us set the order of an infinite group to be
∞. A group C is said to be cyclic provided that C is generated by a single
element. We will use the notation Cg for the cyclic group generated by g.

Observe that all elements of Cg are powers of g. The the map εg : Z → Cg

given by z 7→ gz is a group epimorphism. Indeed gy+z = gy · gz for all
y, z ∈ Z. According to the First isomorphism theorem we have that Cg ≃
Z/ ker εg. It follows from Exercise 7.2 that either ker εg = 0, hence Cg ≃ Z
or ker εg = n · Z for some positive integer n, whence Cg ≃ Z/n · Z ≃ Zn.
In the latter case, n is the order of the cyclic group Cg. Therefore

Theorem 8.1. Up to isomorphism the cyclic groups are Z and Zn, n ∈ N.
The group Z is of an infinite order while the order of Zn is n. In particular,

cyclic groups are determined by their order up to isomorphism.

Lemma 8.2. Every factor-group and every subgroup of a cyclic group is

cyclic.

Proof. Let C is a cyclic group generated by an element g. Every factor
group of C is generated by the coset of g. Therefore the factor group is
cyclic. It follows from Exercise 7.2 that all non-trivial subgroups of Zare of
the form n ·Z for some positive integer n, and so isomorphic to Z. Therefore
all subgroups of the group Z are cyclic. Let D be a subgroup of the cyclic
group C. Then ε−1

g (D) is a subgroup Z due to Lemma 6.6 and D is the

homomorphic image of ε−1
g (D). Therefore D is a homomorphic image of a

cyclic group, and so the subgroup D is cyclic. �
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Lemma 8.3. Let C be a cyclic group of a finite order n. For every divisor

m of n there is a unique subgroup of C of order m.

Proof. Let g be a generator of C and εg : Z → C an epimorphism such that
εg(1) = g. From |C| = n we get that kerϕ = n ·Z. According to Lemma 6.7
all subgroups of C are of the form εg(k · Z), where n · Z ⊆ k · Z. Note that
n · Z ⊆ k · Z if and only if k | n. From the First and the Third isomorphism
theorem we infer that

C/εg(k · Z) ≃ Z/n · Z
/

k · Z/n · Z ≃ Z/k · Z ≃ Zk.

It follows that [C : εg(k ·Z)] = |Zk| = k. We conclude that for every divisor
k of n there is a unique subgroup of C of index k in C. By the Lagrange
theorem, the order of the subgroup is n/k. The lemma follows. �

8.4. Orders of elements. Let G = (G, ·) be a group and g ∈ G. We set

g0 := uG, gn := g · · · g
︸ ︷︷ ︸

n times

and g−n := g−1 · · · g−1

︸ ︷︷ ︸

n times

, (n ∈ N).

Remark 8.4. Observe that

(i) gy·z = (gy)z,
(ii) gy+z = gy · gz,

for all g ∈ G, and all y, z ∈ Z.

An order of an element g of a group G, denoted by o(g), is the least n > 0
such that gn = uG. If no such n exists, we put o(g) := ∞. In the first case
we say that g has a finite order , in the latter we say that g has an infinite

order .

Lemma 8.5. Let G = (G, ·) be a group and g ∈ G. Then

(i) o(g) = ∞ if and only if gy 6= gz for all pairs of distinct integers

y, z.
(ii) If the element g is of a finite order, then gy = gz if and only if

y ≡ z (mod o(g)), for all y, z ∈ Z. In particular, gz = uG if and

only if o(g) | z.

Proof. Since gy+z = gy · gz, for all y, z ∈ Z, the map εg : Z → G given
by z 7→ gz is a group homomorphism. It follows from the definition that
o(g) = ∞ if and only if ker εg = 0 if and only if εg is one-to-one. This
settles (i) and implies that the element g has a finite order if and only if the
kernel of εg is non-trivial. If this is the case then ker εg = n · Z for some n
with 0 < n = o(g), due to Exercise 7.2. It follows that gy = gz if and only
y − z ∈ ker εg if and only if y ≡ z (mod n). This establishes the first part
of (ii). Finally, since uG = g0, we have that gz = uG if and only if z ≡ 0
(mod n). This is exactly when o(g) | z. �

Lemma 8.6. The order of a cyclic group equals the order of a generator of

the group.
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Proof. Let C be a cyclic group and let g be a generator of C of an order
n. If n is infinite, C contains infinitely many distinct powers of g due to
Lemma 8.5(i), whence C is infinite as well. Suppose that o(g) = n ∈ Z. It
follows from Lemma 8.5(ii) that the set Cg := {g0, g1, . . . , gn−1} is closed
under the group operation and g−i = gn−i for all i ∈ {0, 1, . . . , n − 1}. It
follows that Cg is a universe of a subgroup of C containing the generator
g. Therefore C = Cg. Finally, it follows from Lemma 8.5(ii) that all powers
g0, g1, . . . , gn−1 are different. We conclude that the order of C is exactly
n. �

Lemma 8.7. The order of an element g of a finite group G divides the

order of the group.

Proof. The order, o(g), of an element g equals to the order of the cyclic
group Cg generated by g. The order of the subgroup Cg divides the order
of G, due to the Lagrange theorem. �

Let gcd(y, z) and lcm(y, z) denote that greatest common divisor and the
least common multiple of integers y, z, respectively. Recall that integers y
and z are said to be relatively prime provided that gcd(y, z) = 1.

Lemma 8.8. Let G = (G, ·) be a group and f, g ∈ G elements of a finite

order such that f · g = g · f . Then the following holds true:

(i) o(f · g) | lcm(o(f), o(g)).
(ii) if gcd(o(f), o(g)) = 1, then o(f · g) = o(f) · o(g).

Proof. (i) Putm = lcm(o(f), o(g)) and observe that fm = gm = uG, indeed,
both o(f) | m and o(g) | m hold true. Since the elements f and g commute,
we get that (f ·g)m = fm ·gm = uG. It follows that o(f ·g) | lcm(o(f), o(g))
due to Lemma 8.5.

(ii) Put n = o(f · g). It follows from (i) that n | o(f) · o(g). Since f and
g commute we have that

uG = (f · g)n·o(g) = fn·o(g) · gn·o(g) = fn·o(g) · (go(g))n = fn·o(g).

It follows from Lemma 8.5 that o(f) | n · o(g) and since o(f) and o(g) are
relatively prime, we get that o(f) | n. Similarly we prove that o(g) | n
and since gcd(o(f), o(g)) = 1, we conclude that o(f) · o(g) | n. Therefore
n = o(f) · o(g). �

Lemma 8.9. Let G = (G, ·) be a group and f, g ∈ G commuting elements

of a finite order. There are non-negative integers m and k such that

o(fm · gk) = lcm(o(f), o(g)).

Proof. Let o(f) = pα1

1 · pα2

2 · · · pαn

n and o(g) = pβ1

1 · pβ2

2 · · · pβn

n be decompo-
sitions of the orders of the elements f, g into products of distinct primes,
permitting some αi, βi equal 0. Note that lcm(o(f), o(g)) = pγ11 · pγ22 · · · pγnn ,
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where γi = max{αi, βi} for all i = 1, 2, . . . , n. For each i = 1, 2, . . . , n we set

α′
i :=

{

αi if αi ≤ βi,

0 otherwise,
β′
i :=

{

βi if βi < αi,

0 otherwise

and we putm = α′
1·α

′
2 · · ·α

′
n and k = β′

1·β
′
2 · · ·β

′
k. Then gcd(o(fm), o(gk)) =

1 and lcm(o(fm), o(gk)) = lcm(o(f), o(g)). Applying Lemma 8.8(ii), we
conclude that o(fm · gk) = lcm(o(f), o(g)). �

By induction we prove that

Corollary 8.10. Let g1, g2, . . . , gk be commuting elements of a finite order

of a group G.

(i) Then o(g1 · g2 · · · gk) | lcm(o(g1), o(g1), . . . , o(gk)).
(ii) If o(g1), o(g2), . . . , o(gk) are pairwise relatively prime, then

o(g1 · g2 · · · gk) = o(g1) · o(g2) · · · o(gk).

(iii) There are m1,m2, . . . ,mk ∈ N such that

o(gm1

1 · gm2

2 · · · gmk

k ) = lcm(o(g1), o(g2), . . . , o(gk)).

Corollary 8.11. Let F = (F, ·) be a finite abelian group and g ∈ F an

element of the maximum order in A. Then o(f) | o(g) for all f ∈ F .

Proof. According to Corollary 8.10 (iii), there is g ∈ F such that

o(g) = lcm({o(f) | f ∈ F}).

�

Theorem 8.12. Every finite subgroup of the multiplicative group F ∗ =
(F \ {0}, ·) of a field F is cyclic.

Proof. Let G be a finite subgroup of F ∗. Let n be maximum order of an
element ofG. It follows from Corollary 8.11 that o(g) | n for all g ∈ G, hence
every element of G is a root of the polynomial xn − 1. This polynomial has
at most n-distinct roots, hence |G| ≤ n. On the other hand n | |G| as it
follows from Lemma 8.7. We conclude that n = |G|. Therefore the group G
is cyclic. �

Example 8.13. There is no bound of o(f · g) by o(f) and o(g) in general.

For example let n ∈ N and

π := (1, 2n) · (2, 2n− 1) · (3, 2n− 2) · · · (n, n+ 1),

σ := (2, 2n) · (3, 2n− 1) · (4, 2n− 2) · · · (n, n+ 2)

be permutations from S2n. Since both π and σ are products of independent

transpositions o(π) = o(σ) = 2. Computing that

σ · π := (1, 2, 3, . . . , 2n)

is a 2n-cycle, we get that o(σ · π) = 2n.
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8.5. The Euler’s function. The cyclic group Z of an infinite order has
exactly two generators 1 and −1. A cyclic group of a finite order n is
isomorphic to Zn = ({0, 1, . . . , n− 1},+n). The following are equivalent for
an element a ∈ Zn:

(i) a is a generator of Zn,
(ii) o(a) = n,
(iii) k · a 6≡ 0 (mod n) for all k = 1, 2, . . . , n− 1,
(iv) gcd(a, n) = 1.

For a positive integer n we denote by Z∗
n the set of all generators of the

group Zn, i.e,

(8.1) Z∗
n := {a ∈ {1, . . . , n} | gcd(a, n) = 1}.

The Euler’s function is a map ϕ : N → N which assigns to a positive integer
n the number of numbers from {1, 2, . . . , n− 1} that are relatively prime to
n. That is, ϕ(n) = |Z∗

n| is the number of generators of the finite cyclic group
Zn.

Theorem 8.14. Let n = pm1

1 · · · pmk

k be a decomposition of a positive integer

n into the product of primes. Then

ϕ(n) = (pm1

1 − pm1−1
1 ) · · · (pmk

k − pmk−1
k ) = n · (1−

1

p1
) · · · (1−

1

pk
).

Proof. We have that ϕ(n) = ϕ(pm1

1 . . . pmk

k ) = ϕ(pm1

1 ) · · ·ϕ(pmk

k ) due to

Exercise 8.6(ii) and from Exercise 8.6(i) we infer that ϕ(pmi

i ) = pmi

i −pmi−1
i ,

for all i = 1, . . . , k. �

Theorem 8.15. For every positive integer n the equality

(8.2) n =
∑

m|n

ϕ(m)

holds true.

Proof. Observe that an element g of a group G is a generator of a unique
subgroup of G, namely the cyclic subgroup Cg generated by g. The cyclic
group Zn has n elements and a unique subgroup of order m for each divisor
m of n, due to Lemma 8.3. The cyclic subgroup of order m has exactly
ϕ(m) generators. Equality (8.2) follows. �

8.6. The Euler’s, the (small) Fermat’s, and the Wilson’s theorems.
The multiplication modulo a positive integer n is given by

a ·n b = a · b mod n,

is a binary operation on Zn. Note that

• The product of numbers relatively prime to n is again relatively
prime to n;

• gcd(a, n) = gcd(a mod n, n), for every integer a. In particular, if
a is relatively prime to n, then a mod n is relatively prime to n as
well.
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From this we infer that the set

Z∗
n := {a ∈ Zn | gcd(a, n) = 1}

is closed under ·n. Moreover, it follows from Exercise 8.2 that the multipli-
cation ·n on the set Z∗

n is cancellative. It follows that the set Z∗
n together

with the operation ·n form a group (the operation ·n is divisible due to
Exercise 2.2).

Theorem 8.16 (The Euler’s theorem). Let n be a positive integer. Then

(8.1) aϕ(n) ≡ 1 (mod n),

for every integer a co-prime to n.

Proof. Let a be an integer co-prime to n. Put b = a mod n and observe that
b ∈ Z∗

n, i.e, b is co-prime to n as well. It follows from the Lagrange theorem
that the order of b in Z∗

n divides the order of the group Z∗
n. Since the order

of Z∗
n is ϕ(n), we infer from Lemma 8.5 that

1 = b ·n · · · ·n b
︸ ︷︷ ︸

ϕ(n) times

= bϕ(n) mod n ≡ aϕ(n) (mod n).

�

Corollary 8.17 (The (small) Fermat’s theorem). Let p be a prime. Then

ap−1 ≡ 1 (mod p),

for every integer a such that p ∤ a.

Proof. Since p is prime, the assumption p ∤ a implies that the integer a is
co-prime to p. Since ϕ(p) = p − 1 for every prime p, Fermat’s theorem
follows readily form the Euler’s theorem. �

Lemma 8.18 (The Wilson’s theorem). Let 1 < q be an integer. Then

q | (q − 1)! + 1 if and only if q is a prime.

Proof. (⇒) If q is not prime, then clearly 1 < gcd(q, (q − 1)!), and so
q ∤ (q − 1)! + 1. (⇐) Suppose that q is a prime number. Then q | a2 − 1 =
(a+1)(a−1) if and only if q | a+1 or q | a−1, for every integer a. It follows
that the only elements of the group Z∗

q that are equal to their inverses are 1
and q− 1. Consequently, we can pair the remaining elements of Z∗

q , namely
the elements 2, · · · , q − 2, so that the numbers in every pair are inverse to
each other. We conclude that

2 · · · (q − 2) ≡ 1 (mod q),

hence

(q − 1)! ≡ (q − 1) ≡ −1 (mod q),

whence q | (q − 1)! + 1. �
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Exercises

Exercise 8.1. Let n be an integer. Prove that

(i) if a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then

a1 + a2 ≡ b1 + b2 (mod n)

for all a1, a2, b1, b2 ∈ Z.
(ii) if a ≡ b (mod n), then −a ≡ −b (mod n) for all a, b ∈ Z.

Recall that gcd(a, b) and lcm(a, b) denote the greatest common (non-
negative) divisor and the least common (non-negative) multiple of integers
a, b, respectively.

Exercise 8.2. Let n be a positive integer. Prove that

(i) if a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then

a1 · a2 ≡ b1 · b2 (mod n),

for all a1, a2, b1, b2 ∈ Z.
(ii) if a ≡ b (mod n), then ak ≡ bk (mod n), for all a, b ∈ Z and all

k ∈ N.

Exercise 8.3. Prove that

(i) if a · k ≡ b · k (mod n) and gcd(k, n) = 1, then a ≡ b (mod n), for
all a, b, k ∈ Z and n ∈ N.

(ii) if a ≡ b (mod ni) for all n1, . . . , nk, then

a ≡ b (mod lcm(n1, . . . , nk)),

for all a, b ∈ Z and n1, . . . , nk ∈ N.

Exercise 8.4. Let π and σ be a as in Example 8.13. Put ρ := (1, n+ 1) · σ
and compute that o(π) = o(ρ) = 2 while o(ρ · π) = n.

Exercise 8.5. Let π = γ1 · · · γk be a decomposition of a permutation π ∈ Sn

into the product of independent cycles. Prove that o(π) = lcm(|γ1|, . . . , |γk|).

Exercise 8.6. (i) Let p be a prime and m a positive integer. Prove

that

ϕ(pm) = pm − pm−1.

(ii) Let n1, n2, · · · , nk be pairwise relatively prime integers. Prove that

ϕ(n1 · n2 · · ·nk) = ϕ(n1) · ϕ(n2) · · ·ϕ(nk).


