
LECTURE 7

The homomorphism and isomorphism theorems

PAVEL RŮŽIČKA

Abstract. We prove the homomorphism theorem and the three iso-

morphism theorems for groups. We show that the alternating group of

permutations An is simple for all n 6= 4.

7.1. The homomorphism theorem. We prove a theorem relating homo-
morphisms, kernels, and normal subgroups.

Theorem 7.1 (The homomorphism theorem). Let ϕ : G → H be a group

homomorphism and N a normal subgroup of G. There is a homomorphism

ψ : G/N → H such that ϕ = ψ ◦ πG/N if and only if N ⊆ kerϕ. The

homomorphism ψ is necessarily unique.

Moreover ψ is a group embedding if and only if N = kerϕ.
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Figure 1. The homomorphism theorem

Proof. (⇒) Suppose that ϕ = ψ ◦ πG/N for some ψ : G/N → H and let
n ∈ N . Then ϕ(n) = ψ ◦πG/N (n) = ψ(N) = uH , hence n ∈ kerϕ. It folows
that N ⊆ kerϕ.

(⇐) Suppose that N ⊆ kerϕ. If f · N = g · N , for some f, g ∈ G, then
g−1 · f ∈ N due to Lemma 4.2 (iii) ⇒ (i). Since N ⊆ kerϕ, we have that
uH = ϕ(g−1 · f) = ϕ(g)−1 · ϕ(f), hence ϕ(g) = ϕ(f). Therefore we can
define a map ψ : G/N → H by g · N 7→ ϕ(g). From ψ((f · N) · (g · N)) =
ψ(f · g ·N) = ϕ(f · g) = ϕ(f) ·ϕ(g) = ψ(f ·N) ·ψ(g ·N), for all f, g ∈ G, we
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infer that ψ : G/N → H is a group homomorphism. It is straightforward
that ϕ = ψ ◦ πG/N and that ψ is unique with the required properties.

Suppose that ψ is a group embedding. Let g ∈ kerφ. We compute that
ψ(N) = uH = ϕ(g) = ψ(πG/N (g)) = ψ(N · g), hence N = N · g, whence
g ∈ N . It follows that kerϕ ⊆ N . Since N ⊆ kerϕ due to the first part of
the theorem, we conclude that N = kerϕ.

Coversely, suppose that N = kerϕ. Let f, g ∈ G satisfy ψ(f · N) =
ψ(g ·N). It follow that ϕ(f) = ϕ(g), hence ϕ(g−1 ·f) = ϕ(g)−1 ·ϕ(f) = uH ,
whence g−1 · f ∈ kerϕ = N . We get that f ·N = g ·N , due to Lemma 4.2.
We conclude that ψ is an embedding. �

Corollary 7.2. A group homomorphism ϕ : G → H is an embedding if and

only if kerϕ = {uG}.

7.2. The isomorphisms theorems.

Theorem 7.3 (The 1st isomorphism theorem). Let ϕ : G → H be a group

homomorphism. Then ϕ(G) is a subgroup of H isomorphic to G/ kerϕ.
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Figure 2. The 1st isomorphism theorem

Proof. Since ϕ is a group homomorphism, we have that

ϕ(g) · ϕ(h)−1 = ϕ(g · h−1) ∈ ϕ(G),

for all g, h ∈ G. Therefore ϕ(G) is a subgroup of H. It follow from
Theorem 7.1 that there is an embedding ψ : G/ kerϕ → ϕ(G) such that
ϕ = ψ ◦ πG/ kerϕ. Thus ψ induces an isomorphism between G/ kerϕ and
ϕ(G). �

Lemma 7.4. Let N , K be subgroups of a group G.

(i) If N E G or K E G, then N ·K is a subgroup of G.

(ii) If both N E G and K E G, then N · K is a normal subgroup of

G.

Proof. (i) Since N E G or K E G, the equality N ·K = K ·N holds true.
It follows that

(N ·K) · (N ·K) = N ·N ·K ·K = N ·K,



Group homomorphisms and their kernels 3

hence N ·K is a sub-universe of G. For all n ∈ N and k ∈ K we have that
(n · k)−1 = k−1 ·n−1 ∈ K ·N = N ·K. Therefore N ·K is a subgroup of G.

(ii) If both N and K are normal subgroup of G, then g ·N ·K = N ·g ·K =
N · K · g, for all g ∈ G. It follows the subgroup N · K is normal due to
Lemma 4.11. �

Observe that if at least one of subgroups N and K of a group G is normal
(resp. if both the subgroups N and K are normal in G), N ·K is the least
subgroup (resp. the least normal subgroup) of G containing both the groups
N and K. On the other hand the intersection N ∩K is the largest common
subgroup (resp. the largest common normal subgroup if both N and K are
normal in G) of N and K.

Theorem 7.5 (The 2nd isomorphism theorem). Let G be a group, H a

subgroup of G, and N a normal subgroups of G. Then

(N ∩H) E H, and (N ·H)
/

N ≃ H
/

(N ∩H).

N · H

N ∩ H

G

0

HN ≃

Figure 3. The 2nd isomorphism theorem

Proof. The product N ·H is a subgroup of G due to Lemma 7.4 (i). Since
N is a normal subgroup of H, we have that g ·N ·g−1 ⊆ N for all g ∈ G (and
a fortiori for all h ∈ H) due to Lemma 5.1. It follows that h ·(N ∩H) ·h−1 ⊆
N ∩H, for all h ∈ H. Therefore N ∩H is a normal subgroup of H. Since
clearly

g · h−1 ∈ N ∩H if and only if g · h−1 ∈ N,

for all g, h ∈ H, we have that

g · (N ∩H) = h · (N ∩H) if and only if g ·N = h ·N,

for all g, h ∈ H. Therefore the maps

H/(N ∩ H) (N · H)/N

h · (N ∩H) h ·N
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are well defined. It is straightforward to verify that they are mutually inverse
group isomorphisms. �

Theorem 7.6 (The 3rd isomorphism theorem). Let G be a group and N ,

K normal subgroups of G. If K ⊆ N , then

N/K E G/K and G/N ≃ (G/K)
/

(N/K).

G

N

K

{uG}

E

E

G/K

N/K

{uG/K}

E≃

Figure 4. The 3rd isomorphism theorem

Proof. Since K E G, we have that

(g ·K) · (n ·K) · (g ·K)−1 = g ·K · n ·K · g−1 ·K = g · n · g−1 ·K

for all n ∈ N and g ∈ G. Since N E G, there is n′ ∈ N such that
g · n · g−1 = n′, hence

(g ·K) · (n ·K) · (g ·K)−1 = n′ ·K,

for some n′ ∈ N . According to Lemma 5.1 we have that N/K E G/K.
From

g · h−1 ∈ N if and only if g · h−1 ·K ∈ N/K, for all g, h ∈ G,

we infer that

g ·N = h ·N if and only if (g ·K) ·N/K = (h ·K) ·N/K,

for all g, h ∈ G. Therefore the maps

G/N (G/K)
/

(N/K)

g ·N (g ·K) · (N/K)

are well defined. It is straightforward to verify that the maps are mutually
inverse isomorphisms of the groups. �
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7.3. Simplicity of the alternating groups. A (non-trivial) group has two
trivial subgroups, the singleton subgroup containing only the unit element
and the group itself. These two subgroups are necessarily normal and they
are the only subgroups of finite groups of a prime order due to the Langrange
theorem. Infinite groups and finite groups of a composite order have non-
trivial subgroups. However it can still happen that they have only trivial
normal subgroups. The groups whose only normal subgroups are the trivial
ones are called simple. We prove that this is the case of the alternating
groups with the only exception of A4.

Theorem 7.7. The alternating group of permutations An is simple for all

n 6= 4.

Proof. Alternating groups A2 and A3 are of a prime order, and so they are
simple. Therefore we can assume that 5 ≤ n. It follows from Lemma 5.7
that the group An is generated by 3-cycles. Using the assumption that
n ≥ 5, we show that

Claim 1. All 3-cycles are conjugated in An.

Proof of Claim 1. Let π = (a, b, c) and ρ = (d, e, f) be 3-cycles (with not
necessarily disjoint supports). According to formula (5.2), ρ is conjugated
to π by a permutation σ satisfying σ(a) = d, σ(b) = e and σ(c) = f . If
σ is even, we are done. If σ is odd, we find g, h distinct from d, e, f and
replace σ with the even permutation σ̂ = (g, h) · σ. We still have that
σ̂(a) = d, σ̂(b) = e and σ̂(c) = f , and so ρ = σ̂π. This is possible since
n ≥ 5. � Claim 1.

Claim 2. Avery non-singleton normal subgroup of An contains a 3-cycle.

Proof of Claim 2. Let N be a non-singleton normal subgroup of the alter-
nating group. Let us denote by π a non-unit permutation from N with
suppπ of the least possible size (among non-unit permutations from N).
We discus two complementary cases.

First suppose that in the decomposition of π into the product of inde-
pendent cycles there is a cycle (a, b, c, . . . ) of the length at least 3. If π is a
3-cycle, we are done. It this not the case, there is e ∈ suppπ not in {a, b, c}.
Set f := π(e) and observe that f /∈ {b, c}. It follows that the permutation
σ = (a, e)·(b, f) is even and c /∈ suppσ. We put ρ = π−1 ·σπ = π−1 ·σ ·π ·σ−1.
Observe that supp ρ ⊆ suppπ and, since N E An, the permutation ρ be-
longs to N . Applying (5.2) we compute from f = σ(b) and c = σ(c) that

ρ(f) = π−1 · σπ(f) = π−1 · σ(π(b)) = π−1 · σ(c) = π−1(c) = b.

Since f 6= b, the permutation ρ is not the unit. Next we compute that

ρ(a) = π−1(σπ(a)) = π−1 · σ · π(e) = π−1(b) = a,

hence supp ρ ( suppπ. This contradicts the choice of π.
The remaining case is when π = (a, b) · (c, d) · · · is a product of inde-

pendent transpositions. Since n ≥ 5, we can pick e /∈ {a, b, c, d} and put
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σ = (a, b) · (c, e). As in the previous case let ρ = π−1 · σπ (which here equals
to π · σπ). Observe that supp ρ ⊆ suppπ ∪ {e} and as above ρ ∈ N . We
easily compute that ρ(a) = a, ρ(b) = b and ρ(e) = π−1(d) = c 6= e. It
follows that ρ is a non-unit permutation and a, b /∈ supp ρ. We conclude
that | supp ρ| < | suppπ|, which is a contradiction. � Claim 2.

From Claim 1 and Claim 2 we conclude that N contains all 3-cycles.
It follows that N = An due to Lemma 5.7. Therefore the group An is
simple. �

Remark 7.8. Note that all the Klein’s Vierergrupe V is a non-trivial nor-
mal subgroup of A4 (cf. Example 6.9).

Exercises

Exercise 7.1. Recall that V denotes the Klein’s Vierergrupe

V = {υ4, (1, 2) · (3, 4), (1, 3) · (2, 4), (1, 4) · (2, 3)}.

Prove that S4/V ≃ S3.

Exercise 7.2. Let Z be the group of all integers with the operation of addi-

tion. For each non-negative integer n put

n · Z := {n · z | z ∈ Z} = {w ∈ Z | w is divisible by n}.

Prove that the n · Z are subgroups of Z and all subgroups of Z are of this

form.

Exercise 7.3. For a positive integer n and an integer z let z (mod n) denote
the reminder of z when dividing by n. Let Zn denote the set {0, 1, . . . , n−1}
with the binary operation +n defined by a+n b = a+ b (mod n). Prove that

Zn is a group isomorphic to Z/n · Z.

Exercise 7.4. Let m,n be positive integers such that n | m. Prove that

n · Z
/

m · Z ≃ Zm

n
.

Exercise 7.5. Let m,n be positive integers. Let d denote their greatest

common divisor and l their least common multiple.

(i) Prove that

n · Z ∩m · Z = l · Z and n · Z+m · Z = d · Z

(ii) Prove that

n · Z
/

(m · Z ∩ n · Z) ≃ (n · Z+m · Z)
/

m · Z ≃ Zn

d
= Z l

m

.


